
17. Convergence of Random Variables

In elementary mathematics courses (such as Calculus) one speaks of the con-
vergence of functions: fn:R → R, then limn→∞ fn = f if limn→∞ fn(x) =
f(x) for all x in R. This is called pointwise convergence of functions. A ran-
dom variable is of course a function (X:Ω → R for an abstract space Ω),
and thus we have the same notion: a sequence Xn:Ω → R converges point-
wise to X if limn→∞Xn(ω) = X(ω), for all ω ∈ Ω. This natural definition
is surprisingly useless in probability. The next example gives an indication
why.

Example 1: Let Xn be an i.i.d. sequence of random variables with P (Xn =
1) = p and P (Xn = 0) = 1−p. For example we can imagine tossing a slightly
unbalanced coin (so that p > 1

2 ) repeatedly, and {Xn = 1} corresponds to
heads on the nth toss and {Xn = 0} corresponds to tails on the nth toss. In
the “long run”, we would expect the proportion of heads to be p; this would
justify our model that claims the probability of heads is p. Mathematically
we would want

lim
n→∞

X1(ω) + . . .+Xn(ω)
n

= p for all ω ∈ Ω.

This simply does not happen! For example let ω0 = {T, T, T, . . .}, the se-
quence of all tails. For this ω0,

lim
n→∞

1
n

n∑
j=1

Xj(ω0) = 0.

More generally we have the event

A = {ω : only a finite number of heads occur}.
Then

lim
n→∞

1
n

n∑
j=1

Xj(ω) = 0 for all ω ∈ A.

We readily admit that the event A is very unlikely to occur. Indeed, we
can show (Exercise 17.13) that P (A) = 0. In fact, what we will eventually
show (see the Strong Law of Large Numbers [Chapter 20]) is that
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P

ω : limn→∞
1
n

n∑
j=1

Xj(ω) = p


 = 1.

This type of convergence of random variables, where we do not have conver-
gence for all ω but do have convergence for almost all ω (i.e., the set of ω
where we do have convergence has probability one), is what typically arises.

Caveat: In this chapter we will assume that all random variables are defined
on a given, fixed probability space (Ω,A, P ) and takes values in R or Rn.
We also denote by |x| the Euclidean norm of x ∈ Rn.

Definition 17.1. We say that a sequence of random variables (Xn)n≥1 con-
verges almost surely to a random variable X if

N =
{
ω : lim

n→∞Xn(ω) �= X(ω)
}

has P (N) = 0.

Recall that the set N is called a null set, or a negligible set.

Note that

N c = Λ =
{
ω : lim

n→∞Xn(ω) = X(ω)
}
and then P (Λ) = 1.

We usually abbreviate almost sure convergence by writing

lim
n→∞Xn = X a.s.

We have given an example of almost sure convergence from coin tossing pre-
ceding this definition.
Just as we defined almost sure convergence because it naturally occurs

when “pointwise convergence” (for all “points”) fails, we need to introduce
two more types of convergence. These next two types of convergence also
arise naturally when a.s. convergence fails, and they are also useful as tools
to help to show that a.s. convergence holds.

Definition 17.2. A sequence of random variables (Xn)n≥1 converges in Lp

to X (where1 ≤ p <∞) if |Xn|, |X| are in Lp and:

lim
n→∞E{|Xn −X|p} = 0.

Alternatively one says Xn converges to X in pth mean, and one writes

Xn
Lp→ X.

The most important cases for convergence in pth mean are when p = 1
and when p = 2. When p = 1 and all r.v.’s are one-dimensional, we have
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|E{Xn − X}| ≤ E{|Xn − X|} and |E{|Xn|} − E{|X|}| ≤ E{|Xn − X|}
because ||x| − |y|| ≤ |x− y|. Hence

Xn
L1

→ X implies E{Xn} → E{X} and E{|Xn|} → E{|X|}. (17.1)

Similarly, when Xn
Lp→ X for p ∈ (1,∞), we have that E{|Xn|p} converges to

E{|X|p}: see Exercise 17.14 for the case p = 2.
Definition 17.3. A sequence of random variables (Xn)n≥1 converges in
probability to X if for any ε > 0 we have

lim
n→∞P ({ω : |Xn(ω)−X(ω)| > ε}) = 0.

This is also written
lim

n→∞P (|Xn −X| > ε) = 0,

and denoted
Xn

P→ X.

Using the epsilon-delta definition of a limit, one could alternatively say
that Xn tends to X in probability if for any ε > 0, any δ > 0, there exists
N = N(δ) such that

P (|Xn −X| > ε) < δ

for all n ≥ N .
Before we establish the relationships between the different types of con-

vergence, we give a surprisingly useful small result which characterizes con-
vergence in probability.

Theorem 17.1. Xn
P→ X if and only if

lim
n→∞E

{ |Xn −X|
1 + |Xn −X|

}
= 0.

Proof. There is no loss of generality by taking X = 0. Thus we want to show
Xn

P→ 0 if and only if limn→∞E{ |Xn|
1+|Xn|} = 0. First suppose that Xn

P→ 0.
Then for any ε > 0, limn→∞ P (|Xn| > ε) = 0. Note that

|Xn|
1 + |Xn| ≤

|Xn|
1 + |Xn|1{|Xn|>ε} + ε1{|Xn|≤ε} ≤ 1{|Xn|>ε} + ε.

Therefore

E

{ |Xn|
1 + |Xn|

}
≤ E

{
1{|Xn|>ε}

}
+ ε = P (|Xn| > ε) + ε.

Taking limits yields
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lim
n→∞E

{ |Xn|
1 + |Xn|

}
≤ ε;

since ε was arbitrary we have limn→∞E{ |Xn|
1+|Xn|} = 0.

Next suppose limn→∞E{ |Xn|
1+|Xn|} = 0. The function f(x) = x

1+x is strictly
increasing. Therefore

ε

1 + ε
1{|Xn|>ε} ≤ |Xn|

1 + |Xn|1{|Xn|>ε} ≤ |Xn|
1 + |Xn| .

Taking expectations and then limits yields

ε

1 + ε
lim

n→∞P (|Xn| > ε) ≤ lim
n→∞E

{ |Xn|
1 + |Xn|

}
= 0.

Since ε > 0 is fixed, we conclude limn→∞ P (|Xn| > ε) = 0. �

Remark: What this theorem says is that Xn
P→ X iff1E{f(|Xn −X|)} → 0

for the function f(x) = |x]
1+|x| . A careful examination of the proof shows that

the same equivalence holds for any function f on R+ which is bounded,
strictly increasing on [0,∞), continuous, and with f(0) = 0. For example we
have Xn

P→ X iff E{|Xn−X|∧1} → 0 and also iff E{arctan(|Xn−X|)} → 0.

The next theorem shows that convergence in probability is the weakest of
the three types of convergence (a.s., Lp, and probability).

Theorem 17.2. Let (Xn)n≥1 be a sequence of random variables.

a) If Xn
Lp→ X, then Xn

P→ X.
b) If Xn

a.s.→ X, then Xn
P→ X.

Proof. (a) Recall that for an event A, P (A) = E{1A}, where 1A is the indi-
cator function of the event A. Therefore,

P{|Xn −X| > ε} = E
{
1{|Xn−X|>ε}

}
.

Note that |Xn−X|p
εp > 1 on the event {|Xn −X| > ε}, hence

≤ E

{ |Xn −X|p
εp

1{|Xn−X|>ε}

}
=
1
εp
E
{|Xn −X|p1{|Xn−X|>ε}

}
,

and since |Xn −X|p ≥ 0 always, we can simply drop the indicator function
to get:
1 The notation iff is a standard notation shorthand for “if and only if”
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≤ 1
εp
E{|Xn −X|p}.

The last expression tends to 0 as n tends to ∞ (for fixed ε > 0), which gives
the result.
(b) Since |Xn−X|

1+|Xn−X| ≤ 1 always, we have

lim
n→∞E

{ |Xn −X|
1 + |Xn −X|

}
= E

{
lim

n→∞
|Xn −X|

1 + |Xn −X|
}
= E{0} = 0

by Lebegue’s Dominated Convergence Theorem (9.1(f)). We then apply The-
orem 17.1. �
The converse to Theorem 17.2 is not true; nevertheless we have two partial

converses. The most delicate one concerns the relation with a.s. convergence,
and goes as follows:

Theorem 17.3. Suppose Xn
P→ X. Then there exists a subsequence nk such

that limk→∞Xnk = X almost surely.

Proof. Since Xn
P→ X we have that limn→∞E{ |Xn−X|

1+|Xn−X|} = 0 by The-

orem 17.1. Choose a subsequence nk such that E{ |Xnk
−X|

1+|Xnk
−X|} < 1

2k . Then∑∞
k=1E{

|Xnk
−X|

1+|Xnk
−X|} <∞ and by Theorem 9.2 we have that

∑∞
k=1

|Xnk
−X|

1+|Xnk
−X|

<∞ a.s.; since the general term of a convergent series must tend to zero, we
conclude

lim
n→n

|Xnk −X| = 0 a.s.
�

Remark 17.1. Theorem 17.3 can also be proved fairly simply using the
Borel–Cantelli Theorem (Theorem 10.5).

Example 2: Xn
P→ X does not necessarily imply that Xn converges to X

almost surely. For example take Ω = [0, 1], A the Borel sets on [0, 1], and
P the uniform probability measure on [0, 1]. (That is, P is just Lebesgue
measure restricted to the interval [0, 1].) Let An be any interval in [0, 1] of
length an, and take Xn = 1An . Then P (|Xn| > ε) = an, and as soon as
an → 0 we deduce that Xn

P→ 0 (that is, Xn tends to 0 in probability). More
precisely, let Xn,j be the indicator of the interval [ j−1n , j

n ], 1 ≤ j ≤ n, n ≥ 1.
We can make one sequence of the Xn,j by ordering them first by increasing
n, and then for each fixed n by increasing j. Call the new sequence Ym. Thus
the sequence would be:

X1,1 , X2,1 , X2,2 , X3,1 , X3,2 , X3,3 , X4,1 , . . .
Y1 , Y2 , Y3 , Y4 , Y5 , Y6 , Y7 , . . .



146 17. Convergence of Random Variables

Note that for each ω and every n, there exists a j such that Xn,j(ω) = 1.
Therefore lim supm→∞ Ym = 1 a.s., while lim infm→∞ Ym = 0 a.s. Clearly
then the sequence Ym does not converge a.s. However Yn is the indicator of
an interval whose length an goes to 0 as n → ∞, so the sequence Yn does
converge to 0 in probability.
The second partial converse of Theorem 17.2 is as follows:

Theorem 17.4. Suppose Xn
P→ X and also that |Xn| ≤ Y , all n, and Y ∈

Lp. Then |X| is in Lp and Xn
Lp→ X.

Proof. Since E{|Xn|p} ≤ E{Y p} <∞, we have Xn ∈ Lp. For ε > 0 we have

{|X| > Y + ε} ⊂ {|X| > |Xn|+ ε}
⊂ {|X| − |Xn| > ε}
⊂ {|X −Xn| > ε},

hence
P (|X| > Y + ε) ≤ P (|X −Xn| > ε),

and since this is true for each n, we have

P (|X| > Y + ε) ≤ lim
n→∞P (|X −Xn| > ε) = 0,

by hypothesis. This is true for each ε > 0, hence

P (|X| > Y ) ≤ lim
m→∞P (|X| > Y +

1
m
) = 0,

from which we get |X| ≤ Y a.s. Therefore X ∈ Lp too.
Suppose now that Xn does not converge to X in Lp. There is a subse-

quence (nk) such that E{|Xnk − X|p} ≥ ε for all k, and for some ε > 0.
The subsequence Xnk trivially converges to X in probability, so by Theorem
17.3 it admits a further subsequence Xnkj

which converges a.s. to X. Now,
the r.v.’s Xnkj

−X tend a.s. to 0 as j →∞, while staying smaller than 2Y ,
so by Lebesgue’s Dominated Convergence we get that E{|Xnkj

−X|p} → 0,
which contradicts the property that E{|Xnk −X|p} ≥ ε for all k: hence we
are done. �
The next theorem is elementary but also quite useful to keep in mind.

Theorem 17.5. Let f be a continuous function.

a) If limn→∞Xn = X a.s., then limn→∞ f(Xn) = f(X) a.s.
b) If Xn

P→ X, then f(Xn)
P→ f(X).
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Proof. (a) Let N = {ω : limn→∞Xn(ω) �= X(ω)}. Then P (N) = 0 by
hypothesis. If ω �∈ N , then

lim
n→∞ f(Xn(ω)) = f

(
lim

n→∞Xn(ω)
)
= f(X(ω)),

where the first equality is by the continuity of f . Since this is true for any
ω �∈ N , and P (N) = 0, we have the almost sure convergence.
(b) For each k > 0, let us set:

{|f(Xn)− f(X)| > ε} ⊂ {|f(Xn)− f(X)| > ε, |X| ≤ k} ∪ {|X| > k}. (17.2)

Since f is continuous, it is uniformly continuous on any bounded interval.
Therefore for our ε given, there exists a δ > 0 such that |f(x)− f(y)| ≤ ε if
|x− y| ≤ δ for x and y in [−k, k]. This means that

{|f(Xn)− f(X)| > ε, |X| ≤ k} ⊂ {|Xn −X| > δ, |X| ≤ k} ⊂ {|Xn−X| > δ}.

Combining this with (17.2) gives

{|f(Xn)− f(X)| > ε} ⊂ {|Xn −X| > δ} ∪ {|X| > k}. (17.3)

Using simple subadditivity (P (A∪B) ≤ P (A)+P (B)) we obtain from (17.3):

P {|f(Xn)− f(X)| > ε} ≤ P (|Xn −X| > δ) + P (|X| > k).

However {|X| > k} tends to the empty set as k increases to ∞ so
limk→∞ P (|X| > k) = 0. Therefore for γ > 0 we choose k so large that
P (|X| > k) < γ. Once k is fixed, we obtain the δ of (17.3), and therefore

lim
n→∞P (|f(Xn)− f(X)| > ε) ≤ lim

n→∞P (|Xn −X| > δ) + γ = γ.

Since γ > 0 was arbitrary, we deduce the result. �
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Exercises for Chapter 17

17.1 Let Xn,j be as given in Example 2. Let Zn,j = n
1
pXn,j . Let Ym be the

sequence obtained by ordering the Zn,j as was done in Example 2. Show that
Ym tends to 0 in probability but that (Ym)m≥1 does not tend to 0 in Lp,
although each Yn belongs to Lp.

17.2 Show that Theorem 17.5(b) is false in general if f is not assumed to
be continuous. (Hint: Take f(x) = 1{0}(x) and the Xn’s tending to 0 in
probability.)

17.3 Let Xn be i.i.d. random variables with P (Xn = 1) = 1
2 and P (Xn =

−1) = 1
2 . Show that

1
n

n∑
j=1

Xj

converges to 0 in probability. (Hint: Let Sn =
∑n

j=1Xj , and use Chebyshev’s
inequality on P{|Sn| > nε}.)
17.4 Let Xn and Sn be as in Exercise 17.3. Show that 1

n2Sn2 converges to
zero a.s. (Hint: Show that

∑∞
n=1 P{ 1

n2 |Sn2 | > ε} < ∞ and use the Borel-
Cantelli Theorem.)

17.5 * Suppose |Xn| ≤ Y a.s., each n, n = 1, 2, 3 . . .Ṡhow that supn |Xn| ≤ Y
a.s. also.

17.6 Let Xn
P→ X. Show that the characteristic functions ϕXn converge

pointwise to ϕX (Hint: Use Theorem 17.4.)

17.7 Let X1, . . . , Xn be i.i.d. Cauchy random variables with parameters α =
0 and β = 1. (That is, their density is f(x) = 1

π(1+x2) , −∞ < x <∞.) Show
that 1

n

∑n
j=1Xj also has a Cauchy distribution. (Hint: Use Characteristic

functions: See Exercise 14.1.)

17.8 Let X1, . . . , Xn be i.i.d. Cauchy random variables with parameters α =
0 and β = 1. Show that there is no constant γ such that 1

n

∑n
j=1Xj

P→ γ.
(Hint: Use Exercise 17.7.) Deduce that there is no constant γ such that
limn→∞ 1

n

∑n
j=1Xj = γ a.s. as well.

17.9 Let (Xn)n≥1 have finite variances and zero means (i.e., Var(Xn) =
σ2Xn

< ∞ and E{Xn} = 0, all n). Suppose limn→∞ σ2Xn
= 0. Show Xn

converges to 0 in L2 and in probability.

17.10 Let Xj be i.i.d. with finite variances and zero means. Let Sn =∑n
j=1Xj . Show that 1

nSn tends to 0 in both L2 and in probability.
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17.11 * Suppose limn→∞Xn = X a.s. and |X| <∞ a.s. Let Y = supn |Xn|.
Show that Y <∞ a.s.

17.12 * Suppose limn→∞Xn = X a.s. Let Y = supn |Xn−X|. Show Y <∞
a.s. (see Exercise 17.11), and define a new probability measure Q by

Q(A) =
1
c
E

{
1A

1
1 + Y

}
, where c = E

{
1

1 + Y

}
.

Show that Xn tends to X in L1 under the probability measure Q.

17.13 Let A be the event described in Example 1. Show that P (A) = 0.
(Hint: Let

An = { Heads on nth toss }.
Show that

∑∞
n=1 P (An) = ∞ and use the Borel-Cantelli Theorem (Theo-

rem 10.5.) )

17.14 Let Xn and X be real-valued r.v.’s in L2, and suppose that Xn tends
to X in L2. Show that E{X2

n} tends to E{X2} (Hint: use that |x2 − y2| =
(x− y)2 + 2|y||x− y| and the Cauchy-Schwarz inequality).
17.15 * (Another Dominated Convergence Theorem.) Let (Xn)n≥1 be random

variables withXn
P→ X (limn→∞Xn = X in probability). Suppose |Xn(ω)| ≤

C for a constant C > 0 and all ω. Show that limn→∞E{|Xn−X|} = 0. (Hint:
First show that P (|X| ≤ C) = 1.)


