Foreword

It is with enthusiasm and excitement that I join the community of information
visualization researchers and designers in celebrating our still fresh accomplish-
ments of the past decade. However, even as we take pride in how far we have come,
we should acknowledge that these are just the first steps of a much longer journey.

This book and the rich literature from conferences, journals, and a few pioneer-
ing books reveals a flourishing, but still emerging academic field, that fights for
recognition every day. Similarly, the product announcements from new and
mature companies, demonstrate the passionate commitment of venturesome
entrepreneurs who struggle to cross the chasm to commercial success.

Readers of the academic literature and corporate press releases probably believe
that the allure of information visualization is in finding appropriate representa-
tions of relationships, patterns, trends, clusters, and outliers. This belief is reinforced
by browsing through conference titles that weave together technical topics such as
trees, networks, time series, and parallel coordinates, with exotic verbs such as
zoom, pan, filter, and brush. However, I believe that the essence of information visu-
alization is more ambitious and more compelling; it is to accelerate human thinking
with tools that amplify human intelligence.

Chaomei Chen captures the spirit of this emerging academic discipline in this
second edition and cleverly uses knowledge domain visualization to trace the
growth and spread of topics. His survey highlights the dramatic progress during
the past five years in a way that celebrates and challenges researchers and develop-
ers. His numerous screenshots of research and commercial systems give a glimpse
of what is possible, but readers will have to see the demos for themselves and view
working products to get the full impact of the interaction dynamics.

Chen’s book shows us how the rapidly maturing information visualization tools
are becoming as potent as the telescope and microscope. A telescope enabled
Galileo to see the moons of Jupiter, and a microscope made it possible for Pasteur
to see bacteria that enabled him to understand disease processes. Similarly,
remarkable technologies such as radar, sonar, and medical scanners extend human
vision in powerful ways that facilitate understanding. The insights gained provide
support for air traffic controllers, naval officers, physicians, and others in making
timely and effective decisions.

The payoffs to users of information visualization tools will be in the significant
insights that enable them to solve vital problems at the frontiers of their fields. By
extending their vision to higher dimensional spaces, users of information visual-
ization tools are making meaningful and sometimes surprising breakthroughs.
These users, such as genomic researchers, financial analysts, or patent lawyers, are
often struggling to understand the important relationships, clusters, or outliers
hidden in their data sets. Their quest may last days or years as they seek to identify
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surprising groupings hidden among naturally occurring combinations or distin-
guish novel trends from well-understood seasonal variations. The outcome may be
to discover secondary functions of known genes, or stocks that will outperform
others in their industry group.

The users’ goals are often noble, valuable, and influential. Which sets of genes
limit cancer growth? Which stock movements are often precursors of a major
market rise? Which companies are distinctively active in developing new patents in
wireless applications for e-commerce? In other circumstances, the users of infor-
mation visualization deal with difficult topics such as tracking epidemics, uncov-
ering fraud, or detecting terrorists.

The process of information visualization is to take data available to many people
and to enable users to gain insights that lead to significant discoveries. Chen
appropriately focuses attention on how information visualization techniques
“make the insights stand out from otherwise chaotic and noisy data”. The often
noisy data must be cleaned of anomalies, marked for missing values, and trans-
formed in ways that are more conducive to insight and discovery. Then users can
choose the representations that suit their tasks best. Next, users can adjust their
view by zooming in on relevant items and filtering out unnecessary items. Settings
of control panels may have to be changed to present the items in appropriate
colors, positions, shapes, orientation, etc.

Some parts of this process can be automated, and some data mining or statis-
tical algorithms can be helpful, but often the insight comes to those who have a
hypothesis to test or who suspect a novel relationship. Visualizations are especially
potent in promoting the intuitions and insights that lead to breakthroughs in
understanding the relevant connections and salient features.

Typically, the quest for understanding requires looking at the details of an out-
lier or a surprising correlation. At that point, the benefit of domain knowledge and
the need for more data becomes strong. Chen’s practical examples illustrate this
process and the role of domain knowledge, especially in the case of detecting
abrupt changes and emerging trends. Only the experienced geneticist can make
the leap to recognize how a raised level of gene expression signals its participation
in a meaningful biological pathway. Only the knowledgeable stock market analyst
recognizes that the reason for a sudden rise in value is due to a successful market-
ing trial of a new product.

There are three implications of the situated nature of information visualization
that will influence future research and the success of products: (1) input data usually
needs to be cleansed and transformed to support appropriate exploration, (2) related
information is often needed to make meaningful judgments, and (3) effective pres-
entation of results is critical to influence decision-making.

Sources of input data need to be trusted and possibly consulted to understand
its meaning and resolve inconsistencies. Then these data can be cleansed of anom-
alies, transformed to appropriate units, and tagged for missing values. Sometimes
data needs to be aggregated to an appropriate level of analysis, such as web log data
that is grouped by session, by hour, or by domain name.

The source data may need to be supplemented by related information to provide
context for decisions. For example, sales data that records customer zip codes, may
only become meaningful when the zip code demographics, geographic location, or
income distribution is accessible. It will be no surprise that ski equipment is sold
heavily in mountain states, but the surprising insight may be the high level of sales
in wealthy southern cities. Similarly, genomic researchers need to know how a tight
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cluster of highly expressed genes relates to the categories of molecular function in
the gene ontology. Stock market analysts will want to understand why a group of
stocks rose and then fell rapidly by studying recent trading patterns and industry
news reports.

Since effective presentation of results is critical to influence decision-making,
designers must understand how users collaborate. The first step is simply recording
the state of a visualization by allowing the saving of settings. Other important ser-
vices are to support extraction of subsets, posting results to a web page, and produ-
cing high quality printed versions. Chen reports on the collaborative environments
that allow simultaneous viewing of a shared display, accompanied by a synchronous
chat window, voice conversation, or instant messaging, are increasingly common.
Asynchronous environments with web-based discussion boards, are also important
as they better support larger communities, where co-ordination for a synchronous
discussion is difficult. Chen deals with this topic, as well as the visualization of
group processes in online communities.

These three aspects of effective information visualization are in harmony with
Geoffrey Moore’s analysis in his insight-filled book Crossing the Chasm (1991). His
formula for successful software products is that they are “whole product solutions”
which solve a known problem with an end-to-end solution (no additional compon-
ents needed). He cautions that training has to be integrated, benefits have to be
measurable, and users have to be seen as heroes. Many early products failed to
adhere to this formula, but newer offerings are in closer alignment.

Researchers can also learn from this formula, because it encourages a practical
approach. Professor Fred Brooks long ago encouraged researchers to focus on
a “driving problem”. His advice remains potent, especially for those who are
entranced with colorful animated displays and elaborate statistical manipulations.
Explorers of the vast multidimensional spaces are more likely to make important
discoveries if they keep their mind’s eye focused on solving their driving problem.
They are also more likely to experience those wonderful Aha! moments of insight
that are the thrill of discovery.

Then researchers and developers will need to get down to rigorous evaluations.
Chaomei Chen places a strong emphasis on empirical studies to help researchers
and developers get past their understandable infatuation with their innovations.
Rapid progress will be made as more evaluations are done using benchmark tasks
and standard data sets, coupled with carefully reported in-depth case studies of
collaborations with problem solvers in many disciplines.

There’s work to be done. Let’s get on with it!

Ben Shneiderman
University of Maryland
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When the original version of Information Visualisation and Virtual Environments
(IVVE) was published in the summer of 1999, the only book available to readers
anywhere on the globe was the now widely cited volume of 52 pioneering articles
ingeniously interwoven together by the three masterminds - the “Readings”. As it
turned out, a few more people were simultaneously working on their own books to
introduce and redefine the subject. Five years on, the field of information visual-
ization has grown in leaps and bounds. Practitioners and researchers now enjoy a
wealth of books on the subject of information visualization from a rich spectrum
of perspectives: Colin Ware’s thorough coverage of the foundation of perception
and cognition, Bob Spence’s well-articulated text on the fine details of the work of
many creative minds, Martin Dodge and his colleagues’ hand-picked exemplars
from a geologist’s mindset, and Ben Bederson and Ben Shneiderman’s more recent
touch with the years of work from their lab at the University of Maryland. Since
2002, the field has its own journal - Information Visualization (IVS) - and numer-
ous conferences where information visualization has its place.

What are the most significant changes over the past five years? Do we have more
successful stories to tell about information visualization? What are the remaining
challenges? And what are the new ones lurking from the most unexpected direc-
tions? My original intention in 1999 was two-fold: (1) providing an integrative
introduction to information visualization and (2) establishing a connection between
information visualization and virtual environments. With hindsight, the first
goal echoes the first of the two generations of information visualization, which I will
explain shortly, whereas the second goal may correspond to the second generation.
There is increasingly prolific evidence that we are experiencing a profound but
underlying transition from the first to the second.

The history of information visualization can be characterized by two distinct
but often overlooked focuses: structure and change. The majority of the showcase
information visualization work is about structure. The holy grail of information
visualization is to make the insights stand out from otherwise chaotic and noisy
data. Naturally, the mission of the first generation in the 1990s and the beginning
of 2000s has been revealing structures that would be otherwise invisible. The
unique position of structure is also evident from various navigation strategies,
from the focus + context design rationale to the so-called drill-down tactics.
Although the content is always a part of the equation, it has never been the real
rival of structure.

The first part of the book closely reflects the structure-centric tradition -
everything is a structure. The process of abstracting structures from seemingly
unstructured data is not something unique to information visualization.
Cartographers, for example, have established a complete line of business that can

xi



xii Preface for the Second Edition

represent the geographic features of the real world on various maps. The tradition
of structuralism is most apparent in one of the earliest columns of information
visualization - graph drawing. Until recently the level of clarity and aesthetics of
how the structure of a given graph can be drawn algorithmically has been the pre-
dominant driving force behind the development of various increasingly sophisti-
cated graph drawing algorithms.

The second part of the book, consisting of individual differences studies and
spatially organized multi-user virtual environments, was an attempt to establish
the potentially fruitful connection between the two communities. Information
visualization models embedded in shared virtual environments call for explicit
and direct attention to an extensible framework that can accommodate the growth
of such information visualization models, especially when the virtual environment
itself drives the subsequent evolution. However, back in 1998 I was preoccupied
with our own research findings and wanted to use the book as a vehicle to convey
as much as our research. Furthermore, many things we take for granted today were
unheard of, or more precisely, unseen five years ago. And this is the time to address
the second generation.

The second generation is about change. It is dynamics-centric. It is about
growth, evolution, and development. It is about sudden changes as well as gradual
changes. A good starting point for explaining the second generation would be a
well-known example in scientific visualization - the storm, how it started, evolved,
and eventually came to an end. One of the often quoted definitions of information
visualization is that information visualization deals with data that do not have
inherited geometry. In other words, one has the freedom of mapping the under-
lying data to any geometric forms so long as one asserts meanings, no matter how
arbitrarily, to the end product of such mapping. As a result, it does not come easy
to put my visualization and your visualization side by side and compare even if
they are about the same underlying phenomena. The key question is: what distin-
guishes scientific visualization and information visualization? Are they really that
different?

On the surface, scientific visualization appears to have the blessing of scientific
theories that can quantify the meaning of each pixel and leave no room for ambi-
guity or misconception. If scientific visualization is a mapping from a physical
phenomenon to its visual representation, this is like saying that the mapping is
unique and it is complete because the geometry is more likely than not to be
inherited in the underlying scientific model. In most geographic visualizations, the
geographic framework is retained and the mapping preserves the geometry. On
the other hand, Harry BecKk’s classic schematic design of the London underground
map in 1933 constantly reminds us that a good design is not necessarily built on
geometric details even if it comes with the data. Charles Minard’s classic map
depicting Napoleon’s disastrous retreat from Moscow has set a good example of
what information visualization should achieve. If a picture is worth thousands of
words, then Mindard’s map unfolds a vivid story.

Behind scientific visualization, we are likely to find the provision of not only
quantitative and geometric models, but also models that govern the dynamics of
an underlying phenomenon. Just as in the storm example, scientific visualization
typically works with data that are either readily presentable in visual forms or
readily computable to a presentable level. In contrast, information visualization is
often characterized by the absence of such readiness. Typical information data are
not readily presentable due to the lack of built-in visual-spatial attributes. They
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are not readily computable due to the lack of an underlying computational model.
Information visualization, therefore, faces a much tougher challenge because one
has to fill up the two gaps before reaching starting points of scientific visualization.
Meanwhile, the tight coupling between visualizations and underlying theoretical
models in scientific visualization has left something to be desired in information
visualization, such as the descriptive and predictive power and reasoning capabilities.

The need to fill up the two gaps is echoed by the emergence of the second gen-
eration of information visualization. Information visualization has to re-examine
the nature of a semantic mapping and the meaning of visual-spatial configur-
ations in the context of intended cultural and social settings.

The recent citation analysis of information visualization clearly identifies the
role of earlier pioneers such as Edward Tufte and Jacques Bertin. Tufte’s three
books have been the source of inspiration for generations of researchers and prac-
titioners in information visualization and design. In August 2003, I searched for
“information visualization” on Google’s three billion-strong indexed web pages
and it returned 44,500 hits. Adding a more specific term to the query rapidly
reduced the number. The following numbers may give us a glimpse of what infor-
mation visualization is about, at least on the web: focus + context (6980), evolution
(4370), graph drawing (3200), empirical study (2750), fisheye (1960), hyperbolic
(1910), treemap (934), Spotfire (808), SOM (659), semiotics (563), detect trend
(356), Pathfinder (300), and detect abrupt change (48).

The focus + context issue is the most widely known, followed by evolution,
graph drawing and empirical studies. Specific visualization techniques and sys-
tems are topped by fisheye and hyperbolic views, which are in line with the popu-
lar awareness of the focus + context issue. Although it commanded 563 hits,
semiotics as a relatively broad term is apparently underrepresented in information
visualization. The least popular topic in this group is “detect abrupt change,” which
is a precious 48 out of three billion web pages. This second edition of the book pays
particular attention to empirical studies accumulated over the past five years, the
role of semiotics in information visualization, and the need for detecting emerging
trends and abrupt changes.

This edition continues the unique and ambitious quest for setting information
visualization in an interdisciplinary context, especially in relation to virtual envir-
onments because they provide a particularly stimulating context for us to under-
stand theoretical and practical implications of various fundamental issues and
specific information visualization features. This new edition is particularly tailored
to the need of practitioners, including a number of newly added in-depth analyses
of successful stories and entirely new chapters on semiotics and empirical studies.
A number of chapters are thoroughly updated. The new edition is also suitable for
an introductory course to information visualization.

The new edition is entitled Information Visualization: Beyond the Horizon. In
part, this refers to the transition that is quietly taking place, which will ultimately
transcend the first, structure-centric, generation of information visualization to the
emerging second, dynamics-centric, generation. Furthermore, there are a number
of promising trends on the horizon of information visualization, notably the vibrat-
ing area of Knowledge Domain Visualizations (KDViz), new perspectives on the role
of information visualization in detecting abrupt changes and emerging trends, and
a whole new front of empirical studies of information visualization.

Among the eight chapters in the new edition, the degree of update and revision
varies a great deal, from new chapters, substantially updated chapters, to moderately
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updated chapters. I have particularly concentrated on two new chapters: Chapter 6 on
empirical studies of information visualization and Chapter 8 on detecting abrupt
changes and emerging trends. I regard these two topics as having the most profound
implications on information visualization in the next five years. There are simply so
many grounds to cover in each of the topics. Chapter 5 contains some of the materials
in the original Chapter 4 in the first edition, plus a new study on visualizing scientific
paradigms. Several sections in Chapter 4 have been substantially rewritten. Chapter 7
includes a new study of group tightness. The remaining chapters have been updated
to a much less degree, although all chapters are reorganized accordingly.
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Chapter 2
Extracting Salient Structures

Art is the imposing of a pattern on experience, and our aesthetic
enjoyment is recognition of the pattern.
Alfred North Whitehead

Information overload becomes a common problem in the exponential growth
of widely accessible information in modern society, and efficient information filter-
ing and sharing facilities are needed to resolve it. Information visualization has the
potential to help people find the information they need more effectively and intu-
itively.

Information visualization has two fundamentally related aspects: (1) structural
modeling, and (2) graphical representation. The purpose of structural modeling is
to detect, extract, and simplify underlying relationships. These relationships form
a structure that characterizes a collection of documents or other data sets. The fol-
lowing questions are typically answered by structural modeling: What is the basic
structure of a complex network or a collection of documents? What are the mental
models of a city or a zoo in different people’s minds? What is the structure of the
literature of a subject domain?

In contrast, the aim of the graphical representation is to transform an initial
representation of a structure into a graphical one, so that the structure can be visu-
ally examined and interacted with. For example, a hierarchical structure can be
displayed as a cone tree, or a hyperbolic graph.

Although the second aspect normally concentrates on the representation of a
given structure, the boundary between the two aspects is blurred, as many infor-
mation visualization systems are capable of displaying the same structure in a
number of ways. In fact, the phrase information visualization sometimes refers to
the second aspect specifically.

In this chapter, we focus on the first aspect of information visualization - struc-
tural modeling. Generalized similarity analysis (GSA), is introduced as a unifying
framework, and as a starting point for us to interpret and evaluate visualization
systems, and to understand the strengths of a particular technical solution. GSA
provides a generic and extensible framework capable of accommodating the devel-
opment of new approaches to visualization. This chapter and subsequent chapters
include some examples of how we incrementally introduce Latent Semantic Indexing
and Author Co-Citation Analysis into the framework.

This chapter first examines the automatic construction of hypertext, a rich
source of inspiration for information visualization, then looks at the growing
interest in the WordNet® database and its role in visualization applications, and
finally, at GSA, introduced to provide a synthesized view of the literature, and to
highlight some potentially fruitful areas for research.
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2.1 Proximity and Connectivity
2.1.1 Semantic Distance

WordNet® provides a rich source of structures to describe the relationships between
words. Research has shown that the perception of such relationships in a hierarchy
may be affected by some interesting factors, which are likely to have significant effects
on information retrieval, especially in assessing the query-document relevance.
The following example explains two major effects based on a concept of semantic
distance.

There is an increasing interest in the nature of online searching. According to
a constructivist analysis, during online searching, the searcher continuously con-
structs meaning from the perceptual phenomena appearing on the computer
screen as the result of a complex interplay of the work of indexers, database design-
ers, and everyone else who has contributed to the development of the searching
environment.

Online database searching and, more recently, web-based searching using
various search engines, all resemble a black-box experience. One enters a search
query and receives bibliographical records, or URLSs, without a clear picture of
why these results are presented, or whether they are indeed relevant. Relevance
ranking algorithms cannot do the real work of information retrieval - searchers
themselves must reach the ultimate judgment regarding the relevance of a listed
document.

A key factor that distinguishes subject experts from non-experts is specialized
vocabulary. Experts are individuals with special vocabulary and background
knowledge, and they share presumptions and language.

The semantic distance model (SDM) of relevance assessment is proposed by
Brooks (1995). The central concept of the SDM is semantic distance. Concepts are
placed in a multidimensional space, according to their values on some dimension
of meaning. To create a dimension of meaning, Brooks used the generic trees of
descriptors found in an existing thesaurus or a hierarchical structure, in which the
semantic distance between two items is defined as the number of steps from one to
another along existing links in the structure.

Brooks has shown that relevance assessments declined systematically with an
increase in semantic distance. Subjects gave the highest relevance assessments to
the topical subject descriptor semantically closest to the bibliographical record, and
then incrementally smaller relevance assessments to descriptors more distant. This
was explained as a result of the so-called semantic distance effect.

In addition, the rate of decline of the assessed relevance appeared to be different
for top and bottom record in the same generic tree. This was described as the influ-
ence of the semantic direction effect. Comparing a bibliographical record from the
top of a generic tree to descriptors located below it produced a rapid decline in rele-
vance assessment. In contrast, comparing a bibliographical record at the bottom of
a tree to descriptors located above it produced a slower rate of decline in relevant
assessment. In other words, the perceived distance downwards to non-relevance
appeared to be shorter than the distance upwards to non-relevance.

Brooks found out that topical subject expertise enhances the effects of the SDM,
and the strength of the SDM is contingent on phenomenological factors of the
computer-human experience. This provides empirical support for the belief that
relevance is a contingent, psychological construct. The effects of the SDM may be
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limited on term hierarchies in which terms are spaced so far apart that they lack
internal coherence and do not converge into a cohesive semantic domain.

SDM can provide important input into information visualization, especially
when dealing with a heterogeneous network of documents, topical descriptors,
subject headings, and search queries.

2.1.2 Multidimensional Scaling

Scaling is an important concept in psychology, and can provide a rich source of visu-
alization techniques. It derives a quantitative scale to represent an internal, psycho-
logical response or reaction to stimuli, such as preference and satisfaction. A number
of techniques have been developed for a variety of scaling. Multidimensional scaling
(MDS) includes a family of popular scaling methods that can map high-dimensional
data into a two- or three-dimensional space. It is possible to capture the nature of a
data set from groupings emerging from the spatial layout in MDS.

To use MDS, the data set must provide enough information to derive and repre-
sent the distance between a pair of data points. This type of data is known as prox-
imity data. There are several ways of obtaining it, for example, judging the similarity
between two documents directly, using sorting and clustering techniques.

A special type of MDS, known as individual differences MDS (INDSCAL), is
designed for the study of the nature of individual differences. The input is a series of
matrices. For example, White and McCain (1998) used author co-citation analysis to
map the field of information science. Twelve key journals in information science
between 1972 and 1995 were analyzed, and INDSCAL was used to identify trends
in terms of top-cited authors in the field. The input was three periodical author
co-citation matrices.

The results of MDS may not always be straightforward to interpret. Using the
example of Boston tourist sites, according to Lokuge et al. (1996), trajectory map-
ping for high-dimensional feature spaces often captures the features of the data
better than MDS. Instead of relying on similarity judgments as in MDS, trajectory
mapping requires subjects to imagine a conceptual feature or property that links
each pair of sites. The subject then extrapolates that feature in both directions, to
pick two stimuli that would be appropriate from the remaining set.

A trajectory map for tourist sites in Boston is shown in Figure 2.1. The positions
of the nodes are not important; instead, the mental model is captured by the con-
nections between the nodes. It is the choice between using spatial proximity or
using explicit links that distinguishes MDS and trajectory mapping. Similarly,
Pathfinder networks, a key component in GSA, also highlight the role of explicit
links in structuring and visualizing salient semantic structures.

In a series of studies, Chalmers and his group increasingly improved the run-
ning time of multidimensional scaling (Table 2.1). Recently, by using a hybrid
strategy Sampling — Spring — Interpolating — Refining, they reported their new
algorithm that can lay out 108,000 items in 360 seconds (Morrison et al., 2003).

2.1.3 Link-reduction in Graphs

The most widely known graph drawing techniques include force-directed graph
drawing algorithms and spring-embedder algorithms (Eades, 1984). The primary
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Figure2.1 A trajectory map of Boston tourist sites (Lokuge et al., 1996). © 1996 ACM, Inc. Reprinted with
permission.

Table 2.1 Fast Multidimensional Scaling (Fast MDS)

Big O Notation
MDS N3 N12l4
Chalmers, 1996 N? N4
Morrison et al., 2002 N32 N4
Morrison et al., 2003 N4 N4

goal of these algorithms is to optimize the arrangement of nodes of a network
algorithmically, such that nodes connected by strong links in a graph-theoretical
model appear close to each other in the final geometric representation, and weakly
connected nodes appear far apart. Force-directed algorithms often lead to node
placements that are aesthetically appealing. These algorithms, however, face some
challenges in terms of efficiency, especially in terms of scalability, which is closely
related to the clarity of a visualized network.

Cluttered network visualizations should be avoided whenever possible. An exces-
sive number of links in a display may severely obscure the discovery of essential pat-
terns. A commonly used strategy to reduce clutter is to reduce the number of links.
There are several ways to achieve this goal. Three popular ones are analyzed below.

The first option is imposing a link weight threshold so that only links with
weights above the threshold are included (Zizi and Beaudouin-Lafon, 1994). This
approach is straightforward and easy to implement. However, it does not take the
intrinsic structure of the underlying network into account, so the transformed
network may not preserve the essence of the original network.

Minimum Spanning Tree (MST)

The second option is extracting a minimum spanning tree (MST) from a network
of N vertices and reducing the number of links to N — 1. This approach guarantees
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the number of links in the transformed network is always N — 1, whereas option 3
may not have such upper bounds. For instance, we know that a Pathfinder network
is the set union of all possible MSTs of the original network, but the number of dis-
tinct MSTs depends on the weight distribution of individual links. Therefore, the
number of extra links varies not only from network to network, but also from
measurement to measurement. For instance, Noel et al. (2002) showed that using
document co-citation counts normalized as cosine coefficients or Pearson correla-
tion coefficients can lead to MSTs of different topological properties, and that the
former resulted in more favorable structures, i.e. the presence of highly connected
nodes with a fixed number of links, although the size of their MST is relatively
small, less than 200 nodes.

Pathfinder Network Scaling (PFNET)

The topology of a PENET is determined by two parameters g and r and the corres-
ponding network is denoted as PENET(r, q). The g-parameter specifies the maximum
length of a path subject to the triangular inequality test. The r-parameter is the
Minkowski metric used to compute the distance of a path. The most concise PENET
for visualization is PENET (g = N — 1, r = ) (Chen, 2003; Chen and Paul, 2001;
Schvaneveldt, 1990). In an author co-citation analysis (ACA), White (2003b) demon-
strated that a 120-node PENET derived from author co-citation counts was predom-
inated by a number of high-degree nodes. In contrast, if author co-citation links were
weighted by Pearson correlation coefficients, the resultant PENET did not have this
pattern. He concluded that using raw counts in ACA would be a preferred method. As
a side note, the use of Pearson correlation coefficients is studied in Ahlgren et al.
(2003), where an example is constructed to show that Pearson correlation coefficients
could lead to counter-intuitive results in author co-citation analysis.

2.2 (lustering and Classification

The goal of cluster analysis is to divide a large data set into a number of sub-sets,
called clusters, according to some given similarity measures. Not only has clustering
analysis established many areas of application, for instance, constructing taxonomies
in biology, but it can also play a significant role in information visualization. For
example, the Scatter/Gather system developed at Xerox helps users to deal with a
large information space by repeatedly clustering and aggregating documents at
various levels in its user interface, so that the required information can be found
more easily.

2.2.1 Clustering algorithms

Clustering algorithms rely on a definition of distance or similarity between two
items in a data set. The Minkowski model provides a generic definition of distance:

1/p
r
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where two data points are represented by vectors x; and x;. Several definitions of

distances can be derived from this model; in particular, Euclidean (p = 2) and

Dominance (p = ) can be derived from the Minkowski distance, as special cases.
A metric space is defined with the following two axioms:

1 Non-degeneracy: d;; = 0if and only if i = j.
2 Triangle inequality: d; < dj + dj;.

The Minkowski distance defines a metric space. Pathfinder network scaling intro-
duced in Chapter 3 relies on an extended triangle inequality condition. If the triangle
inequality can be defined in a semantic space, based on some semantic distance, it is
then a metric space. Clustering algorithms use distance as a yardstick to either group
a pair of data points into the same cluster, or separate them into different clusters.

There are three basic categories of clustering methodologies: (1) graph-theoretical,
(2) single-pass, and (3) iterative algorithms. A graph-theoretical algorithm relies
on a similarity matrix representing the similarity between individual documents.
Clusters are formed by closely related documents, according to a similarity thresh-
old. Each cluster can be represented as a connected graph. Depending on how these
documents are separated, the process is known as “single link”, “group average”, or
“complete link” clustering (van Rijsbergen, 1979).

Seed-oriented clustering is an example of single-pass clustering algorithms. In
the seed-oriented clustering, clusters grow from individual data points, called clus-
ter seeds. For example, document clusters can be generated by adding the docu-
ments most similar to the seeds into existing clusters. The number of clusters must
be known for seed-oriented clustering to occur.

Iterative algorithms attempt to optimize a clustering structure, according to
some heuristic function. An iterative algorithm can use clusters generated by other
clustering algorithms, such as seed-oriented clustering, as a starting point.

Some clustering analysis routines are provided in popular statistical packages
such as SPSS.! SPSS provides the following clustering procedures in the Professional
Statistics option:

e K-means cluster
e hierarchical cluster

K-means clustering algorithms can handle a large data set, but the number of clus-
ters must be specified in advance. Hierarchical clustering algorithms merge smaller
clusters into larger ones, without knowing the number of clusters in advance.

The example data set for the K-mean clustering method includes various per-
sonal profiles from 474 people, such as age, education, starting salary, and present
salary. The goal of the example analysis is to divide these people into two groups
based on their profiles. Two clusters are specified in advance, and the resulting
clusters are shown in Table 2.2.

The data set is divided into two clusters by the K-mean procedure: cluster 1 con-
tains 401 people and cluster 2 contains 73 people. People in cluster 2 seem to be
younger, better educated, and earning higher salaries.

Clustering is a useful way of dealing with very large sets of documents. However,
there are few incremental, or maintenance, clustering algorithms in the literature.

'www.spss.com



Extracting Salient Structures 33

Table 2.2 Centroids of two clusters

Cluster People Age Education Salary (begin) Salary (now)
1 401 37.55 12.77 5748.27 11290.35
2 73 35.20 17.47 12619.07 27376.99

It is common for the clustering procedure to be repeated entirely in response to the
change of the original data set. For a dynamic and evolving data set, reclustering
must be done from time to time on the updated data set, in order to keep the clus-
ters up to date. Each time the data are updated, the whole set of clusters must be
built all over again.

2.2.2 Incremental Clustering

To maintain clusters generated by graph-theoretical methods such as single-link,
group-average, or complete-link clustering algorithms, similarity values are needed.
Although the update cost of the single-link method is reasonable, the time and
space requirements of the group-average and the complete-link approaches are
prohibitive, because the complete knowledge of similarities among old documents
is required. Therefore, an efficient maintenance algorithm would be preferable to
reclustering the whole data set.

Fazli Can (1993) has developed an incremental clustering algorithm that can
continuously update existing clusters. It was tested in an experiment based on the
INSPEC database of 12,684 documents and 77 queries. Empirical testing suggests
that the incremental clustering algorithm is cost-effective; more importantly, the
clusters generated are statistically valid and compatible with those generated by
reclustering procedures.

Can’s algorithm is called cover-coefficient-based incremental clustering method-
ology (C*ICM), and is a seed-oriented method. The cover-coefficient (CC) concept
provides a measure of similarities among documents. It is first used to determine
the number of clusters and cluster seeds. Non-seed documents are subsequently
assigned to seeded clusters.

The CC concept is used to derive document similarities based on a multidimen-
sional term space. An m X n (document by term) matrix D is mapped into an
m X m matrix C (cover coefficient). Each c; (I <i,j < m) in the matrix C denotes
the probability of selecting any term appearing in document d; from document d;.
The probability is defined as follows:

C; = aixZ(dik X By X di)
k=1

where «;, and By are the reciprocals of the ith row sum and kth column sum,
respectively. Each document must contain at least one term and each term must
appear at least in one document.
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This probability indicates the similarity between documents d; and d;. The prob-
ability is demonstrated as follows. First, randomly choose a term #; from document
d;. In c;;, the probability of this random selection is denoted by «; X dj. The next
step is to select the term t; from document d; (the ball of that particular color); this
probability is represented in c;; by By X dj. Finally, the contribution of each bag
(terms of d;) to the selection probability of a ball of that particular color (d;) must
be taken into account by adding these probabilities together for all.

This c;; probability is a measure of similarity. It indicates the extent to which
document d; is “covered” by document d. If two documents have no terms in com-
mon, then they will not cover each other at all, and the corresponding c;; and c;; will
be zero. In addition, Can (1993) introduces 8; = ¢;; as the de-coupling coefficient
because it is a measure of how different document d; is from all other documents.
The de-coupling coefficient is defined as ; = 1 — §;

Based on the coupling and de-coupling coefficients, the number of clusters can
be estimated as a function of the matrix D instead of a predefined parameter. This
is the key to the incremental clustering method.

Can (1993) generated initial clusters using a method called C*M (cover-coefficient-
based clustering methodology). The incremental clustering algorithm C*ICM is an
extension of the C*M method; both are seed-oriented clustering algorithms.

In a seed-oriented approach, a cluster seed must be able to attract some non-
seed documents around itself, and, at the same time, must be separated from other
seeds as much as possible. To satisfy these constraints, Can introduced another
concept, the cluster seed power, such that documents with the highest seed powers
are selected as the cluster seeds. Once seed documents are found, the remaining
non-seed documents are allocated to a cluster if its seed can provide the best cover
for them, or if it has the greatest seed power.

C’ICM is a complex incremental clustering algorithm, but it is useful for updat-
ing clusters of very large and dynamic data sets. As many computational algo-
rithms and software must be able to scale up to meet continuous challenges from
increasingly large data sets, notably the web, methods such as the incremental clus-
tering will be an increasingly useful and generic tool.

2.3 Virtual Structures

The outcome of structural modeling is a virtual structure. It is this virtual struc-
ture that information visualization aims to reveal to users in a graphical and visu-
ally understandable form. Virtual structures include structures derived from a
wide range of data, using computational, statistical, or other modeling mech-
anisms. The term “virtual” is used here to emphasize that the structure does not
exist in the original data in a readily accessible form.

A topical map of a collection of scientific papers published in a conference
series is a good example to explain the difference between a virtual structure and
an existing structure. The papers are independently written about related topical
subjects, but they may or may not relate to each other in more specific aspects. The
original data set does not usually have readily accessible information to specify
whether or not two papers are related, and if so in what sense. Thus the topical map
provides a means of describing the underlying connections within the collection,
which is not readily available in any other form.
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In order to demonstrate the process of structural modeling, we include some
theoretical and practical examples, in areas such as automatic construction of hyper-
text, manually constructed thesaurus, and the GSA framework.

2.3.1 Automatic Construction of Hypertext

Many systems have been designed on the basis of classic information retrieval
models. The most common requirement for generating hypertext automatically is
to identify passages in the text that are good candidates for a hypertext link.
Automatic construction of hypertext is closely related to the creation of an auto-
matic overview map, an information visualization area in its own right.

Automated link generation presents some of the most challenging tasks for
extracting and visualizing abstract information spaces. A variety of techniques
have been developed; among them the classic vector space model has a profound
impact on the development of visualization systems for information retrieval.
In fact, a wide range of information visualization systems use the basic idea of a
vector space model in one way or another.

The process of constructing a hypertext consists of two broad phases. In the
first, known as information chunking, a document is segmented into nodes to be
interconnected in the final hypertext. The second phase is linking: nodes are con-
nected by hypertext links according to a story line, some underlying logic, or other
heuristics, into a hypertext. Research in information retrieval has used clustering
methods to link documents by their containing cluster.

Most approaches inspired by information retrieval models have paid little atten-
tion to the nature of the relationship underlying automatically generated links.
Allan (1997), however, particularly focused on how link types can be found auto-
matically, and how these links can be appropriately described. He classified links
into three categories — manual, pattern matching, and automatic - based on whether
or not their identification can be achieved automatically. For example, pattern-
matching links typically rely on existing mark-ups in the text, whereas automatic
link types can be derived with or without existing mark-ups. Automatic links are
further divided into sub-categories, such as revision, summary and expansion,
equivalence, comparison and contrast, tangent, and aggregate links. Equivalence
links represent strongly related discussions of the same topic.

2.3.2 The Vector Space Model

Much of the work on automatic hypertext generation in large document col-
lections has been formulated as a special case of the more general information
retrieval (IR) problem. The basic premise underlying most current IR systems is
that documents that are related in some way will use the same words. If two docu-
ments have enough terms in common, then we can assume that they are related,
and should therefore have a link placed between them.

The vector space model (VSM) has a great impact, not only on information
retrieval, but also on the design of many information visualization systems. The
SMART information retrieval system introduces the vector space model, in which
both queries and documents are represented as vectors in a high-dimensional space.
The dimensionality is determined by the number of unique terms in the given
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document collection. The magnitude of a vector in a particular dimension repre-
sents the importance of the specific term in the corresponding document (Salton
et al., 1994).

Since the vector space model maps both queries and documents into vectors, one
can compute document-document relevance, as well as query-document relevance.
The well-known tf X idf weighting scheme is typically used to compute the vector
coefficients. The weight of term Ty in document D; is defined by wy; as follows:

Vik
t 2
2 j:1vij
N
Vi = tfi -log(—J

1y

Wik =

where N is the number of documents in the collection, tf;, is the number of times
term T} occurs in document D;, and #; is the number of documents in which term
T occurs at least once. The denominator plays a role known as length normaliza-
tion, which reduces the bias in favor of long documents, because they tend to have
larger tf values.

The vector space model has several appealing features for information retrieval
and information visualization. Both queries and documents are represented as
vectors. The focus of traditional information retrieval is on query-document
relevance ranking, in order to find the document which best matches a given
query. In contrast, information visualization has special interests in inter-
document similarities, as measured by the distance between corresponding docu-
ment vectors.

Many visualization systems are designed to visualize a sub-set of a particular
collection of documents, in response to a search query. The original collection is
therefore narrowed down by the search query. For example, Allan (1997) describes
automated construction of hypertext with such a scenario. A hypertext, based on
the results of an initial search query, is automatically generated. Users can find
documents related to a chosen document in the vector space by selecting docu-
ments immediately surrounding the vector of the document.

Allan presents an example in which the user’s goal was to find documents
related to an encyclopedia article on “March music”. Many of the documents
retrieved according to the vector proximity turned out to be relevant to the topic.
However, a number of documents retrieved in this way were not relevant, because
the meaning of the word “March” is ambiguous: it could refer to a type of music, a
month of the year, or other meanings. This is a well-known problem, known in the
information retrieval community as the vocabulary mismatch problem, and has
drawn much attention from researchers.

The way to distinguish the meanings of words like “March” or “Bank” is to exam-
ine the contexts in which they occur. Latent semantic indexing (LSI) demonstrates
how this problem can be tackled (Deerwester et al., 1990) (see section 2.3.3).
Lexical chaining (see section 2.3.5) represents an alternative approach, in which
the accurate information about connections between different words is derived
from a thesaurus, and the information used to reduce the ambiguity of words as
their contexts is taken into account (Green, 1998).

Allan (1997) describes yet another approach, where the vector space model is
applied to finer-grained analysis within documents. In addition to document
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vectors, paragraphs and sentences in each document are also represented in the
vector space model. First, two documents are divided into smaller pieces so that
they can be compared at a finer-grained inspection, for example, sentence by sen-
tence, or paragraph by paragraph. Second, sentences are transformed into vectors.
These sentence vectors are compared, to determine whether or not the documents
share a similar context. In Allan’s example, the following criteria are used to select
relevant documents:

e there must be at least one pair of sentences in the two documents with a simi-
larity of 70%;

e there must be at least one pair of sentences with at least two terms in com-
mon; and

e the most heavily weighted term must contribute more than 95% of the
similarity.

There exist other alternatives to take the role of a context into account. Latent
semantic indexing (LSI), also known as singular value-decomposition (SVD), is
such a candidate.

2.3.3 Latent Semantic Indexing

Latent semantic indexing (LSI) is designed to overcome the so-called vocabulary
mismatch problem faced by information retrieval systems (Deerwester et al., 1990;
Dumais, 1995). Individual words in natural language provide unreliable evidence
about the conceptual topic or meaning of a document. LSI assumes the existence of
some underlying semantic structure in the data, which is partially obscured by the
randomness of word choice in a retrieval process, and that the latent semantic
structure can be more accurately estimated with statistical techniques.

In LSI, a semantic space, based on a large term X document matrix, is con-
structed. Each element of the matrix is the number of occurrences of a term in a
document. The document plays a contextual role, specifying the meaning of the
term. LSI uses a mathematical technique called singular value decomposition
(SVD). The original term X document matrix can be approximated with a trun-
cated SVD matrix. A proper truncation can remove noise data from the original
data, as well as improve the recall and precision of information retrieval. The dia-
gram in Figure 2.2 illustrates how a large matrix is truncated into a smaller one.

singular value decomposition

selected factors

I truncated singular value matrix

term x document

Figure 2.2 Singular value decomposition (SVD) and a truncated SVD matrix.
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Perhaps the most compelling claim from the LSI is that it allows an information
retrieval system to retrieve documents that share no words with the query
(Deerwester et al., 1990; Dumais, 1995). Another potentially appealing feature is
that the underlying semantic space can be subject to geometric representations.
For example, one can project the semantic space into a Euclidean space for a 2D or
3D visualization. On the other hand, in practice, large complex semantic spaces
may not always fit into low-dimension spaces comfortably.

LSI reduces the dimensionality of a data set in a similar way to standard factor
analysis. Each data point can be represented by a smaller number of underlying
factors identified by LSI. In Figure 2.3, (a) is a 2D scatter plot of the ACM SIGCHI
conference data set, containing 169 documents published between 1995 and 1997.
This data set appears to be relatively well captured by the first two dimensions.
In contrast, Figure 2.3 (b) shows a scatter plot of the CACM collection, containing
more than 3200 documents. A large number of documents are plotted close to the
original, suggesting that their positions in the semantic space cannot be adequately
represented within its sub-spaces.

The two diagrams in Figure 2.4 represent the singular values of the CHI and
CACM data sets based on the output of LSI. They were plotted in a similar way to
eigenvalue curves in standard factor analysis. The value of each point indicates the
uniqueness or significance of a given factor. A higher singular value indicates that
the underlying factor explains more variance than a factor with a lower singular
value. The first few dimensions typically explain a large amount of variance. Both
data sets have a long, flat tail, suggesting that they are high-dimensional spaces in
nature.

CACM (1D}

LU ARG L R LR AR R R R ki

1 9 17 25 33 41 49 57 65 73 81 1 10 19 28 37 46 55 64 73 82

Figure2.4 The singular value curves of the CHI and CACM data sets.
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2.3.4 The Use of WordNet®

WordNet® is an on-line lexical database developed by the Cognitive Science
Laboratory at Princeton University,” on the basis of contemporary psycholinguis-
tic theories of human lexical memory. It was first created in 1985 as a dictionary
based on psycholinguistic theories, and now contains over 50,000 words and 40,000
phrases, collected into more than 70,000 sense meanings.

The basic concepts and construction of WordNet® are explained in the so-called
“Five Papers on WordNet”, available on the web.?> A comprehensive bibliography,
maintained by Joseph Rosenzweig at the University of Pennsylvania, is also avail-
able on the web.*

WordNet® divides words up into synonym sets, also known as synsets. Each
synonym set includes words that are synonyms of one another. These synsets are then
connected by a number of different relations such as “is-a”, “has-a”, or “includes”.
A particular word may appear in several synonym sets, depending on how many
senses it has. Each sense of a word is identifiable by the word and a sense number.

A number of browsers have been designed to facilitate the access to the WordNet®.
WordNet Navigator’ is a graphical user interface, developed at the Universidad
Complutense de Madrid, Spain. It can be used to display how words are related in the
WordNet®. While its user interface was mainly written in Java, the communication
with the WordNet® is handled in C. These two components are integrated on the
web using Common Gateway Interface (CGI).

The information is displayed on the screen in four categories: (1) Navigation
Tree, a diagram of relations between words; (2) Node Info, information about a
particular word; (3) Control and (4) Navigation Mode, for inputting control
parameters and link types for navigation.

The local structure surrounding a given word is displayed in the navigation tree,
in which nodes represent words, and edges indicate relations such as “is-a”, “has-
a”, or “include”. Each node contains a word and a sense number, which identifies its
synonym set. The node info displays information about synonyms and definitions.
The control specifies the word with which to start. The navigation mode specifies
whether the current navigation is based on the structure determined by “is-a” or by
“has-a” links.

For example, suppose we are interested in the word “place” and its synonyms. To
start the navigation, type the word “place” into the control section. The sense num-
ber is optional. If a sense number is given, only one node will appear on the screen;
otherwise, the navigation tree will include all the meanings of the word “place”. If
nothing matches the query word “place”, then we may try a different word or sense
number. Once the navigation tree returns, it is time to specify the navigation mode:
whether the navigation should rely on “is-a” or “has-a” relationships. If the user
selects a node in the navigation tree, the selected node, its parent, siblings, and
children will be displayed, according to the chosen navigation mode. This graphi-
cal browser provides simple but useful access to the internal structure of the
WordNet®.

*http://www.cogsci.princeton.edu/~wn/
3ftp://ftp.cogsci.princeton.edu/pub/wordnet/5papers.pdf
*http://www.cis.upenn.edu/~josephr/wn-biblio.html
*http://bogart.sip.ucm.es/demos/navword/
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2.3.5 Lexical Chaining

The classic vector space model and its variants are by far the most popular options
in visualizing abstract information spaces for retrieval and exploration. The fol-
lowing example illustrates how the WordNet® can provide semantic knowledge of
relationships between words, in the estimation of inter-document similarities.

An interesting alternative, lexical chaining, is described by Green (1998)° in an
attempt to deal with two major linguistic factors that may undermine the effect-
iveness of traditional information retrieval models, namely, synonymy and poly-
semy. Synonymy refers to the use of different words to describe the same concept,
for example, “dog” and “puppy”. Polysemy, on the other hand, refers to the use of
the same word to describe different concepts, for example, “bank”. Consequently,
term occurrences may underrepresent the connection between synonym words, or
overrepresent the connection between documents using the same word in different
senses.

A lexical chain is a sequence of semantically related words occurring in a docu-
ment. For example, if text contains the words “apple” and “fruit”, then they should
both appear in a chain, since an apple is a kind of fruit. It is believed that the organ-
ization of the lexical chains in a document reflects the discourse structure, or the
main theme of the document.

Lexical chains in text can be recovered using any lexical resource that relates
words to their meanings. For example, Roget’s International Thesaurus (Chapman,
1992) and the WordNet® database (Beckwith et al., 1991) have been used to provide
such semantics. Estimating the similarity between two documents is therefore
equivalent to finding the similarity between lexical chains associated with these
documents. Lexical chaining appears to be a promising alternative to the existing
information visualization paradigms.

2.4 Complex Network Theory

Statistical mechanics of complex networks have recently become the center of
attention in several scientific communities, including statistical physics, computer
science, and information science (Albert and Barabdsi, 2002; Barabdsi et al., 2000;
Barabdsi et al., 2002; Dorogovtsev and Mendes, 2002; Girvan and Newman, 2001).
These studies focused on the topological properties of large networks (the Internet,
the web, scientific networks) and found some surprising similarities. The latest
advances are primarily rooted in two types of networks known as small-world
networks (Watts and Strogatz, 1998) and scale-free networks (Barabdsi et al.,2000).
This line of research particularly focuses on mechanisms that can explain, in sta-
tistical terms, topological properties demonstrated by a class of networks. Even so,
the findings from these studies are not readily adaptable to information technology
research and development, and large-scale, detailed experimental studies are nec-
essary to establish links between statistical physics and other fields of study where
understanding the dynamics of large-scale network evolution is also of central
concern.

®http://www7.conf.au/programme/fullpapers/1834/com1834.htm
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2.4.1 Topological Properties of Networks

Small-world networks are large networks characterized by the existence of short-
cut links and tighter clustering of nodes than one would find in a random network.
The existence of short chains of acquaintances has been documented by social-
network scientists for over four decades (Huberman, 2001). The web is one of the
first identified small-world networks (Barabdsi et al., 2000). Scientific collabora-
tion networks based on co-authorship also demonstrate small-world network
properties (Newman, 2001a, b).

The degree of a node is the number of links to the node. Scale-free networks are
characterized by an extremely skewed distribution with a long tail (Albert and
Barabdsi, 2002). Mathematically, such distributions can be described by a power law,
which means that the probability of finding a node with k links to other nodes is pro-
portional to k™. The size of the exponent y has been the focus of a large number of
studies. For instance, it was found to be 1.5 for networks of words, 2.2 for metabolic
networks, 2.5 for protein-protein interactions, 2.5 for collaboration networks, and
between 2.5 and 3.0 for citation networks (Dorogovtsev and Mendes, 2002).

The power law distribution implies that the majority of nodes have only one or
a few links, while a small but significant amount of nodes have a large number of
links (Barabdsi, 2002). Exceedingly well-connected nodes are also known as hubs.
The web is a scale-free, as well as a small-world, network. Scale-free networks have
a noticeable resilience to random connection failures without losing their global
connectivity (Pastor-Satorras and Vespignani, 2001)

Topological properties of networks may have far-reaching implications - for
example, on the understanding of the spread of disease and rumors, or on the most
effective way to search through the web (Barabdsi, 2001). Recently, research has
focused on modeling the growth mechanisms of small-world or scale-free net-
works. The main interest is whether it is possible to duplicate the evolution of a
network so that topological properties of a simulated network match to the real
one. However, it should be noted that the analysis of structural and dynamic prop-
erties of networks in this context usually did not take into account the nature of
individual nodes and links.

2.4.2 Preferential Attachment

The simplest network growth model adds one new node at a time and links the
new node with a randomly chosen node from the current network. Attachment
mechanisms like this have no preference in selecting where the new link should
grow. The resultant networks tend to have an exponential degree-distribution.
They are called exponentially growing networks (Dorogovtsev and Mendes, 2002).

The growth of scale-free networks has been intensively studied. Most network
formation mechanisms in this category are motivated by the rich-get-richer effect,
also known as the Matthew Effect and cumulative advantage. Instead of randomly
selecting a node and linking it to a new node, a new link is most likely given to a
node that already has the most links (Barabdsi, 2002). This mechanism is called
preferential attachment. If the preferential attachment probability p is a linear
function of the degree k, this method produces a scale-free network with an
exponent y of 3. Barabdsi and his colleagues (Barabdsi et al., 2002) found that
preferential attachment mechanisms could produce the topological properties of
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the co-authorship networks of mathematicians and neuroscientists over an eight-
year period (1991-1998). Steyvers and Tenenbaum (2001) experimented with a
growth model for three semantic networks - associative networks, the WordNet®,
and Roget’s Thesaurus - by preferentially choosing well-connected concepts and
preferentially connecting to nodes with high utility. Their model produced small-
world properties and the power-law degree distributions. However, it has been
shown that preferential attachment in general does not guarantee a scale-free
network (Krapivsky et al., 2000).

Mechanisms for generating scale-free networks without preferential attachment
have also been proposed (Caldarelli et al., 2002). It has been shown that, without
making rich-get-richer attachments, it is possible to obtain a scale-free network.
Rather than relying on the popularity of nodes, the alternative mechanism relies on
the fitness of each node and implies that the fitness is a major source of attraction;
such nodes are more likely to become hubs. Such mechanisms are called the good-
get-richer mechanisms. Similarly, Melian and Bascompte (2002) analyzed the rela-
tion between the connectivity of a species and the average connectivity of its
nearest neighbors in three of the most resolved community food webs. They found
that two highly connected nodes are unlikely to be connected between each other in
protein networks, but the reverse happens in food webs.

Decay is an equally important part of network evolution: a network may lose its
nodes and links over time as well as gain new ones. Prior to the recent interest in
statistical mechanics, van Raan and his colleagues in the scientometrics community
(van Raan, 2000) identified that the growth of scientific publications and citations
is characterized by growing and aging processes.

2.4.3 Challenges

It should be noted that the lack of detailed, comprehensive empirical investigations
of these statistical mechanisms in the context of an underlying phenomenon is a
significant gap between the theories in statistical physics and the potential practice
of analyzing large-scale network evolution in specific application domains. Few
empirical studies have examined changes in the topological properties of a net-
work over time. The lack of good time-resolved data on how networks grow has
been the principal reason (Newman, 2001a). Some of the fundamental challenges
are as follows.

e DPerspectives of statistical mechanics at the global, system level do not necessar-
ily lead to detailed, context-dependent decisions at the local, operational level.
Knowing that the topology of a large network has small-world properties is one
thing; knowing how to algorithmically find a short-cut path is quite another.
Kleinberg’s local search algorithm for finding short-cuts in a small-world net-
work is an excellent example of the fundamental connections one needs to build
between statistical models and IT-enabled instrumental tools. Related questions
include how to actually find hubs if statistical properties suggest their existence.

e DPreferential attachment relies on an assumption that the degree function is
readily accessible throughout the entire network in question. In reality, this
may not be the case. For instance, in citation networks, which we will discuss
in subsequent sections, it is unrealistic to assume that scientists have a glo-
bal knowledge of the popularity of articles within the entire scientific litera-
ture. Detailed empirical examinations are necessary to identify the underlying
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context-dependent variables so that one can be aware of the validity of such
assumptions. For instance, by examining the growth of a citation network, one
can reveal the nature of discrepancies between a preferentially growing simu-
lated network and the growth of a real network.

e In order to maximize the potential of information technology, one needs to
know not only the overall statistical properties of the topology of a network,
but also the meaning and implications of local and moment-by-moment fluc-
tuations associated with individual nodes and links on our understanding of
the underlying phenomenon. Information technology - particularly, animated
visualizations of time series of the states of a network - can significantly facili-
tate information processing and analysis at this level.

e Statistical mechanics of large-scale networks provide generic mathematical
foundations for network analysis. Adapting and incorporating theories of stat-
istic mechanics has a great potential to strengthen and improve the practice of
network analysis outside the statistical physics community. For instance, few
traditional network visualization studies have statistical mechanics as an inte-
gral part of the network, and even fewer have connected visual-spatial proper-
ties of the visualization model to statistical properties that may identify the
growth pattern of the underlying network. This is a fundamental but poten-
tially rewarding challenge.

These challenges become apparent if one considers complex network theory in the
context of information technology. Some challenges identify the potential contri-
butions from information technology to complex network theory, and others the
reverse. In one way or another, most challenges have a root in inter-disciplinary
differences in terms of perspectives and the level of granularity.

2.5 Structural Analysis and Modeling

Botafogo et al. (1992) analyze the structure of a hypertext using graph decomposi-
tion methods. A graph can be decomposed into sub-graphs, so that each sub-graph
is connected. Using similar methods, several different types of nodes, based on
their positions in the graph, are identified. For example, two structural metrics -
the relative out centrality (ROC) and relative in centrality (RIC) - are introduced to
identify various structural characteristics of a node.

The ROC of a node measures whether the node is a good starting point to reach
out for other nodes, whereas the RIC of a node indicates how easily the node can
be found. Using a high-ROC node as a starting point, the structure of the hypertext
can be transformed to one or more hierarchies, and large hierarchies can be dis-
played with fisheye views, which balance local details and global context (Furnas,
1986). Several examples of how hierarchical structures can be visualized are con-
sidered in Chapter 4, including fisheye and hyperbolic views in particular.

2.5.1 Discovering Landmarks in a Web Locality

A web locality often refers to a collection of web documents. Documents on a
particular HTTP server, a collection of documents gathered from the web using a
“spider”, or perhaps even the search results returned by a web search engine, all
constitute a web locality. Landmarks in a web locality are simply those nodes
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important to the locality. However, identifying good landmarks automatically is, in
general, a complex and challenging task.

Mukherjea and Hara (1997) adopt three heuristic metrics in order to identify
landmark nodes within a web locality, including connectivity, frequency of access,
and depth in a hierarchy.

A landmark node should be highly connected to other nodes. If all roads lead to
Rome, then Rome must be a landmark place on this planet. First of all, the “out
degree” of a node is the number of outgoing links provided by the node, whereas
the “in degree” is the number of incoming links received by the node. A node with
high out and/or in degrees should be marked as a landmark.

In addition to the first-order connectivity, the second-order connectivity has also
been used to identify landmark nodes. This is defined as the number of nodes that
can be reached from a particular node by no more than two links. Botafogo et al.
(1992) suggest that nodes with high back second-order connectivity also make
good landmarks. The back second-order connectivity is defined as the number of
nodes that can reach the given node by no more than two links. For example, an
index page including many anchors on the web tends to have high connectivity,
while the home page of a large corporation is likely to have high back connectivity.

Purely connectivity-based heuristics may miss nodes that are significantly import-
ant, but are unlikely to be singled out in terms of connectivity alone. Mukherjea’s
formula thus takes the frequency of access into account in attempts to identify
landmark nodes with reference to the perception of users. The more frequently a
node is visited, the more likely that the node should be made a landmark.

The majority of web sites put general information higher up in the hierarchy of
the web locality. Detailed information, on the other hand, is likely to be placed
lower down in the hierarchy. Mukherjea suggests that the depth of a node indicates
its importance. The depth of a document on the web can be detected by decom-
posing its URL. For example, http://www.acm.org/ is a node with a depth of one,
whereas http://www.acm.org/sigchi/chi97/ has a depth of three.

The following formula is adopted from Mukherjea and Hara (1997) for dis
covering landmark nodes (with simplified notations and symbols):
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where w, is a weight that can be configured by users. To be a landmark, the land-
mark value must exceed the threshold value \ to ensure that only real landmark
nodes are selected. The default threshold value is 0.1. By default, the first-order
connectivity (in and out) is weighted slightly more than the second-order connect-
ivity (in 2 and out 2).

A landmark view generated by this formula is shown in Figure 2.5, which visu-
alizes the Georgia Technical College of Computing web server. The aesthetic layout
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Figure 2.5 Landmark nodes in a web locality. The taller a node, the greater its importance. Brighter
colored nodes are more popular. Reprinted with permission of Sougata Mukherjea.

of the landscape is generated using a force-directed graph layout algorithm
(Szirmay-Kalos, 1994). In this map, landmarks are displayed proportional to their
importance values. The height of a node represents the importance of the node.
Popular nodes are in bright colors, while less popular nodes are displayed in darker
colors. The landscape view enables the user to locate important nodes in the web
locality quickly, by navigating through the 3D space using mechanisms provided
by the VRML browser.

2.5.2 Trajectory Maps

So far we have discussed structural models based on feature vectors of documents,
images, or other types of objects. In addition to these vector-based models, a struc-
ture may represent the dynamics between documents and generic objects. An
important family of such structures is known as procedural models, including
user-centered information structures. Here, the interrelationship between two
objects is determined on the basis of actions or events that directly involve the two
objects.

When a user navigates the web, a link-following event relates the source docu-
ment with the destination document. Such events collectively indicate the perceived
connection between the two documents. In other words, such interrelationships can
be derived from behavioral models of browsing patterns. Similarly, as two publica-
tions in the literature are repeatedly cited together, the bond between them is rein-
forced and strengthened dynamically. Sometimes such structures are referred to as
mental maps (Lokuge et al., 1996). The following example is based on Lokuge et al.
(1996) and Lokuge and Ishizaki (1995), in which mental maps of various facilities in
Boston are derived as user-centered information structures.

There are many tourist attractions in Boston. How are these attractions inter-
related from the point of view of an individual? Are mental models different from
one individual to another? Lokuge et al. (1996) describe a method to structure such
information using multidimensional scaling and trajectory mapping techniques.

Fifteen different tourist sites are chosen from a tourist guide to form the mental
map. The interrelationships between these sites are high dimensional in nature,
because they may be uniquely related in a number of ways according to different
features, and they tend to vary from individual to individual.
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At least two mental models of these tourist sites can be derived: one based on
their geographic locations, and one based on their functions. To generate these
mental models using multidimensional scaling, two subjects gave pairwise simi-
larity judgments according to geographic locations and functions. The judgments
based on geographic similarity (Figure 2.6) are completely different from judg-
ments based on content (Figure 2.7). The distance-based MDS plot is similar to the

Salem Magic Show .
T T

. Sports ® *science, Aquarium
Museum  puseun .
L ™ ® Quinecy
Harvard Market
- Swan
] Boals,
Arboretum « Newbury St
P Y=Y ® ity Children's”
Church Museum
*Fenwa
. sFine Arts  poy ¥
) ; I‘fluaeum |
I I

1.0 0.5 0.0 06 10

Figure 2.6 The mental model of Boston tourist sites, based on geographical locations (Lokuge et al.,
1996). © 1996 ACM, Inc. Reprinted with permission.
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ACM, Inc. Reprinted with permission.
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actual map of Boston. In the function-based MDS plot, similar tourist sites, such as
the Aquarium and the Zoo appear near each other.

2.5.3 Pathfinder Network Scaling

Pathfinder network scaling is a structural modeling technique originally developed
by Schvaneveldt et al. (1989) for the analysis of proximity data in psychology. It
simplifies a complex representation of data to a much more concise and meaning-
ful network - only the most important links are preserved, to create a Pathfinder
network (PFNET).

If we consider the following three examples, the major problems with an exces-
sive number of links in a graphical representation of a network should become
clear. Figure 2.8 shows a network structure visualized by the NavigationView
Builder (Mukherjea et al., 1995), one of the most widely cited works in information
visualization. It is clear from this example that a large, connected graph would
have even more edges crossing each other. One of the common criteria for general
undirected graph drawing is to avoid such crossings if possible.

This illustrates the fact that underlying patterns in a complex network can be
lost in a large number of links. There are several options to avoid displaying redun-
dant links. For example, multidimensional scaling (MDS) does not usually display
any links at all. The relationships between objects are purely represented by their
positions in the spatial configuration. In fact, a special class of hypertext, called
spatial hypertext, also known as linkless hypertext because of its reliance on
spatial proximity (Marshall and Shipman, 1995), is taking a similar approach.
Alternatively, redundant links from the original data may be removed in advance,
including algorithms such as Pathfinder network scaling and minimal spanning
trees. The spanning tree approach is used in LyberWorld (Hemmje et al., 1994) and
Hyperbolic 3D (Munzner, 1998b).

Visualizing complex information structures is much more difficult than repre-
senting regular hierarchical structures. Zizi and Beaudouin-Lafon designed

Figure 2.8 A real-world network may contain a large number of edges. Reprinted with permission of
Sougata Mukherjea.
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SHADOCS, a document retrieval system, to incorporate interactive dynamic maps
into the user interface (Zizi and Beaudouin-Lafon, 1994). SHADOCS uses a
dynamic clustering technique to divide a large set of document descriptors into
smaller clusters. Graphical overview maps are subsequently generated on the
screen using a space-filling algorithm. Each region in a map corresponds to a clus-
ter of descriptors, and the size of a region is proportional to the relative impor-
tance of those descriptors in the underlying documents. This is very similar to the
representation of self-organized maps.

There are two types of approach towards the issue of scalability, focusing on
either the size (in terms of the number of nodes), or the density of the network (in
terms of the number of links). The scalability issue, in terms of the size of new net-
works, has been largely resolved (Zizi and Beaudouin-Lafon, 1994) by systems such
as SHADOCS, which separate large networks into a number of smaller networks by
dynamic clustering algorithms. However, a density-related scalability issue turns
out to be more difficult.

The total number of links in a network consisting of n nodes could be as many
as n*. A commonly used strategy is to set a threshold value, and only consider links
with values above the threshold. SHADOCS uses a straightforward threshold to
control the number of links to be displayed on the screen map. Since the spatial
relations have not been taken into account, the linkage in a pruned network may
look rather arbitrary, and incompatible with the spatial layout. After all, scalability
implies the ability to maintain the original integrity, consistency, and semantics
associated with the network representation of an implicit structure. Pathfinder net-
work scaling algorithms provide a useful means of dealing with this challenging
problem in a more harmonious way.

Pathfinder network scaling can be seen as a link reduction mechanism that pre-
serves the most salient semantic relations. A key assumption is the triangle
inequality condition; only those links that satisfy this condition will appear in the
final network. In essence, the rationale is that, if the meaning of a semantic relation
can be more accurately or reliably derived from other relations, then this particular
relation becomes redundant and can therefore be safely omitted. GSA extends this
method to a variety of proximity data estimated by statistical and mathematical
models (Chen, 1997a,1998b). A distinct advantage is that the same spatial metaphor
can be consistently used across a range of proximity data, a significant advantage
for maintaining the integrity of the semantic structures generated by different
theories and techniques.

Pathfinder relies on Pathfinder network scaling, the so-called triangle inequality
to eliminate redundant or counter-intuitive links. The principal assumption is that
if a link in the network violates this condition, then the link is likely to be redun-
dant or counter-intuitive and should be pruned from the network.

The topology of a PENET is determined by parameters r and g: the resultant
Pathfinder network is denoted as PFNET(r, q). The weight of a path is defined,
based on Minkowski metric with the r-parameter. The g-parameter specifies that
the triangle inequality must be maintained against all the alternative paths with up
to g links connecting nodes n; and ny:

k=1
= ’ =
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Figure 2.9 Triangle inequality: the path y-z presents more salient information than link x.

For a network with N nodes, the maximum value of the g-parameter is N — 1.
PENET (r = 1,4 = N — 1) consists of the least number of links, where each path is
a minimum-cost path. If there is more than one path connecting the same pair of
nodes, they must have the same weight. The tightest triangle inequality (g = N — 1)
is normally imposed, in order to achieve a concise Pathfinder network for visualiza-
tion purposes, and must be maintained throughout the entire network.

A Pathfinder network can be generated from an existing minimal spanning tree
(MST) of the original network by including additional links, provided new links do
not violate the triangle inequality. In fact, the minimum-cost Pathfinder network
(MCN) is the set union of all the possible MSTs so that the structure of an MCN is
unique for each original proximity network. The software allows us to choose an
MST instead of a PFNET to represent a large network.

Figure 2.9 illustrates how the triangle inequality filter works and how its out-
come should be interpreted. Suppose there are three papers: A, B, and C. Paper A
describes LSI. Paper B is about information visualization. Paper C applies LSI to an
information visualization design. The relationship between papers A and B is
established by the content of Paper C. Therefore the path along links y and z
reflects the nature of this relationship more profoundly than link x does. Link x
becomes redundant and should be removed.

Graphical representations of Pathfinder networks are generated using force-
directed graph drawing algorithms (Fruchterman and Reingold, 1991; Kamada and
Kawai, 1989), which are increasingly popular in information visualization because
they tend to lay out similar nodes near to one another, and put dissimilar ones
farther away. Similar algorithms are used by Bead (Chalmers, 1992) and SPIRE
(Hetzler et al., 1998).

The value of Pathfinder network scaling in visualization is its ability to reduce
the number of links in a meaningful way, which results in a concise representation
of clarified proximity patterns, a desirable feature for visualizing a complex struc-
ture. Pathfinder networks provide not only a fuller representation of the salient
semantic structures than minimal spanning trees, but also a more accurate repre-
sentation of local structures than multidimensional scaling techniques.

Let us compare two Pathfinder networks, based on the same set of papers from
the CHI 96 proceedings, but with different g parameters. The link structure in
Figure 2.10, PENET(r = 2, g = 1), keeps all the links derived from the proximity
data. The meaning of g = 1 is that the triangle inequality is not imposed on alter-
native paths consisting of two or more links. In contrast, the link structure in
Figure 2.11,PENET (r = 2,9 = N — 1), preserves only paths that have the minimal
weights, in order to highlight salient relationships with an improved clarity. Such
simplified graphs provide a natural basis for an overview map of the information
space.
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Figure 2.11 CHI 96 papers visualized with PFNET links only. Source: Chen (1997a).

Pathfinder networks have demonstrated various useful features in co-citation
studies (Chen, 2003; White, 2003b). However, the Pathfinder network-scaling algo-
rithm has its limitations. In order to achieve a network of high clarity and legibil-
ity, it is necessary to impose the so-called triangular inequality throughout the
network. While this requirement leads to the simplest representation of the essence
of an underlying proximity network, this is at a considerable computational cost.
Additionally, as the size of the original network increases, the algorithm requires a
considerable amount of memory to run. Therefore, it would be desirable if either
an equivalent but more efficient algorithm can be developed, or a hybrid approach
can be used to achieve cost-effectiveness. In contrast, MST algorithms such as
Kruskal’s algorithm and Prim’s algorithm can be efficiently implemented, but may
not capture local structures as accurately as Pathfinder. Now the question is how
these properties influence the visualized network evolution. To our knowledge, this
issue has not been specifically addressed.
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One of the problems in visualizing complex networks is caused by their struc-
tural complexity. A number of algorithms are available to reduce the complexity
of a network by reducing the number of links but maintaining the most salient
structure untouched; commonly used algorithms include minimum spanning trees
(MSTs) and the relatively less known Pathfinder networks (PFNETs). Pathfinder
networks are a generalization of MSTs in that an MST is a special subset of a
Pathfinder network. The algorithm is originally developed by cognitive scientists
to build procedural models based on subjective ratings (Chen, 1998a,b; Chen &
Paul, 2001; Schvaneveldt, 1990). The unique advantage of the Pathfinder algorithm
is that it can remove a large number of links and retain the most important ones by
using a more sophisticated elimination mechanism as compared to, for example,
MST. It has increasingly become a strong candidate in a series of KDViz studies
(Chen et al., 2001; Chen et al., 2002; Chen and Kuljis, 2003; White, 2003b).

The goal of applying the Pathfinder algorithm is, in essence, to prune a dense
network to its backbone structure. The topology of a Pathfinder network is deter-
mined by two parameters r and q. The r parameter is used to define a metric space
over a given network based on the Minkowski distance so that one can measure
the length of a path connecting two nodes in the network. The Minkowski dis-
tance becomes the familiar Euclidean distance when r = 2. A particularly inter-
esting case is when r = o0, in which the weight of a path is defined as the maximum
weight of its component links, which is why it is also called the maximum value
distance.

Given a metric space, a triangle inequality can be defined as:

r )llr
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where w;; is the weight of a direct path between i and j, w,,,, ., is the weight of a
path between n; and ny4,, for k = 1, 2, ..., m. In particular, i = n, and j = n;. In
other words, the alternative path between i and j may go all the way round through
nodes ny, 1y, ..., nias long as each intermediate link belongs to the network.

If wj; is greater than the weight of alternative path, then the direct path between
i and j violates the inequality condition. Consequently, the link i —j will be
removed because it is assumed that such links do not represent the most salient
aspects of the association between the nodes i and j.

The g parameter specifies the maximum number of links that alternative paths
can have for the triangle inequality test. The value of g can be set to any integer
between 2 and N — 1, where N is the number of nodes in the network. If an alter-
native path has a lower cost than the direct path, the direct path will be removed.
In this way, Pathfinder reduces the number of links from the original network,
while all the nodes remain untouched. The resultant network is also known as a
minimum-cost network.

However, this is a computationally expensive algorithm; the published algo-
rithm is in the class of O(N*) (Figure 2.12). KDViz approaches built on the Path-
finder network scaling algorithm have a potential bottleneck if one needs to deal
with larger and larger networks. The strength of Pathfinder network scaling is its
ability to derive more accurate local structures than other comparable algorithms
such as multidimensional scaling (MDS) and minimum spanning tree (MST). The
best results are achieved when ¢ = N — 1 and r = %; not surprisingly, this is
also the most expensive because all the possible paths must be examined for
each link. In addition, the algorithm requires a large amount of memory to store
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Figure 2.12 Pathfinder’s inner loop is in the order of O(N*).

the intermediate distance matrices. These scalability problems are the major moti-
vations for us to consider a divide-and-conquer strategy.

2.6 Generalized Similarity Analysis

Generalized similarity analysis (GSA) is a unifying framework developed through
a series of studies in structuring and visualizing complex information spaces
(Chen, 1997a, b, 1998a, b; Chen and Czerwinski, 1997, 1998). GSA aims to provide a
consistent framework, with associated modeling and visualization tools, to extract
and transform a wide variety of structures inherited in a collection of documents
into spatial models. For example, a number of inter-document similarity matrices
have been derived: content-based similarity, cross reference-based similarity, and
usage pattern-based similarity. A key element is the use of Pathfinder network scal-
ing techniques (Schvaneveldt et al., 1989).

Visualizing a complex graph often needs to address a challenging problem,
caused by an excessive number of links. In a spatial layout of a network represen-
tation with a large number of links, fundamental patterns may be lost in a cluttered
display, and users may experience a cognitive overload.

Pathfinder network scaling simplifies the structure of a network by extracting
and displaying only the most salient relationships, and eliminating redundant or
counter-intuitive ones from the original network. Pathfinder has some desirable
features over techniques, including multidimensional scaling (MDS).

In our earlier work (Chen, 1997a), we used the classic vector space model with
tf X idf weighting (Salton et al., 1994) to compute interdocument similarities.
However, the vector space model is subject to an assumption that terms used in
document vectors are independent, and it was realized that this assumption may
oversimplify the interrelationships between the use of particular terms and their
context, consequently leading to counter-intuitive results. Latent semantic index-
ing (LSI) (Deerwester et al., 1990) was subsequently incorporated into the frame-
work, in order to reveal underlying semantic structures as reflected through
a collection of publications in a specific subject domain. (See Sections 2.5.3 and
2.3.3, respectively, for more detailed descriptions of Pathfinder network scaling
and LSI.)



Extracting Salient Structures 53

The development of GSA was initially based on three distinct interconnectivity
models associated with documents on the web: hypertext linkage, term distributions,
and navigation patterns. These three examples are included in order to illustrate
the extensibility of the framework.

2.6.1 Scalability of Networks

Visualizing complex information structures must address two different types of
scalability issue: the size of the network (in terms of the number of nodes), and the
density of the network (in terms of the number of links).

SHADOCS is a document retrieval system that incorporates interactive dynamic
maps into the user interface (Zizi and Beaudouin-Lafon, 1994). A large set of doc-
ument descriptors is divided into smaller clusters using a dynamic clustering tech-
nique. Graphic overview maps are generated on the screen using a space-filling
algorithm; each region in a map corresponds to a cluster of descriptors. The size of
a region is proportional to the relative importance of those descriptors in the
underlying documents.

On the one hand, a large network can be separated into a number of smaller net-
works by dynamic clustering algorithms, for example in SHADOCS. On the other
hand, a density-related scalability issue remains a relatively challenging one. The
maximum number of links in a network consisting of N nodes is N%. When we deal
with a network with a large number of nodes, we must also deal with an even larger
number of links.

A commonly used strategy is to set a threshold, and consider only links whose
weights are above the threshold. For instance, SHADOCS uses a straightforward
threshold to control the number of links to be displayed on the screen map. However,
threshold values may not adequately reflect the intrinsic structure of a network. As a
result, a pruned network may look rather arbitrary, and incompatible with the layout
nodes. Scalability is the ability to maintain the original integrity, consistency, and
semantics associated with the network representation of an implicit structure. In the
next section, this challenging problem is addressed in a more harmonious way, by a
useful approach based on Pathfinder network scaling algorithms.

2.6.2 Hypertext Linkage

The structure of a network can be represented as a matrix. A network of a hyper-
text with N document nodes can be represented as a distance matrix, an N X N
matrix. Each element dj; in the matrix denotes the distance between node i and j.
Botafogo et al. (1992) introduced two structural metrics, the relative out centrality
(ROC) and relative in centrality (RIC) metrics, to identify various structural char-
acteristics of a node.

A node with a high ROC would be a good starting point to reach out for other
nodes, while a node with a high RIC should be readily accessible. Using a high-
ROC node as a starting point, the structure of the hypertext can be transformed
into one or more hierarchies. Botafogo et al. suggest that large hierarchies may
be displayed with fisheye views, which balance local details and global context
(Furnas, 1986). Chapter 4 includes several examples of how hierarchical structures
can be visualized, using fisheye and hyperbolic views.
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HyPursuit is a hierarchical network search engine based on semantic informa-
tion embedded in hyperlink structures and document contents (Weiss et al., 1996).
HyPursuit considers not only links between two documents, but also how their
ancestor and descendant documents are related. For example, if two documents
have a common ancestor, they are regarded as more similar to each other. In
HyPursuit, document similarity by linkage is defined as a linear combination of
three components: direct linkage, ancestor, and descendant inheritance. More
recently, the design of a very large web search engine, known as Google, also relies
on hypertext links to enhance the precision of search results. The Google search
engine is described in Chapter 4.

Pirolli et al. (1996a) at Xerox also use hypertext links to characterize web docu-
ments. Documents in a web locality, a closed subset of WWW documents, can be
represented by feature vectors based on attributes such as the number of incoming
and outgoing hyperlinks of a document, how frequently the document has been
visited, and content similarities between the document and its children. These fea-
ture vectors can be used to describe the nature of a page and predict the interests
of visitors to that page.

In generalized similarity analysis (GSA), document proximity is defined based
on similarities between documents. The document similarity by hypertext linkage
in GSA is defined as follows:

linkij

N
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where link;; is the number of hyperlinks from document D; to D; in a collection
of N documents from the WWW, for example, from a particular server or on
a specific topic. Higher-order interrelationships with ancestors and descendants
are not considered, because they can be resolved by Pathfinder network scaling
algorithms. This definition allows asymmetrical as well as symmetrical relation-
ships between documents. The Pathfinder network scaling algorithms can handle
both symmetric and asymmetric data. Without losing generality, we assume that
these measures are symmetric unless otherwise stated. According to this definition,
a similarity of 0 between two documents implies link;; = 0, which means that one
document is not linked to the other at all. On the other hand, a similarity of
1 implies link; = 0 for all the k X j, which means that the two documents are con-
nected by hyperlinks to each other, but not to any other documents.

Figure 2.13 shows the structure of a WWW site (SITE,) according to hypertext
linkage. Pathfinder extracted 189 salient relationships from 1503 initial similarity
measures. The spring energy in this PFNET is less than 0.005 (four isolated nodes
are not shown).

Structural analysis based on hypertext links can be used to detect general inter-
ests from one website to others. Chen et al. (1988a) present a connectivity analysis
of the web sites of computer science departments in 13 universities in Scotland.
Figure 2.14 shows the number of outgoing hypertext links from each of the
13 departmental websites in Scottish universities.

Table 2.3 shows the top ten American and British commercial websites most
frequently cited by the 13 Scottish computer science sites. A commercial site was



Figure 2.13 The structure of SITE, with 198 salient hyperlinks, shown as a PENET(q = N — 1 = 126,
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Figure2.14 Outgoing hyperlinks from each of the 13 Scottish university sites. Source: Chen et al. (1998a).

Table 2.3 Top ten most popular American and British commercial sites cited by Scottish universities
(Data: Aug/Sept, 1996)

Rank  US Site Count Type UK Site Count Type

1 Java 188 Software Demon 63 ISP

2 Yahoo 124 Search Engine  Telegraph 27 Media

3 AltaVista 34 Search Engine  Bookshop 35 Publisher

4 Lycos 29 Search Engine ~ Web13/Future 28/28 ISP/Media

5 Microsoft 30 Software Cityscape 26 Media

6 AT&T research 51 Research Nexor 34 ISP

7 Netscape 32 Software ouP 16 Publisher

8 NBA 36 Sport/Music Almac 16 ISP

9 Digital research 44 Research Musicbase 18 Sport/Music
10 Lights 36 Others Virgin Records 17 Sport/Music
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identified by its domain name, i.e. .com for an American site, and .co.uk for a
British site. They were ranked by the number of unique Scottish sites that linked to
them. For example, 10 out of 13 Scottish sites had links to Java Development
Toolkit at java.sun.com, at the time of the analysis.

An interesting pattern emerged. Links to American sites were dominated by
companies providing leading Internet-related technologies and services, such as
Java programming tools, Yahoo and AltaVista. On the other hand, links to British
sites were predominated by mass media and entertainment such as the Daily
Telegraph and Channel 4 (at www.cityscape.co.uk).

The profile of top-ranked popular commercial sites is mapped into a two-
dimensional configuration using multidimensional scaling (MDS). Each site is
represented as a vector, based on how frequently it was referenced across the
13 Scottish sites. The frequencies are standardized over all the Scottish sites, to
minimize the bias towards large sites in Scotland. Figure 2.15 shows the MDS map
generated by SPSS, a popular statistical package. It explains 85% of the variance.
Annotations in the map are added by hand with lines, to highlight sites that are
similar to each other.

Along Dimension 1, research laboratories in large American companies are
located on the one hand, namely, AT&T and Digital, while two sites at the other end
are particularly devoted to music, e.g., Virgin Music Group (VMG).

In contrast, Dimension 2 may reflect some aspects of particular cultures. For
example, National Basketball Association (NBA) (American) is on the top map,
whereas the Daily Telegraph (British) is at the bottom. The positions of Yahoo and
AltaVista suggested some connections to the generic nature of their indexing and
search facilities. On the other hand, popular British commercial sites clearly
reflected the British culture, for example, Daily Telegraph, Channel 4, and Oxford
University Press (OUP).
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Figure 2.15 The profile of the most popular American and British commercial sites to Scottish univers-
ities. Source: Chen et al. (1998a).
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2.6.3 Content Similarity

The vector-space model was originally developed for information retrieval (Salton
et al., 1994, 1996). It is an influential and powerful framework for analyzing and
structuring documents. Each document is represented by a vector of terms, and
terms are weighted to indicate how important they are in representing the docu-
ment. The distance between two documents can be determined according to cor-
responding vector coefficients.

A large collection of documents can be split into a number of smaller clusters
such that documents within a cluster are more similar than documents in different
clusters. By creating links between documents that are sufficiently similar, Salton
et al. automatically generated semantically-based hypertext networks using the
vector-space model (Salton et al., 1994).

In GSA, we have several options to derive interdocument similarities according
to term distributions. These may include, among others, the classic vector space
model, the latent semantic indexing model, and dice coefficients. The following
example is based on the well-known #f X idf model, term frequency X inverse doc-
ument frequency, to build term vectors. Each document is represented by a vector
of T terms with corresponding term weights. The weight of term T} to document
D;, is determined by:

tfy X log (N]

1y
Wik =

i(ffij)z X IOg[,IjJZ

j=1 j

where tf; is the occurrences of term Ty in D;, N is the number of documents in
the collection (such as the size of a WWW site), and n; represents the number
of documents containing term Ty. The document similarity is computed as follows,
based on corresponding vectors: D; = (w;;, Wy, ..., wir) and D; = (wjl, Wips eeos jT):

T
. __content __
k=1

Figure 2.16 shows a PFNET for another departmental WWW site, SITEg with 172
HTML documents. The network has 172 nodes and 242 links. The screen display
becomes crowded even if numerical IDs are used in the graphical representation.
This is an example of the famous “focus versus context” problem: users need to
access local details, while maintaining a meaningful context. In order to resolve
this problem, virtual reality modeling language (VRML) comes into play. VRML
provides not only new ways of interacting with graphic representations in a two- or
three-dimensional space, but also a new metaphor of interaction, ranging from
individual use to collaborative work.

A graph representation takes shape as the overall spring energy reduces below a
threshold given in advance. Figure 2.17 shows the node placement process for CHI
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96 papers at six discrete points. The value of spring energy at each point is given at
the right-hand corner. For example, at an early stage, the energy of the spring sys-
tem is 0.999, the energy is systematically reduced to 0.900, 0.500, 0.200, 0.100, and
eventually the process is terminated at the threshold, 0.005.

Figure2.16 The structure of SITEg by content similarity, preserving 242 links (PFNET,q = N — 1 = 171,
r = ). Source: Chen (1997a).

i e=.005

e=100]

Figure 2.17 The node placement process. Source: Chen (1998b).
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2.6.4 State-transition Patterns

There is a growing interest in incorporating usage patterns into the design of large,
distributed hypermedia systems, notably on the WWW. Access logs maintained by
many WWW servers provide a valuable source of empirical information on how
users actually access the information on a server, and which documents appear to
attract the attention of users. Sequential patterns of browsing indicate, to some
extent, document relatedness perceived by users. For example, Pirolli et al. (1996)
use the number of users who followed a hyperlink connecting two documents in the
past to estimate the degree of relatedness between the two documents.

The dynamics of a browsing process can be captured by state-transition proba-
bilities. Transition probabilities can be used to indicate document similarity with
respect to browsing, to some advantage. For example, the construction of the state-
transition model is consistent with linkage- and content-based similarity models.
In our example, one-step transition probability p;; from document D; to D; is esti-
mated as follows:

f(D;,D;)

N
Y f(D,,Dy)
k=1

b;

where f(D;, D;) is the observed occurrences of a transition from D; to D; and
fx(D;, Dy) is the total number of transitions starting from D;. Transition probability
pijis used to derive the similarity between document D; and D; in the view of users:

Sl-m:_;suge _ plj
The following example is based on state-transition patterns derived from server
access logs maintained at SITE,.

Figure 2.18 shows three Pathfinder networks, corresponding to three bi-monthly
access log data between September 1996 and January 1997, associated with external
users’ access to the author’s homepage. A number of predominant cycles emerged
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Figure 2.18 The structure of SITE,, containing personal web pages, by usage patterns. Source: Chen
(1997a).
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Figure 2.19 The structure of SITE, based on state-transition patterns, shown as a PENET (¢ = N — 1,
r = ). Source: Chen (1997a).

from the graph. In fact, there seemed to be some correspondence between a cycle
and a set of documents of a particular type. For example, the largest cycle corres-
ponds to top-level documents regarding general information about the homepage
(Node 7), the page counters and plans. The cycle (17-19-20-21-6-15) corresponds
to some research papers. The cycle (21-22-23-33-6) corresponds to documents
used in teaching. It also seemed that larger cycles corresponded to deeper brows-
ing sequences, whereas smaller cycles tended to relate to more specific topics and
shorter browsing sequences. Node 0 is an artificial node, to indicate the end of a
browsing sequence.

A total of 22,209 access requests were made between July 30 and September 31,
1996, from 1125 sources. The behavior of the top 30 most active users is used to
establish representative behavioral patterns in terms of first-order state tran-
sitions. These 30 users account for 10.7% of all the users who visited the site during
this period. The number of pages visited by each of these users varied from
13 pages to 115 pages. Figure 2.19 shows a PENET derived from similarities based
on first-order state-transition probabilities. Cluster A is enlarged to Cluster A*.

The spike at the lower left half and the ring in Cluster A* essentially associate
with master’s student’s project on web-based interface design. The spike at the
upper right half corresponds to some research papers on hypertext.

It is possible to integrate several virtual structures derived from the same data
using different structural modeling mechanisms. In the following generic formula,
an existing hyperlink structure is adjusted, by incorporating the underlying
semantic structure derived from content similarities:

simeombined (4, ) _ w;; * hyperlinks;
Yy y N
Za)ik * hyperlinks;,
. k:1 .
simgnk+content _ Simicjombmed (wij — Simlgjontent)
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Table 2.4 Pearson’s and cosine correlation coefficients among
similarities based on linkage, content and usage patterns
associated with the SITE,

SITE, (N = 127) Linkage Content Usage
Mean 0.0735 0.1671 0.0020
Std Dev 0.1413 0.3121 0.0357
SITE, (N = 127) Pearson Sig. Cosine
Linkage-Content 0.3201 0.000 0.4682
Linkage-Usage 0.0184 0.017 0.0423
Content-Usage 0.0429 0.000 0.0644

where the resultant similarity, simijli“kJrC“"‘e”‘, represents a virtual structure, based
on both hypertext linkage and term distributions.

2.6.5 Meta-similarities

A meta-similarity is an overall estimate of the strength that two similarity vari-
ables are related. To illustrate this concept, we computed Pearson’s and cosine cor-
relation coefficients among three sets of similarities associated with the website
SITE,, according to hyperlinks, content terms, and usage patterns. A total of 127
valid documents from the SITE, were included in our study. The linkage-content
meta-similarity has the highest score on both Pearson’s and cosine correlation
coefficients (r = 0.3201 and r, = 0.4682, N = 127) (Table 2.4). The linkage-usage
meta-similarity has the lowest score on both Pearson’s and cosine correlation coef-
ficients (r = 0.0184 and r, = 0.0644, N = 127).

We analyzed the changes in usage patterns associated with a collection of docu-
ments maintained by the author on the WWW over six consecutive months
between August 1996 and January 1997. By comparing usage pattern-based simi-
larity measures between adjacent months, it was found that the meta-similarity
increased from 0.1967 to 0.4586 over the six months. It appears to be a trend that
the meta-similarity is increasing with time. A possible explanation is that usage
patterns become increasingly similar as the underlying structure settles down,
at least for frequently visited documents. Experimental studies, and a thorough
examination of specific documents and associated usage patterns, may lead to
further insights into the pattern.

2.6.6 Structuring Heterogeneous Information

This example briefly illustrates the design of a novel user interface for exploiting
documents accumulated in an information filtering and sharing environment.
In addition to visualizing interdocument relationships, the visual user interface
reveals the interconnectivity between user profiles and documents. The role of
user profiles, based on the notion of reference points, is explored.
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The exponential growth of widely accessible information in modern society
highlights the need for efficient information filtering and sharing. Information fil-
tering techniques are usually based on the notion of user profiles, in order to esti-
mate the relevance of information to a particular person.

Jasper is an information filtering and sharing system (Davies et al., 1995), main-
taining a growing collection of annotated reference links to documents on the
WWW. Currently, the interconnectivity among these accumulated documents
and user profiles is not readily available in Jasper. In this chapter, we describe the
design of a novel visual user interface in order to uncover the interconnectivity.

The concept of reference points was originated in psychological studies of simi-
larity data and spatial density (Kruskal, 1977). The underlying principle is that
geometric properties such as symmetry, perpendicularity, and parallelism are par-
ticularly useful in communicating graphical patterns. For example, people often
focus on structural patterns such as stars, rings and spikes, in a network represen-
tation. Reference points, conceptually or visually, play the role of a reference frame-
work in which other points can be placed.

In this example, it is hypothesized that a number of star-shaped, profile-centered
document clusters would emerge if the role of reference points was activated
by user profiles. Users would be able to share information more effectively, based
on the additional information provided by user profiles through the visual user
interface.

Based on a random sample of 127 documents and 11 user profiles from Jasper,
the heterogeneous information structure is visualized within the generalized sim-
ilarity analysis (GSA) framework. First, we extract and preserve only the most
salient semantic relationships, in order to reduce the complexity of the visualiza-
tion network. Second, we incorporate user profile-based reference points in order
to improve the clarity of the visual user interface.

Unique behavioral heuristics are applied to distinguish user profiles and docu-
ments, in order to speed up the convergence of our self-organized clustering
process. These emergent structures are derived without any prior knowledge of
structural relationships. Additional structural cues are likely to result in more
efficient results.

The impact of user profile-based reference points can be seen in Figure 2.20. The
left sub-figure shows the self-organized spatial layout without using the mecha-
nism of reference points. The sub-figure in the middle shows the layout if the
mechanism of reference points was utilized.

Figure 2.20 The role of reference points: disabled (left), enabled (middle), and a close-up look at a
cluster (right) (cube = profile; sphere = document).
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In fact, the 11 user profiles, which make up merely 8% of the 138 nodes, were
associated with 69% of the links in the network, whereas the remaining 127 docu-
ments, which make up 92% of the nodes, only shared 31% of the links. Reference
points have clearly improved the clarity of the overall structure. Users may now
track relevant documents based on their knowledge of their colleagues’ expertise.

The quality of information visualization can be improved by incorporating user
profile-based reference points, which is potentially useful for visual user interface
design. The focus of empirical analyses on this type of visual user interface is usu-
ally the human factors. There are many usability evaluation methodologies avail-
able to assess whether a particular design feature, or the entire ecological system,
is appropriate for users.

2.7 Summary

In this chapter, we have introduced several major aspects of information visualiza-
tion: structural modeling, in particular, the use of the vector space model and its
variants, multidimensional scaling and trajectory mapping.

There was also an introduction to the generalized similarity analysis (GSA)
framework, giving several examples to illustrate its extensibility and flexibility.
More examples are cited in subsequent chapters.

The next chapter focuses on graphic representation, another fundamental
aspect of information visualization, introducing some of the most popular and
advanced spatial layout algorithms.



