Approximation through
Randomization

ANDOMIZATION IS one of the most interesting and useful tools in de-
Rsigning efficient algorithms. Randomized algorithms, indeed, have
been proposed for many problems arising in different areas: taking into
account the scope of this book, however, we will limit ourselves to con-
sidering randomized approximation algorithms fop-Nard optimization
problems.

As it can be observed also in the case of the example given in Sect. 2.6,
where a randomized algorithm forAXIMUM SATISFIABILITY was given
and analyzed, a remarkable property of randomized algorithms is their
structural simplicity. For some problems, in fact, it happens that the only
known efficient deterministic algorithms are quite involved, while it is pos-
sible to introduce a randomized efficient algorithm which is much easier
to code. This happens also in the case of approximation algorithms, where
we are interested in achieving good approximate solutions in polynomial
time. For example, in this chapter we will describe a simple randomized
approximation algorithm for the weighted version oitzWMuM VERTEX
COVER, which achieves an expected performance ratio comparable to that
of the best deterministic algorithms based on linear programming tech-
nigues.

Randomized algorithms can sometimes be even more efficient than de-
terministic ones in terms of the quality of the returned solution. This will
be shown in the case of the weighted versions @gbdium SATISFIA-
BILITY and MaxiMum CuT: indeed, we will present a randomized 4/3-
approximation algorithm for the former problem and a randomized 1.139-
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Theorem 5.1 »

approximation algorithm for the latter one.

On the other hand, the main drawback of the randomized approach is
that we may only derive statistical properties of the solution returned (in
particular, with respect to its expected value): this means that, even if we
prove that an algorithm returns solutions of expected good quality, we may,
nevertheless, get poor approximate solutions in some cases. However, it
is sometimes possible to overcome this drawbacldésandomizinghe
algorithm, that is, by transforming the given randomized algorithm into
a deterministic one, which always returns in polynomial time a solution
whose performance ratio is no more than the expected performance ratio
of the solution computed by the randomized algorithm. As we will see at
the end of this chapter, this can be done by applying a general technique,
called the method of conditional probabilities.

5.1 Randomized algorithms for weighted vertex cover

In this section we present a randomized approximation algorithm for the
weighted version of MNiMuM VERTEX COVER. This algorithm achieves

an approximate solution whose expected measure is at most twice the op-
timum measure. Deterministic algorithms for this problem that find ap-
proximate solutions whose performance ratio is at most 2 (or even slightly
better, i.e., at most 2 '02%(')%?1”) are known (see, for example, Sect. 2.4). In
spite of this fact, even though the randomized algorithm does not improve
the quality of approximation, it presents a remarkable simplicity, when
compared with its deterministic counterparts.

The randomized algorithm (see Program 5.1) exploits the following idea:
while there are edges which are not covered, randomly choose a vertex
which is an endpoint of an uncovered edge and add this vertex to the vertex
cover. The selection of vertices is done by flipping a biased coin that favors
the choice of vertices with small weight. Note that, while the choice of an
edge is assumed to be done deterministically and how it is performed will
not be significant in order to analyze the algorithm behavior, the selection
of an endpoint is assumed to be done randomly under a given probability
distribution. Note also that if the graph is unweighted (that is, each vertex
has weight 1), then an endpoint is chosen with probability 1/2.

Clearly, Program 5.1 runs in polynomial time. To analyze the perfor-
mance ratio of the solution obtained, fatwvdX) be the random variable
denoting the value of the solution found by the algorithm on instance

Given an instance x of the weighted version MfNIMUM VERTEX
COVER, the expected measure of the solution returned by Program 5.1
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Program 5.1: Random Weighted Vertex Cover
RANDOMIZED

input GraphG = (V, E), weight functiorw:V — N; ALGORITHMS FOR
output Vertex covelJ; WEIGHTED VERTEX
begin COVER
U:=0;
while E # 0 do
begin
Select an edge= (v,t) € E;
Randomly choosg from {v,t} with Pr{x= v} =
U:=Uu{x};
E := E — {e| xis an endpoint o&}
end;
return U
end.

w(t) .
w(V)+w(t)

satisfies the following inequality:
E[mevdX)] < 2m* (X)

LetU be the vertex cover found by the algorithm with input the instancd®ROOF
x formed by the grapl& = (V,E) and the weight functionv, and letU*

be an optimum vertex cover for the same instance. Givervany, we

define a random variabbs, as follows:

X — w(v) ifveU,
Y710 otherwise.

Since

ElmrwvdX)] = E] ng] = 2 E[X]

and
> EX=E[ 3 XJ<E[ Y wv] =m0,

in order to prove the theorem, it suffices to show that

> EXI<2 3 EX). (5.1)

Given an edgév,t) selected by the algorithm at the first step of the loop,
we say thatv,t) picksvertexv if vis randomly chosen at the next step. We
also denote ahl(v) the set of vertices adjacent wi.e.,N(v) = {u|ue
VA(vu) € E}.
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Let us now define the random variaidgy, v as

| w(v) if (wt)is chosen and pickg
A otherwise.

Note that ifX) v = W(v), thenXq , = 0 for eacht’ € N(v) with t' # t.

This implies that

Xv= Z X(v,t)7v
teN(v)

and, by the linearity of expectation, that

E[Xv]z Z E[X(vﬁ),v]-
teN(v)

Moreover, EXy)v] = E[Xy)t]: in fact, we have that

EXwvl = w(v)PH(vt) picksv}
= w(v)Pr{(vt)is chose@%
= w(t)Pr{(wt) is chose@%
= w(t)Pr{(vt) pickst}
= E[X(v,t)ﬁ]-
Let us now notice that
% E[X/] = % > EXun] (5.2)
vel* veU*teN(v)
and that
Z EX/] = Z Z E[x(wt),v]: Z Z E[X(v,t)i]- (5.3)
veZU * vgU* teN(v) vZU* teN(v)

Observe also that, since, for amy U*, each vertex € N(v) must be in
U*, then, for each term[&;) ] in Eq. (5.3), an equal term[E;) ,] must
appear in Eq. (5.2). This implies that

E[X/] < E[X/]
V@O Vel

and, as an immediate consequence, that

;E[XV] - %*E[XV]-i- S EXI<2 Y EX)

vgU* velU*

The theorem thus follows.
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5.2 Randomized algorithms for weighted satisfiability
RANDOMIZED
In Sect. 3.1 we presented Program 3.1, a 2-approximate greedy algorithh7 R/ THMS FOR
for MAXIMUM SATISFIABILITY . In this section, we will concentrate on WEIGHTED
MAXIMUM WEIGHTED SATISFIABILITY , whose input is given by a set of SATISFIABILITY
clause<C and a weight functionv, which associates to each clause a pos-
itive weight, and whose goal is to find a truth assignment that maximizes
the sum of the weights of the satisfied clauses.
It can be easily shown that Program 3.1 can be extended to the weighted
case preserving the performance ratio (see Exercise 3.2). In this section
we present two different randomized algorithms that can be combined in
order to achieve an expected performance ratio equal3o As we will
see in the last section of this chapter, it is possible to derandomize these
two algorithms and, hence, to obtain a deterministic algorithm with the
same performance ratio for every instance.
The first of the two randomized algorithms is Program 2.10, which can,
clearly, be applied also to the case in which the clauses are weighted. It
is possible to modify the proof of Theorem 2.19 to show thadt ii$ the
minimum number of literals in a clause, then the expected performance
ratio of the algorithm is at mos2(2 — 1), which, in particular, is equal
to 2 whenk = 1 and at most A3 for k > 2 (see Exercise 5.3).
In the following, we will denote asrwdX) the random variable denot-
ing the value of the solution found by Program 2.10 on instance

5.2.1 A new randomized approximation algorithm

In Program 2.10 the truth value of every variable is independently and ran-
domly chosen with probability /2. Let us now consider a generalization
of that algorithm, which independently assigns the valReEt to variable
X, fori =1,2,...,n, with probability p;, wherep; is suitably chosen.

Let mgrw < X) be the random variable denoting the value of the solution
found by this generalization on instangelt is then easy to see that, for
any instance, the following equality holds:

Elmed)] = 3 wE) (1~ [] (1) [] P

eV ieVe

whereV;" (respectively,V;) denotes the set of indices of the variables
appearing positive (respectively, negative) in clacise

In the following, we show that it is possible to compute in polyno-
mial time suitable valueg; such that EngrwdX)] is at most 43 when
k <2 and is at mose/(e—1) for k> 3. In order to reach this aim,
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Program 5.2: General Random Weighted Satisfiability

input Instancex, i.e., selC of clauses on set of variabl¥s functionw: C — N;
output Truth assignment : V — {TRUE, FALSE};
begin
Find the optimum valu¢y*,z") of LP-SATX);
for each variable; do
begin
pi := g(y;") (for a suitable functiom);
f(vi) := TRUE with probability p;
end,
return f
end.

we first represent each instance oAMMUM WEIGHTED SATISFIABIL -
ITY as an integer linear program. Namely, given an instancEMAXI -
MUM WEIGHTED SATISFIABILITY formed by a se€ = {c3,Cp,...,C} of
clauses defined over the Boolean variabigs. ., v, and a weight function
w, we define the following integer liner prograifd-SATX):

maximize Z w(cj)z;

cjeC

subject to Z Yi + Z (1-yi) >z VcjeC
ievgjL i€Ve;
yi € {0,1} 1<i<n
z; € {0,1} 1<j<t.

Observe that we may define a one-to-one correspondence between fea-
sible solutions ok and feasible solutions dP-SATX) as follows:

e y, = 1if and only if variablex; is true;
e zj =1if and only if clauseC; is satisfied.

Let LP-SATX) be the linear program obtained by relaxing the integrality
constraints ofP-SATx) and let(y* = (y;,...,¥n),.Z" = (Z,...,Z)) be an
optimal solution ofLP-SATX): clearly,mjp_sar(X) > mMip_gat(X).

Given an instance of MAXIMUM WEIGHTED SATISFIABILITY , Pro-
gram 5.2 first solved P-SATX) obtaining an optimal solutiorfy*, z).
Then, given a functiorg to be specified later, it computes probabilities
pi =g(yf), fori =1,...,nand assigns the truth values according to these
probabilities. If the functiorg can be computed in polynomial time, then
Program 5.2 clearly runs in polynomial time.
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The performance ratio of the returned solution depends on the choice
of the functiong. Let us suppose that there exists a real nunsthagith ~ RANDOMIZED

0 < a < 1, such that ALGORITHMS FOR
WEIGHTED

1-[]@-m) [] P) =0z, SATISFIABILITY

i eVCY iEVe)

for each clause;. Since

t
z w(cj)Zj = Mip_sat(X)
=1

and

Elmerwdx)] = 3 w(c))(1— [T (L-p) [] P

¢eC i€V i€Ve;

the solution returned by Program 5.2 has expected performance ratio at
most 1/a.

A first interesting choice of the functiomconsists in setting(y;) = y/,
fori =212, ...,n: in other words, each variabig is independently set to
TRUE with probability y;".

Given an instance x oMAXIMUM WEIGHTED SATISFIABILITY, let €4 Lemma 5.2
(y*,Z") be an optimal solution afP-SAT(x). Then, for any clause;jan x
with Kk literals, we have

(- [T 1) = g

ievajL IEVe]

k
1
-1 (11"

Without loss of generality, we assume that every variable in clays® PROOF
positive (i.e.c; =Vj, V... VVj,). The lemma is proved by showing that

where

k
1-[]@-%) > .

To this aim, recall that, given a set of nonnegative numHiejys. .., ax},

we have that
g+ ag >

- VAT
159



Chapter 5

APPROXIMATION

THROUGH

RANDOMIZATION

160

QED

Lemma 5.3 »

By applying the above inequality to the sgt—vyj ,...,1-Vj } and re-
calling thaty ¥,y >z we obtain

L= AN
1-[-y) > 1- (%) S (1_2 : J)

=

7 k
> 1 <1—?’> > oz,

where the last inequality is due to the fact that

f(z)=1- <1—§>k

is a concave function in the interval of interest, i[6, 1], and f(z) > akZz
at the extremal points of the interval. The lemma is thus proved.

Sinceay is a decreasing function with respectkpgiven an instance
of MAXIMUM WEIGHTED SATISFIABILITY such that each clause has at
mostk literals, the previous lemma implies that choosgas the identity
function in Program 5.2 yields a randomized algorithm whose expected
performance ratio is at mosy dy.

In particular, ifk < 2, then the expected performance ratio is bounded
by 4/3, while if k > 3, since lim_,»(1— (1/k))¥ = 1/e, the expected per-
formance ratio is at mosl/ (e— 1) ~ 1.582.

5.2.2 A 4/3-approximation randomized algorithm

In this section we show that an appropriate combination of the two ran-
domized approximation algorithm described above allows to obtaji3a 4
approximation randomized algorithm.

First note that Program 2.10 has expected performance ratio bounded
by 4/3 if we deal with clauses witht least2 literals. On the other hand,
Program 5.2 withg equal to the identity function has the same expected
performance ratio if we deal with clauses wahmost2 literals.

We can then derive a new algorithm, which simply chooses the best truth
assignment returned by the previous two algorithms. The expected perfor-
mance ratio of this new algorithm is analyzed in the following lemma.

Given an instance x dfiIAXIMUM WEIGHTED SATISFIABILITY , let W
be the expected measure of the solution returned by Program 2.10 on input
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x and let W be the expected measure of the solution returned by Pro-
gram 5.2, with g equal to the identity function, on input x. Then the folloWRANDOMIZED

ing inequality holds: ALGORITHMS FOR
WEIGHTED

SATISFIABILITY
maxWh, W) > 2 ().

Since max\Wi,Wo) > (Wi +Ws) /2 andm{p_ga7(X) > m*(X), itis sufficient ~ PROOF
to show thai\W; +Ws) /2 > 3mip_sa7(X)/4. Let us denote bgX the set of

clauses with exactlk literals. From the proof of Theorem 2.19 (see also
Exercise 5.3), it follows that each clauspe CKis satisfied by the truth
assignment returned by Program 2.10 with probability]]/Zk. Hence,

> oww(e) >y S ww(c))Z (5.4)

k>1cjeCk k>1cjeCk

—(-3)

and the last inequality is due to the fact that@ < 1. Moreover, by
Lemma 5.2, we have that

where

Z aw(cj)Z; (5.5)
kzlc eCk
where 1
=1-(1-2o)k
Ok 1-3)

By summing Egs. (5.4) and (5.5), we obtain

W1-|-W2> Yk + Ok
> 2

w(cj)Z.

kZ]-Cj eCk
Notice thaty; + a1 = y» + a2 = 3/2. Moreover, foik > 3, we have that

1
Vet ax>7/8+1-C 2 3/2

Hence, it follows that

W, 3 3
— 2 +W2 ZW meP—SAT(X)
kzl cjeCk

and the lemma is proved. QED
161
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Note that it is not necessary to separately apply Programs 2.10 and 5.2
and then choose the best between the two returned solutions. Indeed, it
is possible to obtain the same expected performance ratio by randomly
choosing one of the two algorithms with probability2L.

The proof of the following theorem easily follows from the previous
lemma and is, hence, omitted.

There exists a randomized algorithm fgfaAXIMUM WEIGHTED SATIS-
FIABILITY whose expected performance ratio is at mhs

5.3 Algorithms based on semidefinite programming

In the last section we have seen that it is possible to design good ran-
domized approximation algorithms for MIMUM WEIGHTED SATISFI-
ABILITY by first relaxing the integrality constraint of an integer program
and, subsequently, probabilistically rounding the optimal solution of the
linear programming relaxation. This technique can be fruitfully applied to
a limited number of cases. However, the underlying idea of relaxing and
rounding is extremely powerful and it can be applied to other significant
problems if a suitable relaxation can be found.

In this section we present a randomized approximation algorithm for
the weighted version of MximumMm CuT, called MaxiIMuM WEIGHTED
CuT: given a graplc = (V,E) and a weight functionv : E — N, we want
to find a partition(V1,V-) of V such that the total weight of the correspond-
ing cut, i.e., the set of edges with an endpoin¥jrand the other endpoint
in V,, is maximized. We now present a randomized algorithm based on
a semidefiniterelaxation of an integer quadratic formulation of the prob-
lem, which returns a solution whose expected performance ratio is at most
1.139.

Let us first express an instang®f MAXIMUM WEIGHTED CUT as an
integer quadratic prograt@QP-CUT(x). To this aim, let us associate to
each pairv,vj €V a valuew;j defined asmj = w(vi,v;) if (vi,vj) € E,
wij = 0 otherwise. The integer quadratic progré@P-CUT(x) is then
defined as

1ot
maximize 5 Z ‘ZlWij (1-viyj)
j=li=
subject to Yy €{—1,1} 1<i<n,

wheren denotes the number of vertices of the graph. Observe that an
assignment of values to variablgsnaturally corresponds to a partition
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Program 5.3: Random Weighted Cut
ALGORITHMS

input Instancex, i.e., graphG = (V,E) and weight functionw; BASED ON
output Partition{V1,V>} of V; SEMIDEFINITE
begin PROGRAMMING

Find an optimal solutiofty3, .. .,yy) of QP-CUT(x);
Randomly choose a vectore S, according to the uniform distribution;
Vii= {vi eV |y-r>0};

Vo i=V -V
return {Vi,Vo}
end.

(V1,V2) of V with cut weight equal tg 5], 5= wij (1—yiy)). Indeed, let
us consider two adjacent verticgsandy;: if eithervi,v; € Vi orv;,v; € Vo
(that is,y; =y;), then 1-y;y; = 0; on the other hand, i; andv; do not
belong to the same set (thatys# y;), then%(l— viyj) = 1.

Notice that each variablg can be considered as a vector of unit norm
in the 1-dimensional space. Let us now rel@P-CUT(x) by substituting
eachy; with a 2-dimensional vectoy; of unit norm. The relaxatioQP-
CUT(x) is then defined as

10
maximize > Z Ziwij(l—yi.yj)

]=1li=
subject to Vyi-yi=1 yie R,1<i<n,

wherey; -y; denotes the inner product of vectggsandy; (thatis,y; -yj =
Yi1Yj1+Yi2Yj2)

QP-CUT(x) is clearly a relaxation ofQP-CUT(x). Indeed, given a
feasible solutiorY = (y1,...,yn) of IQP-CUT(x), we can obtain the fol-
lowing feasible solution oQP-CUT(X): Y = (y1,...,Yn) Where for ally;,

Yi = (Vi,0). Clearly, the measures ¥fandY coincide.

Let us now consider a randomized approximation algorithm fexM
MuM WEIGHTED CuT, which, given an instance behaves as follows (see
Program 5.3): it first finds an optimal solutidyy, . . .,y;) of QP-CUT(x),
and then computes an approximate solution ofX¥um WEIGHTED
CuTt by randomly choosing a 2-dimensional vectoof unit norm and
putting each vertey; in V1 or inV, depending on whether the correspond-
ing vectory; is above or below the line normal to An example of how the
algorithm decides in which set a vertex has to be put is shown in Fig. 5.1:
in this case, we have th&, vs, vs, andvy are included irVy while vy, vs,
andvg are included irv,. -
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Figure 5.1
Finding a cut by separating
vectors on the unit sphere

Let us now show that the expected weight of the cut returned by the al-
gorithm is at least 87856 times the optimal measure, that is, the expected
performance ratio of the algorithm is at most39.

Lemma 5.5 » Given an instance x dfiAXIMUM WEIGHTED CuUT, let mrwd(X) be the
measure of the solution returned by Program 5.3. Then, the following
equality holds:

n j—1

1
E[mrwdX)] = = w;j arccosy; - y?).
T[JZUZI 1] i j
PROOF Let us first define the functiosgnas

sgr(x):{ 1 ifx>0,

—1 otherwise.

Observe that the expected valuprrw(X)] clearly verifies the following
equality:

nj—-1

Elmawckx)] = 3 3 wi Prisarty; ) # sarty; 1)}
J=1li=

wherer is a randomly and uniformly chosen vector of unit norm. There-
fore, to prove the lemma it is sufficient to show that

- Pr{sgry; 1) # sgriy; 1)} = oY), (5.6)

s
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Note thatsgn(y; -r) # sgn(y] -r) if and only if the random liné normal
tor separatey; andyj. The random choice af implies thatl has two
opposite intersecting pointsandt with the unit circle that are uniformly
distributed. Moreovely; andy; are separated Hyif and only if eithersor
t lies on the shorter arc of the circle betwegrandyj (see Fig. 5.2). The
probability that eithes ort lies on this arc is

ALGORITHMS
BASED ON
SEMIDEFINITE
PROGRAMMING

arccogy; -yj) N arccogy; -yj)  arccogy; -yj)
21 21 N T '

Hence, Eq. (5.6) follows and the lemma is proved. QED

/|

\{*

Figure 5.2

arccos(yi*yj*) The probability of

* *
arccos(y; Y; ) separating two vectors

For any instance oMAXIMUM WEIGHTED CUT, Program 5.3 returns € Theorem 5.6
a solution whose expected measure is at |€8785times the optimum
measure.

Let us define PROOF
20

min ——.
o<a<nT(1— cosa)

Given an instance of MAxiIMuM WEIGHTED CuT with optimal measure
m*(x), lety;,...,yy be an optimal solution dQP-CUT(x) with measure

« 12 =
%P7CUT(X)ZEZ ZWIJ (1-yi-yj)-
J:

If we consider the change of variablgs- yj = cosaij, we have, by
definition of 3,

2(Xij - g afCCOfﬁYi* yT)
T m(l-cosaij) T 1—(y{-yj)
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SinceQP-CUT(x) is a relaxation ofQP-CUT(x), we have that

nj—-1

Elmawc(x] > 3B > 3 Wiy y)

j
= Bmgp_cut(X) = BMigp_cut(X) = Pm*(x),

wheremgwdX) is the measure of the solution returned by Program 5.3.
Since it is possible to show th§i > 0.8785 (see Exercise 5.10), the
QED Lemma is thus proved.

Regarding the time complexity of Program 5.3, it is clear that the al-
gorithm runs in polynomial time if and only if it is possible to sol@é-
CUT(x) in polynomial time. Unfortunately, it is not known whether this is
possible. However, the definition P-CUT(x) can be slightly modified
in order to make it efficiently solvable: the modification simply consists
in considering variableg; as vectors in th&-dimensional space instead
that in the 2-dimensional one. In particular, telimensional version of
QP-CUT(x) is defined as

10
maximize > Z leij(l—yi'Yj)
j=1i=
subject to Vyi-yi=1 yieR",1<i<n,

Observe that, clearly, the above analysis of the expected performance ratio
of Program 5.3 can still be carried out if we refer to this new version of
QP-CUT(x).

In order to justify this modification, we need some definitions and results
from linear algebra. First of all, we say thaha n matrix M is positive
semidefinitef, for every vectorx € R, X' Mx > 0. It is known that a x n
symmetric matrixM is positive semidefinite if and only if there exists a
matrix P such thatVl = PTP, whereP is anm x n matrix for somem < n.
Moreover, ifM is positive semidefinite, then matrixcan be computed in
polynomial time (see Bibliographical notes).

Observe now that, givenvectorsy,...,yn € §,, the matrixM defined
asM; j =y;-y; is positive semidefinite. On the other hand, from the above
properties of positive semidefinite matrices, it follows that, givem>a
- n positive semidefinite matrid such thatM;; =1 fori =1,...,n, it is
166
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possible to compute, in polynomial time, a setrofectorsys,...,y, of
uniti norm such thaM; ; =vy;-y;.
In other words,QP-CUT(x) is equivalent to the followingemidefinite

programSD-CUT(x); SEMIDEFINITE
PROGRAMMING

ALGORITHMS
BASED ON

1ot
maximize > JZ]_ i; Wij (1— Mm’)
subject to M is positive semidefinite
Mii=1 1<i<n

It can be proven that, for any instank@f MAXIMUM WEIGHTED CUT,

if Mgy cut(X) is the optimal value o8D-CUTx), then, for anye > 0, it
is possible to find a solution with measure greater g - ,1(X) —€in
time polynomial both irjx| and in log1/¢) (see Bibliographical notes). It
is also possible to verify that solvif§D-CUTx) with € = 10~° does not
affect the previously obtained performance ratio &785. Therefore, the
following theorem holds.

Program 5.3, where the optimal solution @P-CUT(x) is obtained by <« Theorem 5.7
solving the equivalent progra®D-CUT(x), runs in polynomial time.

As a consequence of Theorems 5.6 and 5.7, it thus follows that-M
IMUM WEIGHTED CuT admits a polynomial-time randomized algorithm
whose expected performance ratio is at mos89Q.

5.3.1 Improved algorithms for weighted 2-satisfiability

The approach based on semidefinite programming can be applied to other
problems and, in particular, to satisfiability problems. Let us consider,
for example, MaXIMUM WEIGHTED 2-SATISFIABILITY, that is, the
weighted satisfiability problem in which every clause has at most two lit-
erals.

Given an instancg of MAXIMUM WEIGHTED 2-SATISFIABILITY with
nvariablesv, ..., Vy, let us define the following integer quadratic program
IQP-SATX):

n j—-1
maximize (@& (1—yiyj) +bij (1+yiyj)]
2,2,
subject to Yy €{-1,1} i=0,1,....n,

whereg;; andbj; are non-negative coefficients that will be specified lajer,
is a variable associated witk, fori =1,...,n, andyy denotes the boolean
valueTRUE, that is,v; is TRUE if and only ify; = yp, fori =1,...,n.
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In order to define the values of the coefficieagsandbyj, let us define
the valuet(c;) of a clausec; as follows:

t(ci) = 1 if ¢j is satisfied,
V= 0 ifg;is not satisfied.

According to the previous definitions, it results thatifis a unit clause,

then 1oy
t(e)) = — 3%

if ¢j =v;, and

1-vViYo
t(c;) =
( J) 2
otherwise. Ifc; contains two literals, then its value can be inductively
computed: for example, @ = v; V v, then

t(cj) = 1—t(Vi/\\7|<)=1—t(Vi)t(Vk)=1—71_2yiy071_gky0
1
= Z(3+YiyO+VKYO—YiYkY%)
1
= Z[(14Vviyo) + (1+ykYo) + (1= yiyk)]

4

(the cost of the other possible clauses with two literals can be computed in
a similar way).

Hence, it is possible, for any instangef MAXIMUM WEIGHTED 2-
SATISFIABILITY , to compute suitable values af; andb;; such that the
resulting programQP-SATX) is an equivalent formulation of instange

ProgramIQP-SATXx) can be relaxed using the same approach used
for MAXIMUM WEIGHTED CuUT. By introducing unit norm(n+ 1)-
dimensional vectorsyj, for i = 0,1,...,n, we can indeed obtain the
semidefinite relaxation dQP-SATX) and, then, prove the following result
(see Exercise 5.11).

There exists a randomized polynomial-time algorithm KaXiMum
WEIGHTED 2-SATISFIABILITY whose expected performance ratio is at
most1.139

5.4 The method of the conditional probabilities

In this section we will see that a randomized approximation algorithm
can sometimes baéerandomizegdthat is, a deterministic algorithm can be
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derived whose running time is comparables running time and whose
performance ratio is no more than the expected performance ratib of 1 HE METHOD OF
In particular, we will briefly describe a general technique known as thg!E CONDITIONAL
method of conditional probabilitiesnd we will show how it can be applied PROBABILITIES
to derandomize Program 2.10, when applied taxyium WEIGHTED
SATISFIABILITY .
The method of conditional probabilities is based on viewing the behavior
of a randomized approximation algorithm on a given input as a computa-
tion tree. To this aim, we assume, without loss of generality, fhabn
input x, independently performs(|x|) random choices each with exactly
two possible outcomes, denoted by 0 and 1. According to this hypothesis,
we can then define, for any inpyta complete binary tree of height|x|)
in which each node of levélis associated with thieth random choice afl
with inputx, fori =1,...,r(|x|): the left subtree of the node corresponds
to outcome 0, while the right subtree corresponds to outcome 1. In this
way, each path from the root to a leaf of this tree corresponds to a possible
computation of4 with input x.
Notice that, to each nodeof leveli, it is possible to associate a binary
string o(u) of lengthi — 1 representing the random choices performed so
far. Moreover, we can associate to each leafvaluem, which is the
measure of the solution returned by the corresponding computation, and to
each inner noda the average measuréu of the values of all leaves in the
subtree rooted at. Clearly, Hu) is the expected measure of the solution
returned byA4 with input x, assumed that the outcomes of the fjcu)|
random choices are consistent wifu). It is easy to show that, for any
inner nodey, if vandw are the two children ofi, then either Ev) > E(u)
or E(w) > E(u).
The derandomization is then based on the following observatianisif
the root of the computation tree, then there must exists a pathrfitona
leaf| such thatm > E(r), that is, the measure of the solution returned by
the corresponding computation is at least equal to the expected measure of
the solution returned byl with inputx. This path can be deterministically
derived if, in order to choose which of the childreandw to proceed from
a nodeu, we are able to efficiently determine which of and Ew) is
greater.
In the following we will show how this approach can be applied to deran-
domize Program 2.10 in order to obtain a deterministic 2-approximation
algorithm for the weighted version of MKIMUM SATISFIABILITY .
Given an instancex of MAXIMUM WEIGHTED SATISFIABILITY, let
v1,...,Vn be the Boolean variables i) which can be considered §8,1}-
variables, where the boolean valuesue and FALSE are represented by
1 and 0, respectively. The deterministic algorithm consists itdrations -
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corresponding to the random choices performed by Program 2.10. At
the i-th iteration, the value of variable is determined as follows: let
Vi,...,Vi_1 be the values of variables,...,vi_1 determined so far, and
let

Mrw X | V1, ..., V1)

be the random variable denoting the measure of the solution found by Pro-
gram 2.10 when applied to the instance obtained frdmy assuming that
the value of variableg,...,vi 1isVy,...,V; 1 and applying Program 2.10
to determine the values of variables.. ., v,.
Givenvy,...,V; 1, the value of; is determined by computing

E[meiX | Vi,...,Vi_1, O)]

and
E[meiX | Vi, Vil 1)]

If E[medX | Vi,... ,\_/i_l,O)] < E[meiX | Vi,...,Vi—1, 1)] then the value
of vj is setto 1, otherwise itis set to 0. Afteiterations, a truth assignment
V1,...,Vn has been obtained with value

m/q(X) = E[mes(X | Vi,... ,Vn)].

We first show that the computation ofrBrwdXx | V1,...,Vi—1,0)] and
E[mrwd X | V1,...,Vi_1,1)] can be performed in deterministic polynomial
time and, then, thamg(x) is at least one half of the optimal measure.
We will show how to compute [ErwdX | Vi,...,Vi—-1,1)] in polynomial
time: the computation of EwrwqX | V1,...,V_1,0)] is analogous and it is
omitted.

Assume thak containg clause<;, ..., . We have

t
E[mrwdX | V1,...,Vi_1,1)] = Z w(c;) Pr{c; is satisfied vq,...,Vi_1,1}
=1

where
Pr{c; is satisfied vy, ...,Vi_1,1}

denotes the probability that a random truth assignment of variables
Vit1,...,Vn satisfies clause; given thatvy, ... V1,1 are the truth assign-
ments of variablesy,...,vi_1,V;, respectively.

LetW be the sum of the weights of the clauses that are satisfied by val-
uesvy,...,Vi_1 of variablesvy,...,vi_1 and letC (i) be the set of clauses
that are not satisfied byi,...,v; 1 and could be satisfied by a suitable
assignment of values to variablgs.. ., v,.



Section 5.5

Letcj be a clause i€~ (i). If v occurs positive irtj then
EXERCISES

Pr{c; is satisfied vi,...,vi_1,1} = 1.

If vi occurs negative or does not occurcin let d; be the number of vari-
ables occurring ire; that are different fronvy,...,vi. The probability that
a random assignment of values to variablgs, ..., V, satisfies clause;
is

Pr{c; is satisfied vi,...,vj_1,1} = 1— z—ﬁj

Summing over all the clauses we have that

E[mes(X|V1,...,Vi,1,1)] =W+ Z 1+ Z (1——

CjECT (i) sty; CjECT (i) sity;
occurs positive occurs negative

Itis clear that the above computation can be performed in polynomial time.
In order to analyze the quality of the obtained solution observe that the
chosen valug;, fori = 1,...,n, satisfies
E[meiX | Vi,... ,\_/i)] > E[meiX | Vi,... ,\_/i_l)].

Hence we have

E[mrwdX)] E[mrwdX | v1)]

E[mes(X | V]_,Vz)]

IA NN DA

E[mes(X | Vi,... ,Vn)] = m/q(X).

Since we have seen in Sect. 5.2 thankydX)] > m*(x)/2, it derives that
mz(C) is at least one half of the optimal measure.

The method of conditional probabilities can be successfully applied to
derandomize the 4/3-approximation randomized algorithm faxNium
WEIGHTED SATISFIABILITY presented in this chapter. It can also be
used to derandomize the semidefinite programming based algorithm for
the weighted version of MxiMum CuT, even though this derandomiza-
tion requires a more sophisticated version of the method.

5.5 Exercises
Exercise 5.1 Consider a greedy algorithm for the weighted version of

MINIMUM VERTEX COVER that at each step chooses the vertex with min-
imum weight among vertices that are an endpoint of an uncovered edge.
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Show that the algorithm has an unbounded ratio in the worst case. (Hint:
consider a star graph, i.e., a graph in which there exists a vertiat is
connected to all the other— 1 verticesv ... v, and in which no other edge
exists.)

Exercise 5.2 Consider a greedy algorithm for the weighted version of
MiniMuM VERTEX COVER that at each step chooses the vertex that has
the least ratio weight/degree among vertices that are an endpoint of an un-
covered edge. Show that the algorithm has an unbounded ratio in the worst
case. (Hint: Consider an unweighted bipartite gr&ph (V UR,E), where

V hasn vertices andRis divided inton subsets®Ry,...,R,. Every vertex in

R; is connected tovertices inV and no two vertices iR have a common
endpoint inV.)

Exercise 5.3 Modify the proof of Theorem 2.19 to show thatkfis the
minimum number of literals in a clause, then the expected performance
ratio of the algorithm applied to weighted clauses is 2 wkienl and is at
most 4/3 fork > 2.

Exercise 5.4 A functiong: [0,1] — [0, 1] verifies the3/4-propertyif it sat-
isfies the following inequality

| K 3 | "
1- il:l(l— a(vi)) i:|I—+Ilg(yl) > Zmln(l, i;yl + i:%l(l_yl))

for any pair of integers andl with k > |, and for anyys, ...,y € [0,1].
Prove that if a functiomy with the 3/4-property is used in Program 5.2, then
the expected performance ratio of the algorithm is at most 4/3.

Exercise 5.5 Show that if a functiorg : [0,1] — [0, 1] satisfies the follow-
ing conditions:

1. gy) <1-g(1-y),
2. 1- ML (1-9) 2 Fmin(L, 514 ),

for any integek, for anyy € [0, 1], and for any tuples,...,y, € [0,1], then
g verifies the 3/4-property.

Exercise 5.6 Show that the following function verifies the 3/4-property:
Ju(y) = a+(1-2a)y,

where
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Problem 5.1: Maximum Subgraph
BIBLIOGRAPHICAL

INSTANCE: Directed graptG = (V,A). NOTES

SOLUTION: An acyclic spanning subgraf® = (V,A) of G.
MEASURE | A |.

Exercise 5.7 Show that the following function verifies the 3/4-property:
Sy+1 ifo<y<i,

f(y) =

NI

wIN

3y  ifZ<y<l

Exercise 5.8 (*) Apply randomized rounding to MiiIMUM SET COVER.
Namely, consider the integer programming relaxatiof MINIMUM SET
CovER and set each variable to be 1 with probability given by the value of
the optimal solution of the linear programming relaxatiorl .oEhow that
the probability that a sef is covered is at least-1 (1/e).

Exercise 5.9 Apply the result of Exercise 5.8 to show that there exists a
randomized algorithm that finds @d(logm)-approximate solution with
probability at least ®, wheremis the number of sets to be covered.

Exercise 5.10 Show that

min 2% < 087856
o<a<nT(1— cosn)

Exercise 5.11 Prove Theorem 5.8.

Exercise 5.12 Consider Problem 5.1 and consider the randomized algo-
rithm that chooses a random ordering of the vertices and picks either the
arcs that go forward or the arcs that go backward. Prove that this algorithm
has expected performance ratio at most 2.

5.6 Bibliographical notes

The first algorithms in which randomization is used explicitly were intro-
duced in the mid-seventies. A classical paper [Rabin, 1976] on primality
test is considered to have started the field of randomized algorithms. In the
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same period, [Solovay and Strassen, 1977] introduced another randomized
algorithm for the same problem. Since then, a lot of problems that arise
in many different areas have been studied from this point of view. Here
we will limit ourselves to considering approximation algorithms for com-
binatorial optimization problems. A wide study of randomized algorithms
and a rich bibliography can be found in [Motwani and Raghavan, 1995]. A
description of the technique of the conditional probabilities can be found
in [Alon and Spencer, 1992].

The randomized approximation algorithm for the weighted version of
MINIMUM VERTEX COVER is presented in [Pitt, 1985].

The randomized 2-approximation algorithm foadMiMmum WEIGHTED
SATISFIABILITY follows the greedy approach used in [Johnson, 1974a],
while the two 43-approximation algorithms were presented in [Goemans
and Williamson, 1994]. Another /8-approximation deterministic algo-
rithm for MAXIMUM WEIGHTED SATISFIABILITY was given in [Yan-
nakakis, 1994]. The approach here followed is rather different and exploits
techniques from the theory of maximum flows. Further improvements to
the approximation of MXiIMuM WEIGHTED SATISFIABILITY based on
semidefinite programming achieve a performance ratio2f8 [Goemans
and Williamson, 1995b]. In the specific case ohkIMuM WEIGHTED
2-SATISFIABILITY , [Feige and Goemans, 1995] have achieved a stronger
result obtaining a 066 bound. Instead, just considering satisfiable formu-
las, [Karloff and Zwick, 1997] have shown that it is possible to approxi-
mate MaxIMUM WEIGHTED 3-SATISFIABILITY with approximation ra-
tio 8/7. Further improvements are based on combining together almost all
the known techniques used to approximataxX¥Wwum WEIGHTED SAT-
ISFIABILITY , obtaining an approximation ratio of29 (see [Ono, Hirata
and Asano, 1996] and [Asano, 1997]).

The technique of randomized rounding was introduced in [Raghavan and
Thompson, 1987] and [Raghavan, 1988] while studying a wire routing
problem. Randomized rounding algorithms that improve the bound given
in Exercise 5.9 for the Miimum SET CoOVER problem have been pro-
posed in [Bertsimas and Vohra, 1994, Srinivasan, 1995, Srinivasan, 1996].
In particular, in [Bertsimas and Vohra, 1994] the technique is applied to a
variety of covering problems.

The randomized approximation algorithm for thekmum CuT prob-
lem based on semidefinite programming is presented in [Goemans and
Williamson, 1995b] while [Mahajan and Ramesh, 1995] give a derandom-
ized version of the algorithm. A proof that semidefinite programming is
solvable efficiently can be found in [Alizadeh, 1995]. [Karger, Motwani,
and Sudan, 1998] applied semidefinite programming t&iMumM GRAPH
COLORING.



