
Chapter 2

Vector Spaces

2.1 Definitions and Examples

Linear equations in n variables are mathematical objects: they can be added,
and multiplied by numbers. We say that the linear equations of a fixed type
form a vector space.1

Definition. Any set E consisting in mathematical objects which may be
added,2 and multiplied by numbers,3 having the usual properties (commutativity,
associativity, distributivity. . . ) is a vector space.

It is essential to observe that in general, the elements of a vector space cannot
be multiplied together: In a vector space, the presence of an inner multiplicative
law is not required (not forbidden either!).

The elements of a vector space are also called vectors—or more precisely
generalized vectors—while numbers are called scalars. It is suitable to use dif-
ferent alphabets for them. For example, if ρ denotes the row (2, 3, −1), i.e. the
homogeneous equation 2x1 +3x2 −x3 = 0, the multiple aρ denotes (2a, 3a, −a),
namely the equation 2ax1 + 3ax2 − ax3 = 0. If ρ′ = (1, 2, 2) is another row of
the same type (homogeneous equation in three variables), then

2ρ + ρ′ = (4, 6, −2) + (1, 2, 2) = (5, 8, 0)

represents the equation 5x1 + 8x2 + 0x3 = 0 of the same type.

More traditionally—and for reasons that will appear later—scalars are often
denoted by Greek letters4 while the elements of a vector space are covered by
an arrow.5 We might just as well represent the row ρ = (2, 3, −1) by �r (or−→r , r, . . .) and its multiples by α�r (resp. ar, . . .). The notation should only be
chosen in such a way as to suggest the correct interpretation.

1We refer to the Appendix to this chapter for the general notation concerning set theory.
2Addition being an internal operation E × E → E. Here appears the Cartesian product of

sets; cf. Appendix.
3This is an external operation R × E → E. Here appears the canonical set R of real

numbers.
4A Greek alphabet appears in the Appendix to this chapter.
5Still another type of arrow : Arrows are used for mappings, convergence, etc.
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28 CHAPTER 2. VECTOR SPACES

A vector space is a set—or space—in which finite sums of multiples of ele-
ments, called linear combinations, can be made. With rows ρ1, . . . , ρm, one may
also consider the linear combinations

a1ρ1 + a2ρ2 + · · · + amρm

where a1, a2, . . . , am are numbers (not rows!). It is more economical to write
such a linear combination in the form of a sum of the generic term aiρi for the
values of the index i between 1 and m:

a1ρ1 + a2ρ2 + · · · + amρm =
∑

1≤i≤m

aiρi.

Examples. (1) The set of homogeneous linear equations in n variables
is a vector space sometimes denoted by Rn. Its elements are the rows ρ =
(a1, . . . , an). Linear combinations of rows are computed according to the rule

aρ + ρ′ = (aa1 + a′
1, . . . , aan + a′

n)

(with obvious notations). One can also consider another space, consisting of the
linear equations in n variables, having elements (a1, . . . , an ; b) with a similarly
defined addition and multiplication by scalars, like the corresponding operations
on equations.

(2) The lists consisting of n numbers written vertically can also be amplified and
added in a natural way. We have encountered this situation with solutions of
linear systems, and in particular, in the general principle stating that the general
solution of a linear system can be obtain by making the sum of a particular
solution and the general solution of the associated homogeneous system




s1
s2
...

sn


 =




p1
p2
...

pn


 +




h1
h2
...

hn


 =




p1 + h1
p2 + h2

...
pn + hn


 .

This vector space, consisiting of lists of n numbers written vertically is conven-
tionally denoted by Rn.6

A geometrical representation of the space R2 is given by a choice of Cartesian
coordinates in the Euclidean plane: to the list

(
x1
x2

)
=

(
x
y

)
we associate the point

P having coordinates x and y. In this way, lists correspond one-to-one with
points. However, the amplification of a list componentwise, as well as the sum
of lists componentwise, makes it more intuitive to replace the point P by the
vector

−−→
OP . The addition law of components now corresponds to the usual

parallelogram law for adding vectors

a�v + �w = a

(
v1

v2

)
+

(
w1

w2

)
=

(
av1 + w1

av2 + w2

)
.

A similar geometrical representation for the space R3 of lists of three numbers
is given by the usual Euclidean, or physical space: To a list, we associate the

6It is the paradigm of finite-dimensional vector space.
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point P or the vector
−−→
OP having for coordinates the three numbers in the list.7

It is more difficult to imagine representations for R4 (time-space), R5 or R100.
We simply consider the elements of Rn as being lists of n numbers (written
vertically): We also call them n-tuples. When n = 1, we obtain the vector
space consisting of scalars.

(3) The set E = F(R,R) of all functions R → R is a vector space. Indeed, we
can add real valued functions on R pointwise, as well as amplify them by (real)
scalars. (It turns out that we can also multiply pointwise two functions, hence
speak of an inner multiplication law in this vector space; but this possibility is
irrelevant here). Hence a function f : R → R may also be called a (generalized)
“vector” when we deal with this vector space. This vector space is huge, and
it will often be more reasonable to use a smaller one C(R,R) consisting of the
continuous functions: The sum of two continuous functions is continuous—so we
are told in an elementary calculus course—and so are the multiples of continuous
funtions.
(4) Here is a generalization of the first examples. Consider the set of rectangular
arrays of size m×n (corresponding to a homogeneous linear systems containing
m equations in n variables). Define the addition of two arrays componentwise:
For example with 2 rows and 3 columns

(
a11 a12 a13
a21 a22 a23

)
+

(
b11 b12 b13
b21 b22 b23

)
=

(
a11 + b11 a12 + b12 a13 + b13
a21 + b21 a22 + b22 a23 + b23

)
.

Define similarly the multiplication by scalars componentwise, e.g.

a

(
a11 a12 a13
a21 a22 a23

)
=

(
aa11 aa12 aa13
aa21 aa22 aa23

)
.

This set Mm,n(R) := (Rn)m = (Rm)n =: Rm
n is a vector space playing a central

role in linear algebra.

2.2 Subspaces, Generators

Definition. A subset V ⊂ E of a vector space is a subspace when it contains
the zero vector of E: 0V = 0E = �0, and

v and w ∈ E implies av + w ∈ E for any scalar a.

The zero vector of E alone constitutes the smallest subspace {0} of E, some-
times called a trivial subspace. The whole space itself is also an example of trivial
subspace. When E �= {0} we get two trivial—extreme—examples of subspaces.
We are mainly interested in nontrivial subspaces of a vector space E, but the
trivial examples often occur as particular cases in general statements, and it
would be awkward to exclude them a priori.

Examples. (1) Let us give the general form of the nontrivial subspaces of
R3. First, we observe that the lines going through the origin,8 furnish infinitely

7We assume some familiarity with the use of vectors in the context of forces, velocities (not
to be confused with speed), acceleration, etc.

8Also called homogeneous lines.
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many examples of subspaces of R3. Secondly, the planes containing the origin
furnish infinitely many other examples of subspaces of R3. It will be obvious
later that these are all the nontrivial subspaces of R3.
(2) Consider a system (HS) of homogeneous linear equations in n variables.
The solutions of this system form a subset of the space Rn of lists (xi)1≤i≤n of
n numbers. In Chapter 1, we observed that the sum of two solutions, as well
as multiples of solutions, are again solutions of this homogeneous system. With
the present terminology, we may say that the solutions of (HS) form a subspace
of Rn. But the solutions of a nonhomogeneous system do not constitute a sub-
space, simply since the trivial family—consisting of 0’s only—is not a solution
of a nonhomogeneous system.
(3) Let us consider the set E = F(R,R) of all functions R → R. Since
we can add real valued functions on R pointwise, as well as amplify them by
(real) scalars, this huge set is a vector space.9 Since the sum of two continuous
functions is again a continuous function, and so are the multiples of continuous
functions, the subset C consisting of continuous functions is a subspace of E.
The same properties are valid for polynomial functions instead of continuous
ones. Hence the polynomial functions also constitute a subspace Π of E. They
also form a subspace of C:

Π ⊂ C ⊂ E.

The quadratic functions, namely the functions having a representation in the
form f(x) = ax2 + bx + c for some scalars a, b, and c, make up a subspace
of Π and hence also of C, and of E. The degree of a nonzero polynomial is
by definition the highest power of the variable x that occurs (with a nonzero
coefficient) in this polynomial. For example, the polynomials of degree less than
or equal to 2 can be represented in the form f(x) = ax2 +bx+c. By convention,
we define the degree of the zero polynomial to be less than any possible degree.
With this convention, the quadratic polynomials are precisely the polynomials
of degree less than or equal to 2. The polynomial functions of degree exactly 2
do not produce a subspace: The sum of two polynomials of degree 2 may have
degree less than 2, e.g.

(x2 + x + 1) + (−x2 + 1) = x + 2 has degree 1.

More generally (with the preceding convention concerning the degree of the zero
polynomial) the polynomials of degree less than or equal to any natural integer
n form a subspace Π≤n. For example, the subspace of quadratic polynomials is
Π≤2. We have a sequence of inclusions of subspaces

{0} ⊂ Π≤0 ⊂ Π≤1 ⊂ Π≤2 ⊂ · · · ⊂ Π≤n ⊂ · · · ⊂ Π ⊂ C ⊂ E

(when n ≥ 2).10

Linear Span of a Family of Vectors

In a vector space E, the smallest subspace containing elements �a1,�a2, . . . ,�an ∈ E
is denoted by

V = L(�a1,�a2, . . . ,�an) ⊂ E.

9It turns out that we can also multiply together two functions pointwise, but this possibility
is irrelevant here.

10Observe that Π≤0 is the space of constants: The multiples of the constant function 1.
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As any subspace, this subspace must contain all linear combinations

x1�a1 + x2�a2 + · · · + xn�an =
∑

xi�ai

of the given elements. Now, the set of all linear combinations is a subspace since
multiples of linear combinations are again linear combinations11

a (x1�a1 + x2�a2 + · · · + xn�an) = ax1�a1 + ax2�a2 + · · · + axn�an,

and similarly for the sum of two linear combinations

(x1�a1 + · · · + xn�an) + (y1�a1 + · · · + yn�an) = (x1 + y1)�a1 + · · · + (xn + yn)�an.

We can write

L(�a1,�a2, . . . ,�an) = set of linear combinations of the �ai

=
{ ∑

1≤i≤n

xi�ai : any scalars xi

}
,

and call it the linear span of the elements �ai (1 ≤ i ≤ n). We also say that this
space is generated, or spanned, by the elements �ai.

Obviously
L(�a2,�a1, . . . ,�an) = L(�a1,�a2, . . . ,�an).

This subspace does not depend on the order in which the elements ai are listed.
It is as obvious that

L(c�a1,�a2, . . . ,�an) = L(�a1,�a2, . . . ,�an),

when c �= 0 is a nonzero scalar. The subspace L(�a1,�a2, . . . ,�an) does not change
if we replaces one element ai by a nonzero multiple cai (c �= 0).

Important Example. Let A denote a rectangular array of coefficients
(corresponding to a linear system) containing m rows ρ1, . . . , ρm of a certain
type. In the vector space E of rows of the same type, consider the row space of
A, namely the subspace

L(rowsA) := L(ρ1, . . . , ρm)

generated by the rows of A. Let A′ be the rectangular array obtained after
one row operation has been performed on A. As has already been observed,
permuting two rows, or amplifying one row with a nonzero scalar, does not
alter the row space. Let us consider the third type of row operation. Typically,
we may imagine that the first row of A′ is obtained from the first row of A by
addition of a multiple of its second row:

ρ′
1 = ρ1 + cρ2 ∈ L(ρ1, . . . , ρm).

This proves
L(ρ′

1, . . . , ρm) ⊂ L(ρ1, . . . , ρm).

11For this and the next assertions, verify that the axioms of vector spaces only are used!
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Since this row operation is invertible, explicitly ρ1 = ρ′
1 − cρ2, the opposite

inclusion is also valid, and we deduce

L(ρ′
1, . . . , ρm) = L(ρ1, . . . , ρm).

The row space of A is equal to the row space of A′. Performing successive row
operations until a reduced form is obtained

A ∼ A′ ∼ · · · ∼ U

we conclude that the row spaces of A and of any row-equivalent form of A are
the same:

L(rowsA) = L(rowsU).

Interpretation of a linear system (S) with m-tuples

If a linear system (S) is given, we may introduce the m-tuples

�aj =




a1j

...
amj


 , �b =




b1
...

bm


 ∈ Rm (1 ≤ j ≤ n),

and rewrite the system in the equivalent form

(S) x1




a11
...

am1


 + · · · + xn




a1n

...
amn


 =




b1
...

bm


 .

More simply, in vector form

x1�a1 + · · · + xn�an = �b.

This system is compatible when we can find some values for the coefficients xi,
namely when the vector �b is a linear combination of the vectors �aj :

�b ∈ L(�a1,�a2, . . . ,�an).

An equivalent way of giving this condition is

L(�a1,�a2, . . . ,�an) = L(�a1,�a2, . . . ,�an,�b).

The system can be solved for all data �b ∈ Rm precisely when the subspace
generated by the vectors �ai is the whole space

L(�a1,�a2, . . . ,�an) = Rm.

2.3 Linear Independence

When a linear system has two distinct solutions, their difference is a nontrivial
solution of the associated homogeneous system (HS). Let us introduce the
columns aj so that

(HS) a1x1 + a2x2 + · · · + anxn = 0,
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and there is a nontrivial linear combination

x1a1 + x2a2 + · · · + xnan = 0.

At least one coefficient xi �= 0 (but we cannot say a priori for which index i it
is the case!). On the contrary, when this system only has the trivial solution,
we say that the columns aj are linearly independent. This suggests a general
definition, valid in any vector space.

Definition. We say that a family of vectors (�ai)i∈I is free or equivalently
linearly independent when the only linear combination producing the zero vector
is the trivial one, having all zero coefficients

x1�a1 + · · · + xn�an =
∑
finite

xi�ai = �0 implies all xi = 0.

In the opposite case, we say that the family is linearly dependent or linked:
There is a dependence relation x1�a1 + · · · + xn�an = �0, namely a nontrivial
linear combination producing the zero vector.

If xi �= 0 in x1�a1 + · · · + xn�an = �0, we can solve

�ai = − 1
xi

∑
j �=i

xj�aj

and �ai is a linear combination of the other �aj , explaining the terminology chosen.
If a finite sum12 ∑

i xi�ai = 0 has a nonzero coefficient, then one vector is a
linear combination of the others: But we do not know a priori which one. The
advantage of the definition is its symmetry.

Comment. If a subset of the vector space E is free, it does not contain the
zero vector �0 ∈ E. Indeed, a�0 = �0 holds for any scalar a: taking a = 1, we get
a nontrivial dependence relation.13

Example. The nonzero rows of a row-reduced array are independent.




p1 ∗
0 p2 ∗
... 0 · · · pr ∗
...

... 0 · · ·




ρ1

ρ2

ρr

...

A linear combination
∑

aiρi can vanish only if a1 = 0: This is seen by consid-
ering the first coefficient of the row. Having acquired this, one can look at the
coefficient of index given by the second pivot, and successively prove that all
coefficients are zero.

Although not needed in this book, let us establish a result which is very
important in analysis.

12In the right-hand side, we ought to write �0 instead of “0”: we shall now often make this
abuse, relying on the reader for the proper interpretation!

13In the trivial vector space E = {0}, the only free subset is the empty set Ø .
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Proposition. Consider a family (λi) of distinct scalars. Then the family of
functions (xjeλix) is independent.14

Proof. We have to prove that any finite linear combination
∑

cijx
jeλix that

vanishes identically, has all cij = 0. Grouping terms with the same index i,
we see that we have to prove that a finite sum

∑
pie

λix having polynomial
coefficients, that vanishes identically, has all pi = 0. We show this by induction
on the number m of terms in such a sum.
(a) Case m = 1. Let p(x)eλx vanish identically, where p is a polynomial. Since
eλxe−λx = eλx−λx = e0 = 1, the exponential never vanishes and the assumption
implies that p(x) = 0 vanishes identically. This can only happen if p = 0 is the
trivial polynomial (having all zero coefficients).
(b) Induction step. Assume that for some m ≥ 1

∑
1≤i≤m

pi(x)eλix = 0 for all x =⇒ pi = 0 (1 ≤ i ≤ m)

(where the pi’s are polynomials, and the λi are distinct scalars). Consider a
dependence relation having one more term

∑
1≤i≤m

pi(x)eλix + pm+1(x)eλm+1x = 0 for all x

(with polynomial coefficients pj , and λm+1 distinct from all preceding λi’s). If
we multiply this identity by e−λm+1x, we get

∑
1≤i≤m

pi(x)eλ′
ix + pm+1(x) = 0 for all x,

where all λ′
i = λi − λm+1 are distinct and nonzero scalars. Differentiating this

identity, we infer
∑

1≤i≤m

qi(x)eλ′
ix + p′

m+1(x) = 0 for all x,

where qi = λ′
ipi + p′

i has the same degree as pi. Iterating this procedure d + 1
times where d = deg pm+1, we obtain a simpler identity

∑
1≤i≤m

ri(x)eλ′
ix = 0 for all x,

still with polynomials ri having the same degree as pi. By induction assumption
however, the only possibility is now ri = 0 (1 ≤ i ≤ m). The degree considera-
tion shows that pi = 0 for the same values of the index i. There only remains a
dependence relation

pm+1(x)eλm+1x = 0 for all x.

As we have seen in the first part of the proof, it implies pm+1 = 0 also.

14Although we consider only real scalars here, the reader may observe that this proof works
as well for complex scalars.
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2.4 Bases, Dimension

Having discussed the notion of generators and of linear independence, we now
gather the two concepts.

Theorem. Let A = {�a1, . . . ,�am} be a finite subset in a finitely generated
subspace L(�b1, . . . ,�bn). If m > n, then A is dependent.

This basic result may be reformulated as:
Any family having more elements than a generating set is dependent.

By logical contraposition, we obtain the equivalent statement
Any free subset of L(�b1, . . . ,�bn) has at most n elements.

Proof. Let us start with m vectors

�a1,�a2,�a3, . . . ,�am,

in the subspace generated by

�b1,�b2, . . . ,�bn,

where m > n. Hence we may write the �aj as linear combinations of the �bi’s

�aj = aj1�b1 + aj2�b2 + · · · + ajn
�bn.

Now, let us form linear combinations of these

+




x1�a1 = x1a11�b1 + x1a12�b2 + · · · + x1a1n
�bn,

...
xm�am = xmam1�b1 + xmam2�b2 + · · · + xmamn

�bn,

Σj xj�aj = (x1a11 + . . . + xmam1)�b1

+ . . . +
(x1a1n + . . . + xmamn)�bn.

To obtain zero with such a linear combination, we can simply choose the coef-
ficients (xi) solution of the homogeneous linear system




x1a11 + . . . + xmam1 = 0,
...

x1a1n + . . . + xmamn = 0.

Since this system has more variables (m) than equations (n), it has a nontrivial
solution and we are done: The vectors �ai are linearly dependent.

Definition. A basis of a vector space is a free generating family.

We shall mainly be interested in finitely generated vector spaces, namely
vector spaces E for which there is a finite family (ai) of elements such that
E = L(a1, . . . , an). If this family is not free, one element can be expressed in
function of the other ones, and deleting it, we obtain a set of generators having
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one less element. Continuing in this way, we finally reach a basis of E. We have
thus proved the first part of the following basic theorem.

Theorem. Let E be a finitely generated vector space. Then E has a basis.
Two bases of E have the same number of elements.

Proof. Take two bases A and B of E, and let cardA, cardB denote their
respective number of elements. Then

A generates and B free =⇒ cardB ≤ cardA,
B generates and A free =⇒ cardA ≤ cardB.

This proves cardA = cardB.

Definition. The common number of elements in all bases of a finitely
generated vector space E is called the dimension of E: and is denoted by dim E.

Example 1 The vector space E = Rn has dimension n. To prove this, we
have to give a basis of this space. I claim that the following n-tuples

�e1 =




1
0
...
0


 , �e2 =




0
1
...
0


 , . . . , �en =




0
0
...
1




constitute a basis of the space. Let us make arbitrary linear combinations of
these vectors. By definition

x1�e1 + x2�e2 + · · · + xn�en =




x1
x2
...

xn


 .

Hence taking suitable coefficients xi, we can obtain any n-tuple: These elements
�ei make up a set of generators of Rn. Moreover, a linear combination of these
can furnish the zero n-tuple only if all coefficients xi vanish: They are indepen-
dent. This basis has n elements: The dimension of Rn is n.15 When n ≥ 1,
there are many other bases of this space. However, the preceding one is more
natural, and is therefore called the canonical basis of Rn. In an abstract vector
space, there is usually no way of selecting a prefered basis.

Example 2 In a similar vein, consider the vector space Rn
m consisting of

arrays of size m × n. It has a canonical basis

(Eij)1≤i≤m, 1≤j≤n,

consisting of the matrices

E11 =




1 0 0 . . . 0
0 0 0
0 0 0
...

. . .
...

0 . . . 0




, E12 =




0 1 0 . . . 0
0 0 0
0 0 0
...

. . .
...

0 . . . 0




, . . .

15The field of scalars is a one-dimensional vector space: Any nonzero element is a basis for
this space.
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where Eij has only one nonzero coefficient—this being a 1—placed at the inter-
section of the ith row and jth column. Hence this vector space has dimension
mn.

Example 3 Consider the subspace V of Rn formed with the solutions of a
homogeneous system Ax = 0.16 Attributing successively the values 1, 0, . . . , 0,
and then 0, 1, 0, . . . , 0 etc. to the free variables, we find a basis of V : Its dimen-
sion is n − r and

rankA + dim V = r + (n − r) = n.

Fundamental Application. Let A be any rectangular array of coefficients.
Using row operations, we can find a reduced row-equivalent form of A, say
A ∼ U . We have seen L(rowsA) = L(rowsU). Now, the nonzero rows of U
form a system of generators of this space. Since they are independent, they
constitute a basis of the row-space:

r = dim L(rowsA).

Two procedures A ∼ U , resp. A ∼ U ′, leading to row-reduced forms of A furnish
two bases of L(rowsA), hence have the same number of elements: r = r′. This
proves that the rank r is independent of the particular method of reduction,17

and the row-rank of A can be defined by

rankA := dimL(rowsA).

Let us quote an easy refinement of the preceding theorem. A basis of E
appears as a minimal generating set of this space. Symmetrically, a basis also
appears as a maximal free family. We get a basis by successive adjunction of
elements which cannot be expressed by means of the former ones. In a finitely
generated vector space, this procedure will eventually furnish a set of generators.
For example, starting from a basis of a subspace, we may complete it into a basis
of the whole space. This is the content of the next theorem which will be refered
to as the incomplete basis theorem.

Theorem. Let F be a free subset of a finitely generated vector space E =
L(v1, v2, . . . , vm). Then one can obtain a basis of E by addition of suitable
elements vj to F .

Proof. If the free set F does not generate E, then at least one of the generators
vj does not belong to L(F ). Hence the union of F with this element is still free
and one can continue until a free generating set is obtained: This process stops
after at most m steps.

For reference, we also quote explicitly the following particular case.

Corollary. For any 0 �= x ∈ E, there is a basis of E containing x.

16Also called nilspace of the array A.
17One can also show that the ranks of the pivots are well defined, independently from the

method of reduction: In fact, there is uniqueness of the row-echelon form of any array A.
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2.5 Appendix

2.5.1 Set Theory, Notation

A set is a collection of mathematical objects. It is given by a list between
brackets, e.g. the set consisting of the two numbers 1 and 2 is {1, 2}. For
infinite sets we use dots, e.g. the set of natural integers is

N = {0, 1, 2, 3, . . .}.

or we list the property which is characteristic of the set. For example, the set
of even numbers is

E = {0, 2, 4, 6, . . .} = {2n : n is a natural integer}.

This set is contained in—or is a subset of—the set of natural numbers N. The
inclusion of two sets is represented by the sign ⊂,18 e.g. E ⊂ N. Another subset
is the set of prime integers, or simply the set of primes

P = {2, 3, 5, 7, 11, . . .} ⊂ N.

To indicate that an element belongs to a set, we use the ∈ symbol: Instead of
“23 is a prime” we may equivalently write “23 ∈ P”, which is read “23 is an
element of—or belongs to—the set P of primes”. The negation of ∈ is denoted
by /∈, e.g. 1 /∈ P : the integer 1 is not a prime.19

When two sets E, F are given, we may define their intersection, denoted
by E ∩ F = F ∩ E, consisting of their common elements. For example, the
intersection of the set of even numbers and the set of primes is {2}, a set
consisting of a single element, also called a singleton set. Here are two equivalent
notations:

2 ∈ P and {2} ⊂ P.

The union of two sets E and F , denoted by E ∪ F = F ∪ E,20 is the set
consisting of the elements which belong to at least one of the sets in question.
For example, the union of the set of natural numbers N and the set of negative
integers {−1, −2, −3, . . .} is the set Z of rational integers.21

The notation A ⊂ B is also symmetrically denoted by B ⊃ A. To prove
an equality of two sets A and B, we may proceed by double inclusion, namely
prove A ⊂ B and B ⊂ A.

If E is a set, the subsets of E constitute a new set

P(E) = {A : A is a subset of E}.

The empty set Ø is a subset of any set E, hence Ø ∈ P(E) and this shows that
P(E) is never empty! By convention, E itself is also a subset of E: E ∈ P(E).
If two subsets A and B verify an inclusion A ⊂ B, we denote by B − A the

18The symbol ⊂ is a reminder of the first letter in “contained”.
19Here is a reason for this: We like to have unique prime decompositions (up to order) of

integers, e.g. 6 = 2 · 3. If we had admitted 1 as a prime, we could write 6 = 2 · 3 = 1 · 2 · 3 =
1 · 1 · 2 · 3 = . . . , whence nonuniqueness.

20The symbol ∪ is a reminder of the first letter in “union”.
21The chosen letter is the initial of the German “Zahl” (=Number).
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relative complement consisting of the elements of B not in A. The complement
of a subset A ⊂ E is the subset

Ac = E − A = {x ∈ E : x /∈ A}.

By definition, the complement of Ac is A itself

(Ac)c = A.

The complement of a union is the intersection of the complements

(A ∪ B)c = Ac ∩ Bc.

The union of any family of sets is the set consisting of the elements which belong
to at least one. For three sets, A, B, and C, this union is the set A ∪ B ∪ C.
It can be obtained by first taking the union of A and B, and then the union of
A ∪ B and C. Hence

(A ∪ B) ∪ C = A ∪ B ∪ C = A ∪ (B ∪ C).

This is the associativity of the “∪” operation. Similar considerations hold for
the intersection:

(A ∩ B) ∩ C = A ∩ B ∩ C = A ∩ (B ∩ C).

There is also a distributivity relation22

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).

These operations make the basis of the Boolean algebra of subsets of a set E.
When E and F are two sets, their Cartesian product E × F denotes the set

of (ordered) pairs (x, y) where x is taken in E and y in F . In particular, when
E = F , the Cartesian product E×E consists of pairs of elements of E. Here, we
note E2 := E × E, while E2 rather denotes the set of vertical pairs of elements
of E. Similar considerations apply to En := E ×· · ·×E consisting of rows with
n elements of E, while En denotes the set of n-tuples written in column.

A mapping or map from a set E into a set F is a correspondence which to
each element x ∈ E associates one element y ∈ F . We often denote a map by
f : E → F ,23 and we indicate the correspondence at the level of the elements
by x 
→ y = f(x). Thus a map f : E → F is defined on all of E, and for each
x ∈ E, there is only one element f(x) ∈ F . The subset of F consisting of all
f(x) when x ∈ E is the image of f

im f = f(E) := {y ∈ F : there exists x ∈ E with y = f(x)}.

In the case f(E) = F , we say that f is surjective, or onto. When

x �= y =⇒ f(x) �= f(y),

we say that f is injective, or 1-1 (read “one-to-one”). When both conditions
hold, we say that f is bijective, or 1-1 onto. When there is a bijection between
two sets E and F , they are equipotent , and this is a definition of the fact that
they have the same cardinality (same number of elements).

22Exercise: Make a proof by double inclusion. Hint: Make a picture!
23This arrow has to be distinguished from the “convergence” arrow, or the “vector” arrow

placed on top of letters.
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Fundamental Sets of Numbers

We have introduced the canonical sets N and Z. Here are larger ones

Q : set of rational numbers m/n (m, n ∈ Z, n �= 0),
R : set of real numbers (scalars),
C : set of complex numbers (to be introduced later).



2.5.2 Axioms for Commutative Fields K

Scalars will here be represented by Greek letters: α, β, γ, . . . ∈ K

1. α + (β + γ) = (α + β) + γ

2. α + β = β + α

3. ∃ 0 ∈ K, ∀ α ∈ K : 0 + α = α

4. ∀ α ∈ K, ∃ − α ∈ K : α + (−α) = 0




K is an

additive

Abelian group

5. α(βγ) = (αβ)γ

6. αβ = βα

7. ∃ 1 (�= 0) ∈ K, ∀ α ∈ K : 1 α = α

8. ∀ α ∈ K, α �= 0, ∃ α−1 ∈ K : α α−1 = 1




K − {0} is a

multiplicative

Abelian group

9. α(β + γ) = αβ + αγ (Distributivity)

2.5.3 Axioms for Vector Spaces E

The elements of E will here carry an arrow: �x, �y,�z, . . . ∈ E

The sum is an inner operation for which E is an Abelian group:

1. �x + (�y + �z) = (�x + �y) +�z (Associativity)

2. �x + �y = �y + �x (Commutativity)

3. There is a unique �0 ∈ E such that �x +�0 = �x for all �x ∈ E

4. Any �x has a unique opposite −�x such that �x + (−�x) = �0

The product by a scalar is an external operation satisfying

5. 1�x = �x (1 denotes the unit scalar)

6. α(β�x) = (αβ)�x

7. α(�x + �y) = α�x + α�y

8. (α + β)�x = α�x + β�x
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2.6 Exercises

** Let a, b, c be three elements of a vector space. (a) If a and b are independent,
b and c are independent, can you prove that a and c are independent?
(b) If a and b are independent, b and c are independent, a and c are independent,
can you prove that a, b, and c are independent?

1. By definition, the monomials

1, x, x2, . . . , xn, . . .

form a set of generators of the subspace of polynomials Π Show that the poly-
nomials

1, x − 1, (x − 1)2, . . . , (x − 1)n, . . .

also form a set of generators of the space Π (use the Taylor formula).

2. Show that the columns containing pivots of a row-reduced array are also
independent. (Hint: Start by showing that in any linear combination of pivot
columns producing the zero column, the coefficient of the last pivot column is
zero.)

3. The set of linear equations a1x1 + · · · anxn = b is a vector space V . What is
its dimension? Is the subset consisting in equations having a solution a vector
subspace of V ?

4. Show that a space of dimension ≥ 2 (over the real field R) is not a union of
finitely many 1-dimensional subspaces.

5. (a) Show that for any field K and any set E

F(E; K) = {f : E → K}

is a vector space over K.
(b) Check that the set F2 = {0, 1} with addition and multiplication defined

by
+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

is a field (field of integers mod 2: Instead of 0, one may think of the “even”
class, and instead of 1, one may think of the “odd” class).

(c) The vector space F(E;F2) is in 1-1 correspondence with the power set
P(E) (set of subsets of E). To which operation on subsets do addition and
multiplication of functions correspond?


