
Preface to the Second English Edition

The second English edition is largely based on the third German edition of the Teub-
ner Studienbuch

“
Kristallstrukturbestimmung,” which appeared in 2002. In particu-

lar, Chapter 7, dealing with experimental methods, has been extensively rewritten. In
view of the huge recent advances in the use of area detector systems for single-crys-
tal data collection, their description has replaced much of the material on

“
classic”

methods. Similarly, the practical example (Chapter 15) now describes area-collector
methods more fully. Among many other cases, the sections on Rietveld refinement,
macromolecular crystallography and uses of databases have been updated. I am grate-
ful to my colleague R. O. Gould for continuing his excellent translation of the first
edition, and for the friendly and careful collaboration in achieving many large and
small improvements.

Werner Massa Marburg, November 2003

Preface to the First German Edition

Crystal structure analysis using X-rays has undergone an expansion of avalanche
proportions in the last twenty years, thanks to the development of rapid and auto-
matic means of data collection and the enormous growth of the computer hardware
and software for carrying out the necessary calculations. Because of its wide appli-
cability and its precision, it has become one of the most important tools in both
organic and inorganic chemical research. Despite the fact that crystallography plays
a very minor role in most undergraduate study, many students have found that in
the course of graduate or even undergraduate research, they need to undertake a
crystal structure determination themselves, or at least to become competent to inter-
pret crystallographic results. Thanks to ever improving program systems, the many
complex steps of a structure analysis are certainly becoming less and less difficult for
the beginner to master. Nonetheless, regarding the process simply as a

“
black box” is

fraught with danger.
This book is aimed at those students of chemistry and related subjects who wish

to take a look into the black box before they step into its territory, or who simply wish
to learn more of the fundamentals, the opportunities and the risks of the method. In
view of the well-known fact that the likelihood a book will actually be read is inversely
proportional to its number of pages, fundamentals of the method are treated here as
briefly and as intuitively as possible. It seems more important that chemists should
have a grasp of the basic principles and their application to a problem, than that they
be in a position to understand fully the complex mathematical formalisms employed
by the computer programs.

On the other hand, some aspects of the subject, which bear directly on the quality
of a structure determination, are worth fuller treatment. These include discussion of
a number of significant errors and the recognition and treatment of disorder and



VI

twinning. Most important crystallographic literature is available in English, but a few
references in other languages, principally German, have been included.

This book is based in part on lectures and on a seminar at the University of
Marburg. Consciously or unconsciously, many colleagues have made their contribu-
tions. I am particularly grateful to Professor D. Babel for many helpful suggestions
and a critical reading of the manuscript. I thank Dr. K. Harms for proofreading the
manuscript and Mr. C. Frommen for considerable assistance with the production
of camera-ready copy using the LTEX program. Finally, I acknowledge the help of
my wife Hedwig and my children for all their assistance and patience during the
preparation of this book.

Werner Massa Marburg, April 1994



CHAPTER 2

Crystal Lattices

2.1
The Lattice

A
“

crystal” is a solid object in which a basic pattern of atoms is repeated over and over
in all three dimensions. In order to describe the structure of a crystal, it is thus only
necessary to know the simplest repeating

“
motif ” and the lengths and directions

of the three vectors which together describe its repetition in space (Fig. 2.1). The
motif can be a molecule, as in Fig. 2.1, or the building block of a network structure.
Normally, it consists of several such units, which may be converted into one another
by symmetry operations (as in Fig. 2.2). The three vectors a, b, c which describe the
translations of the motif in space are called the basis vectors. By their operation one

Fig. 2.1. Portion of the crystal of a simple molecular structure with the basis vectors shown.
(The third vector is normal to the plane of the paper.)
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Fig. 2.2. A more complex structure in which the motif consists of four differently orientated
molecules of (C5H5)3Sb. The translation in the b-direction is not shown.

upon another, a lattice is generated. Any point in such a lattice may be described by
a vector r,

r = n1a + n2b + n3c (2.1)

where n1, n2 and n3 are integers. It is important to keep in mind that the lattice is
an abstract mathematical concept, the origin of which may be chosen more or less
arbitrarily in a crystal structure. If it is chosen to lie on some particular atom, it
follows that every point of the lattice will lie on an identical atom in an identical
environment. It is, of course, equally valid to place the origin on an empty point in
the structure.

Unfortunately, the word lattice has taken on a different meaning in common
speech: when, for example, the phrase “rock-salt lattice” is used, what is meant is
the “rock-salt structure type”.

2.1.1
The Unit Cell

The smallest repeating volume of the lattice is called the unit cell. It is characterized
by three lattice constants a, b, c (the lengths of the basis vectors) and by the three
angles α, β, γ which separate these vectors from one another. By definition, α is the
angle between the basis vectors b and c, β between a and c, and γ between a and
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Fig. 2.3. Portion of a lattice.

b (Fig. 2.3). The lengths of the lattice constants for
“

normal” organic or inorganic
structures, with the determination of which we are concerned here, is of the order
of 3 to 40 Å. For protein structures they rise to 100 Å or more. A crystal structure
is solved, if the types and locations of all the atoms in the unit cell are known; in
general there will be between 1 and 1000 of these.

2.1.2
Atom Parameters

The positions of atoms are conveniently described in terms of the crystallographic
axes defined by the three basis vectors: these are normally referred to as the a-, b-
and c-axes. The lattice constants are then used as units, and the atomic positions are
given in terms of fractional co-ordinates x, y, z, which describe fractions of the lattice
constants a, b, and c respectively (Fig. 2.4). The coordinates of an atom at the center
of the unit cell, for example, are simply written as

( 1
2 , 1

2 , 1
2

)
.

When a drawing is made using the published atom parameters for a structure,
the lattice parameters and angles must be known. Then,

“
absolute” coordinates for

Fig. 2.4. Example of atomic parameters x,y,z in units
of the basis vectors.
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each atom xa, yb, zc give the appropriate distances along each of the crystallographic
axes.

2.1.3
The Seven Crystal Systems

In addition to the three dimensional periodicity, a further very important property of
nearly all crystals is their symmetry. This is treated more fully in Chapter 6; it is now
only necessary to examine those aspects of symmetry which affect the lattice. For
example, if there is a mirror plane in the crystal normal to the b-axis, it follows that
the a- and c-axes must lie in this plane, and hence be themselves perpendicular to
the b-axis. If a 3-fold rotation axis lies parallel to the c-axis, this implies that the angle
between a and b (γ ) must be 120◦. Full consideration of the possible symmetries for
the lattice gives rise to seven possibilities, the seven crystal systems (Tab. 2.1). They
are distinguished from one another by their shape  the geometry of the lattice that
is required by the underlying symmetry elements.

Conventions: In order to describe crystal structures clearly and unambiguously,
various rules have been adopted concerning the choice and naming of the unit-cell
axes. In general, a

“
right-handed” system is chosen. This means that if the positive

direction of a is directed forward and that of b to the left, then c must point upwards.
If one holds the thumb, the index finger and the middle finger of the right hand as a
waiter might to support a tray, then these three fingers, starting with the thumb, give
the directions of the a, b and c-axes of a right-handed system. In the triclinic system,
there are no restrictions on the choice of cell edges or angles, but in the monoclinic
system, there is a

“
unique” axis  that one which is perpendicular to the other two.

This unique axis is normally taken as the b-axis, and the unrestricted angle is thus β

(this is, rather inconsistently, called the second setting) and the a- and c-axes are
chosen so that β � 90◦. At one time, the c-axis was chosen as the unique axis (the“
first” setting  the unrestricted angle is γ ). The c-axis is always chosen as the unique

axis in trigonal, hexagonal and tetragonal crystals.
When the unit cell of an unknown crystal is determined experimentally, its metric

symmetry gives an indication of the crystal system. However, it is the actual under-
lying symmetry elements, which may only be fully determined at a later stage of
the investigations, which determine the crystal system. That the metric symmetry

Table 2.1. The seven crystal
systems and the restrictions
on their cell dimensions. See
Fig. 2.3 for the definition of
the angles.

Restriction in cell edges cell angles

triclinic none none

monoclinic none α = γ = 90◦

orthorhombic none α = β = γ = 90◦

tetragonal a = b α = β = γ = 90◦

trigonal, hexagonal a = b α = β = 90◦, γ = 120◦

cubic a = b = c α = β = γ = 90◦
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of a crystal correspond within experimental error to the restrictions of a particular
crystal system is a necessary but not a sufficient condition for establishing it. Occa-
sionally it happens, as with the cryolites, Na3MIIIF6, that all cell angles are within less
than a tenth of a degree of 90◦, but the crystal is actually not orthorhombic, but only
monoclinic. The β-angle is merely very near 90◦ by chance.

2.2
The Fourteen Bravais Lattices

In the description of a lattice, it was said that the smallest possible basis vectors should
be chosen for the crystal. The smallest possible unit in this lattice, the unit cell, is then
the smallest volume that is representative of the crystal as a whole. This is called a
“primitive cell”. As is shown in Fig. 2.5, there are several ways in which this unit cell
can be chosen.

All of the cells, shown here in two dimensional projection, are primitive and
have the same volume. The choice of cell for the description of a crystal structure
will be that by which the symmetry elements are best described. In other words, the
cell which shows the highest possible symmetry. Usually, this implies the choice of
orthogonal or hexagonal axial systems. The origin of the cell is located on an inversion
center if that is possible. There are situations (Fig. 2.6) where all variants of a primitive
unit cell are oblique, but that a larger cell, with 2, 3 or 4 times the volume, may be
chosen which corresponds to a crystal system of higher symmetry. In order to be
able to describe the symmetry elements conveniently, it is usually better to use the
larger cells, even though they contain additional lattice points. Such cells are called
centered and contain 2, 3 or 4 lattice points.

When lattices are described by these larger cells, to the six primitive lattices must
be added eight centered lattices, which together are described as the fourteen Bravais
lattices. Primitive lattices are given the symbol P. The symbol A is given to a one-
face-centered or end-centered lattice, in which a second lattice point lies at the center
of the A-face (that defined by the b- and c-axes), and B or C for a lattice centered

Fig. 2.5. Various choices of primitive unit
cells in a lattice.

Fig. 2.6. The choice of cell 3 illustrates a
centred lattice.
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on the B or C face. In these cases, the cell volume is double that of the primitive cell.
If the cell has lattice points at the centers of the A, B and C faces, it is called F (all
face centered lattice), and has four times the volume of a primitive cell. A cell with
a lattice point at its centre has double the volume of its primitive cell and is called
a body centered lattice and given the symbol I (from the German innenzentriert).
Nearly all metals crystallize in a cubic I or F lattice.

N.B. In the cubic CsCl structure, a unit cell may be chosen with the Cs atoms
at the corners and the Cl atom at the body centre. Despite what is written in many
texts, this is a primitive cubic lattice. A body centered lattice requires that the
origin and the body center of the cell be occupied by the same atoms or molecules
having the same environment and the same orientation. In other words, shifting
the origin of the cell to the body center must give a description of the structure
indistinguishable from the original one.

2.2.1
The Hexagonal, Trigonal and Rhombohedral Systems

Both the hexagonal (with 6-fold symmetry) and the trigonal (with 3-fold symmetry)
systems require a hexagonal axial system, (a = b �= c, α = β = 90◦, γ = 120◦). They
are conventionally described with the 6-fold axis of the lattice parallel to the c-axis.
For this reason, many texts recognize only six crystal systems, and treat trigonal as
a subset of hexagonal. The trigonal system does, however, have one unique feature,
and that is the rhombohedral unit cell. In this case, the smallest primitive cell may be
chosen with a = b = c, α = β = γ �= 90◦. The unique axis, along which the 3-fold
symmetry axis lies, is now one of the body diagonals of the cell. In order to make
this more easily described mathematically, it is convenient to transform this cell to
one which is centered at the points ¹⁄₃, ²⁄₃, ²⁄₃ and ²⁄₃, ¹⁄₃, ¹⁄₃, and is thus three times as
large, but has the shape of the conventional hexagonal cell, with the c-direction as
the unique axis. (Fig. 2.7).

This is called the obverse setting of a rhombohedral unit cell, and is the standard
setting for the rhombohedral system. Rotating the a- and b-axes by 60◦ about c gives
the alternative reverse setting. The lattice is now centered at the points ¹⁄₃, ²⁄₃, ¹⁄₃ and
²⁄₃, ¹⁄₃, ²⁄₃. Lattices which have rhombohedral centering are given the symbol R.

The full 14 Bravais lattices are given in Fig. 2.8. It can be seen that only some cen-
terings are distinct in some crystal systems. For example, a B-centered monoclinic
axial system (when b is the unique axis) is not given  any such cell may be better
described as monoclinic P with half the volume (Fig. 2.9). Figure 2.10 shows that a
monoclinic C-lattice may equally well be described as monoclinic I . It is most conve-
nient here to choose whichever setting results in the smallest value for the monoclinic
angle β.



2.2 The Fourteen Bravais Lattices 9

Fig. 2.7. A Rhombohedral unit cell in the obverse (left) and reverse (right) hexagonal setting.

2.2.2
The Reduced Cell

In order to discover whether an experimentally determined unit cell may in fact be
transformed into a

“
better” cell of higher symmetry, algorithms have been developed

to transform any cell into the so-called standard reduced form. This must fulfil the
condition that a � b � c, and that α, β and γ are all either � 90◦ or � 90◦. For any
crystal whatever, there is in principle only one cell which fulfils these conditions. One
very important use of the reduced cell is in checking whether a particular structure
has already been reported in the literature. Comparison of a reduced cell with those
in data bases (see Chapter 13) should uncover any equivalent reduced cells, even if
they were originally reported differently. Such a precaution should always be taken
before embarking on intensity measurements (Chapter 7) for a

“
new” compound.

A second very important use of the reduced cell is that it gives a clear guide to the
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Fig. 2.8. The 14 Bravais lattices (Pearson’s nomenclature). aP triclinic; mP monoclinic prim-
itive; mC monoclinic C-centered (may be transformed to mI); oP orthorhombic primitive;
oA orthorhombic A-centred (also, with different choice of axes, oC); oI orthorhombic body-
centered; oF orthorhombic (all-)face centered; tP tetragonal primitive; tI tetragonal body-
centered; hP trigonal or hexagonal primitive; hR rhombohedral, hexagonal setting; cP cubic
primitive; cI cubic body-centered; cF cubic (all-)face centered.
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Fig. 2.9. Unnecessary monoclinic B-center-
ing; correct P-cell outlined with dashes.

Fig. 2.10. Alternative monoclinic C- (dashed)
and I -centering (full lines). In this case, I is
preferred. View approximately normal to the
ac-plane.

metric symmetry of the cell. This is usually expressed in terms of the Niggli-matrix
(equation 2.2) which can indicate possible

“
correct” conventional cells. (International

Tables for Crystallography, Vol. A, Chapter 9)1 [12]

Niggli-Matrix:

(
a2 b2 c2

bc cos α ac cos β ab cos γ

)
(2.2)

The reduction of a cell and its subsequent transformation to the conventional cell
can be carried out by programs such as LEPAGE [56] or usually using the supplied
software of a single-crystal diffractometer. It will indicate the possible Bravais lattices
for a crystal.At this point, only the metric symmetry of the crystal can be established.
The actual symmetry may be lower,but cannot be higher.How a unit cell is established
experimentally will be discussed in chapters 3, 4 and 7.

1International Tables of Crystallography are a key resource for crystallographers. The latest edi-
tion currently consists of Volumes A, B, C, E, F (see www.iucr.org/iucr-top/it), from which Vol. A
(space group symmetry) and C (mathematical, physical and chemical tables) are most important
for practical work.


