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material and to invite new authors to write two new chapters. These additional
chapters cover material that has attracted considerable attention since the first
edition of the book appeared. They deal with kernel methods and support vec-
tor machines on the one hand, and visualization on the other. Kernel methods
represent a relatively new technology, but one which is showing great promise.
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analysis began, but are currently experiencing a renaissance in response to the
increase, in numbers and size, of large data sets. In addition the chapter on rule
induction has been replaced with a new version, covering this topic in much more
detail.

As research continues, and new tools and methods for data analysis continue
to be developed, so it becomes ever more difficult to cover all of the important
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original edition — too many new fields have emerged over the past three years.
However, we believe that this revision still provides a solid basis for anyone
interested in the analysis of real data.

We are very grateful to the authors of the new chapters for working with
us to an extremely tight schedule. We also would like to thank the authors of
the existing chapters for spending so much time carefully revising and updating
their chapters. And, again, all this would not have been possible without the
help of many people, including Olfa Nasraoui, Ashley Morris, and Jim Farrand.

Once again, we owe especial thanks to Alfred Hofmann and Ingeborg Mayer
of Springer-Verlag, for their continued support for this book and their patience
with various delays during the preparation of this second edition.
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Preface to the First Edition

The obvious question, when confronted with a book with the title of this
one, is why “intelligent” data analysis? The answer is that modern data analysis
uses tools developed by a wide variety of intellectual communities and that
“intelligent data analysis”, or IDA, has been adopted as an overall term. It should
be taken to imply the intelligent application of data analytic tools, and also the
application of “intelligent” data analytic tools, computer programs which probe
more deeply into structure than first generation methods. These aspects reflect
the distinct influences of statistics and machine learning on the subject matter.

The importance of intelligent data analysis arises from the fact that the
modern world is a data-driven world. We are surrounded by data, numerical
and otherwise, which must be analysed and processed to convert it into énfor-
mation which informs, instructs, answers, or otherwise aids understanding and
decision making. The quantity of such data is huge and growing, the number of
sources is effectively unlimited, and the range of areas covered is vast: industrial,
commercial, financial, and scientific activities are all generating such data.

The origin of this book was a wish to have a single introductory source to
which we could direct students, rather than having to direct them to multiple
sources. However, it soon became apparent that wider interest existed, and that
potential readers other than our students would appreciate a compilation of some
of the most important tools of intelligent data analysis. Such readers include
people from a wide variety of backgrounds and positions who find themselves
confronted by the need to make sense of data.

Given the wide range of topics we hoped to cover, we rapidly abandoned
the idea of writing the entire volume ourselves, and instead decided to invite
appropriate experts to contribute separate chapters. We did, however, make
considerable efforts to ensure that these chapters complemented and built on
each other, so that a rounded picture resulted. We are especially grateful to the
authors for their patience in putting up with repeated requests for revision so
as to make the chapters meld better.

In a volume such as this there are many people whose names do not explicitly
appear as contributors, but without whom the work would be of substantially
reduced quality. These people include Jay Diamond, Matt Easley, Sibylle Frank,
Steven Greenberg, Thomas Hofmann, Joy Hollenback, Joe Iwanski, Carlo March-
esi, Roger Mitton, Vanessa Robins, Nancy Shaw, and Camille Sinanan for their
painstaking proofreading and other help, as well as Stefan Wrobel, Chris Road-
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knight and Dominic Palmer-Brown for stimulating discussions and contributions
which, though not appearing in print, have led to critical reassessment of how
we thought some of the material should be presented.

Finally, we owe especial thanks to Alfred Hofmann from Springer-Verlag, for
his enthusiasm and support for this book right from the start.

February 1999

Berkeley, California Michael Berthold
London, United Kingdom David J. Hand



Chapter 1
Introduction

David J. Hand
Imperial College, United Kingdom

1.1. Why “Intelligent Data Analysis”?

It must be obvious to everyone - to everyone who is reading this book, at least -
that progress in computer technology is radically altering human life. Some of the
changes are subtle and concealed. The microprocessors that control traffic lights
or dishwashers, are examples. But others are overt and striking. The very word
processor on which I am creating this chapter could not have been imagined 50
years ago; speech recognition devices, such as are now available for attachment
to PCs, could have been imagined, but no-one would have had any idea of how
to build such a thing.

This book is about one of those overt and striking changes: the way in which
computer technology is enabling us to answer questions which would have defied
an answer, perhaps even have defied a formulation, only a few decades ago. In
particular, this book is about a technology which rides on top of the progress in
electronic and computer hardware: the technology of data analysis.

It is fair to say that modern data analysis is a very different kind of animal
from anything which existed prior to about 1950. Indeed, it is no exaggeration
to say that modern data is a very different kind of animal from anything which
existed before. We will discuss in some detail exactly what is meant by data
in the modern world in Section 1.3 but, to get the ball rolling, it seems more
convenient to begin, in this section, by briefly examining the notion of “intelligent
data analysis”. Why analyse data? Why is this book concerned with “intelligent”
data analysis? What is the alternative to “intelligent” data analysis? And so on.
In between these two sections, in Section 1.2, we will look at the cause of all this
change: the computer and its impact.

To get started, we will assume in this opening section that “data” simply
comprise a collection of numerical values recording the magnitudes of various
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attributes of the objects under study. Then “data analysis” describes the pro-
cessing of those data. Of course, one does not set out simply to analyse data.
One always has some objective in mind: one wants to answer certain questions.
These questions might be high level general questions, perhaps exploratory: for
example, are there any interesting structures in the data? Are any records anoma-
lous? Can we summarise the data in a convenient way? Or the questions might
be more specifically confirmatory: Is this group different from that one? Does
this attribute change over time? Can we predict the value of this attribute from
the measured values of these? And so on.

Orthogonal to the exploratory/confirmatory distinction, we can also distin-
guish between descriptive and inferential analyses. A descriptive (or summaris-
ing) analysis is aimed at making a statement about the data set to hand. This
might consist of observations on the entirety of a population (all employees of a
corporation, all species of beetle which live in some locality), with the aim being
to answer questions about that population: what is the proportion of females?
How many of the beetle species have never been observed elsewhere? In contrast,
an inferential analysis is aimed at trying to draw conclusions which have more
general validity. What can we say about the likely proportion of females next
year? Is the number of beetle species in this locality declining? Often inferential
studies are based on samples from some population, and the aim is to try to
make some general statement about the broader population, most (or some) of
which has not been observed. Often it is not possible to observe all of the popu-
lation (indeed, this may not always be well-defined - the population of London
changes minute by minute).

The sorts of tools required for exploratory and confirmatory analyses differ,
just as they do for descriptive and inferential analyses. Of course, there is con-
siderable overlap - we are, at base, analysing data. Often, moreover, a tool which
appears common is used in different ways. Take something as basic as the mean
of a sample as an illustration. As a description of the sample, this is fixed and
accurate and is the value - assuming no errors in the computation, of course. On
the other hand, as a value derived in an inferential process, it is an estimate of
the parameter of some distribution. The fact that it is based on a sample - that
it is an estimate - means that it is not really what we are interested in. In some
sense we expect it to be incorrect, to be subject to change (if we had taken a
different sample, for example, we would expect it to be different), and to have
distributional properties in its own right. The single number which has emerged
from the computational process of calculating the mean will be used in different
ways according to whether one is interested in description or inference. The fact
that the mean of sample A is larger than the mean of sample B is an observed
fact - and if someone asks which sample has the larger mean we reply “A”. This
may be different from what we would reply to the question “Which population
has the larger mean, that from which A was drawn or that from which B was
drawn?” This is an inferential question, and the variability in the data (as mea-
sured by, for example, the standard deviations of the samples) may mean we
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have no confidence at all that the mean of one population is larger than that of
the other.

Given the above, a possible definition of data analysis is the process of com-
puting various summaries and derived values from the given collection of data.
The word “process” is important here. There is, in some quarters, an appar-
ent belief that data analysis simply consists of picking and applying a tool to
match the presenting problem. This is a misconception, based on an artificial
idealisation of the world. Indeed, the misconception has even been dignified with
a name: it is called the cookbook fallacy, based on the mistaken idea that one
simply picks an appropriate recipe from one’s collection. (And not the idea that
one cooks one’s data!) There are several reasons why this is incorrect. One is
that data analysis is not simply a collection of isolated tools, each completely
different from the other, simply lying around waiting to be matched to the prob-
lem. Rather the tools of data analysis have complex interrelationships: analysis
of variance is a linear model, as is regression analysis; linear models are a special
case of generalised linear models (which generalise from straightforward linear-
ity), and also of the general linear model (a multivariate extension); logistic
regression is a generalised linear model and is also a simple form of neural net-
work; generalised additive models generalise in a different way; nonparametric
methods relax some of the assumptions of classical parametric tests, but in doing
so alter the hypotheses being tested in subtle ways; and so one can go on.

A second reason that the cookbook fallacy is incorrect lies in its notion of
matching a problem to a technique. Only very rarely is a research question
stated sufficiently precisely that a single and simple application of one method
will suffice. In fact, what happens in practice is that data analysis is an iterative
process. One studies the data, examines it using some analytic technique, decides
to look at it another way, perhaps modifying it in the process by transformation
or partitioning, and then goes back to the beginning and applies another data
analytic tool. This can go round and round many times. Each technique is being
used to probe a slightly different aspect of the data - to ask a slightly different
question of the data. Several authors have attempted to formalise this process
(for example [236,408,427]). Often the process throws up aspects of the data that
have not been considered before, so that other analytic chains are started. What
is essentially being described here is a voyage of discovery - and it is this sense
of discovery and investigation which makes modern data analysis so exciting. It
was this which led a geologist colleague of mine to comment that he envied us
data analysts. He and other similar experts had to spend the time and tedium
collecting the data, but the data analysts were necessarily in at the kill, when
the exciting structures were laid bare. Note the contrast between this notion,
that modern data analysis is the most exciting of disciplines, and the lay view of
statistics - that it is a dry and tedious subject suited only to those who couldn’t
stand the excitement of accountancy as a profession. The explanation for the
mismatch lies in the fact that the lay view is a historical view. A view based on
the perception that data analysts spend their time scratching away at columns of
figures (with a quill pen, no doubt!). This fails to take into account the changes
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we referred to at the start of this chapter: the impact of the computer in removing
the drudgery and tedium. The quill pen has been replaced by a computer. The
days of mindless calculation replaced by a command to the machine - which then
effortlessly, accurately, and probably effectively instantaneously carries out the
calculation. We shall return to this in Section 1.2.

One reason that the word “intelligent” appears in the title of this book is also
implicit in the previous paragraph: the repeated application of methods, as one
attempts to tease out the structure, to understand what is going on, and to refine
the questions that the researchers are seeking to answer, requires painstaking
care and, above all, intelligence. “Intelligent” data analysis is not a haphazard
application of statistical and machine learning tools, not a random walk through
the space of analytic techniques, but a carefully planned and considered process
of deciding what will be most useful and revealing.

1.2. How the Computer Is Changing Things/the Merger of
Disciplines

Intelligent data analysis has its origins in various disciplines. If I were to single
out two as the most important, I would choose statistics and machine learning.
Of these, of course, statistics is the older - machines which can have a hope of
learning have not been around for that long. But the mere fact of the youth of
machine learning does not mean that it does not have its own culture, its own
interests, emphases, aims, and objectives which are not always in line with those
of statistics. This fact, that these two disciplines at the heart of intelligent data
analysis have differences, has led to a creative tension, which has benefited the
development of data analytic tools.

Statistics has its roots in mathematics. Indeed many statisticians still regard
it as fundamentally a branch of mathematics. In my view this has been detrimen-
tal to the development of the discipline (see, for example [243], and other papers
in that issue). Of course, it is true that statistics is a mathematical subject -
just as physics, engineering, and computer science are mathematical. But this
does not make it a branch of mathematics any more than it makes these other
subjects branches of mathematics. At least partly because of this perception,
statistics (and statisticians) have been slow to follow up promising new develop-
ments. That is, there has been an emphasis on mathematical rigour, a (perfectly
reasonable) desire to establish that something is sensible on theoretical grounds
before testing it in practice.

In contrast, the machine learning community has its origins very much in
computer practice (and not really even in computer science, in general). This
has led to a practical orientation, a willingness to test something out to see how
well it performs, without waiting for a formal proof of effectiveness.

It goes without saying that both strategies can be very effective. Indeed,
ideally one would apply both strategies - establish by experiment that something
does seem to work and demonstrate by mathematics when and under what
circumstances it does so. Thus, in principle at least, there is a great potential
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for synergy between the two areas. Although, in general, I think this potential
has yet to be realised, one area where it has been realised is in artificial neural
network technology.

If the place given to mathematics is one of the major differences between
statistics and machine learning, another is in the relative emphasis they give to
models and to algorithms.

Modern statistics is almost entirely driven by the notion of a model. This is
a postulated structure, or an approximation to a structure, which could have led
to the data. Many different types of models exist. Indeed, recalling the comment
above that the tools of data analysis have complex interrelationships, and are
not simply a collection of isolated techniques, it will come as no surprise if I say
that many different families of models exist. There are a few exceptional exam-
ples within statistics of schools or philosophies which are not model driven, but
they are notable for their scarcity and general isolation. (The Dutch Gifi school
of statistics [211], which seeks data transformations to optimise some external
criterion, is an example of an algorithm driven statistical school. By applying
an algorithm to a variety of data sets, an understanding emerges of the sort of
behaviour one can expect when new data sets are explored.) These exceptions
have more in common with approaches to data analysis developed in the ma-
chine learning community than in traditional statistics (which here is intended
to include Bayesian statistics). In place of the statistical emphasis on models,
machine learning tends to emphasise algorithms. This is hardly surprising - the
very word “learning” contains the notion of process, an implicit algorithm.

The term “model” is very widely used - and, as often occurs when words
are widely used, admits a variety of subtly different interpretations. This is
perhaps rather unfortunate in data analysis since different types of models are
used in different ways and different tools are used for constructing different
kinds of models. Several authors have noted the distinction between empirical
and mechanistic models (see, for example [81,129,239]). The former seek to
model relationships without basing them on any underlying theory, while the
latter are constructed on the basis of some supposed mechanism underlying the
data generating process. Thus, for example, we could build a regression model to
relate one variable to several potential explanatory variables, and perhaps obtain
a very accurate predictive model, without having any claim or belief that the
model in any way represented the causal mechanism; or we might believe that
our model described an “underlying reality”, in which increasing one variable
led to an increase in another.

We can also distinguish models designed for prediction from models designed
to help understanding. Sometimes a model which is known to be a poor repre-
sentation of the underlying processes (and therefore useless for “understanding”)
may do better in predicting future values than one which is a good representa-
tion. For example, the so-called Independence Bayes model, a model for assigning
objects to classes based on the usually false assumption of independence between
the variables on which the prediction is to be based, often performs well. This
sort of behaviour is now understood, but has caused confusion in the past.
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Finally here (although doubtless other distinctions can be made) we can
distinguish between models and patterns (and as with the distinctions above,
there is, inevitably, overlap). This is an important distinction in data mining,
where tools for both kinds of structure are often needed (see [244]). A model is
a “large scale” structure, perhaps summarising relationships over many cases,
whereas a pattern is a local structure, satisfied by a few cases or in a small region
of the data space in some sense. A Box-Jenkins analysis of a time series will yield
a model, but a local waveform, occurring only occasionally and irregularly, would
be a pattern. Both are clearly of potential importance: we would like to detect
seasonality, trend, and correlation structures in data, as well as the occasional
anomaly which indicates that something peculiar has happened or is about to
happen. (It is also worth noting here that the word “pattern”, as used in the
phrase “pattern recognition”, has a rather different meaning. There it refers to
the vector of measurements characterising a particular object - a “point” in the
language of multivariate statistics.)

I commented above that the modern computer-aided model fitting process
is essentially effortless. This means that a huge model space can be searched in
order to find a well-fitting model. This is not without its disadvantages. The
larger the set of possible models examined in order to fit a given set of data,
the better a fit one is likely to obtain. This is fine if we are seeking simply to
summarise the available data, but not so fine if the objective is inference. In
this case we are really aiming to generalise beyond the data, essentially to other
data which could have arisen by the same process (although this generalisation
may be via parameters of distributions which are postulated to (approximately)
underlie the data generating mechanism). When we are seeking to generalise,
the data on which the model must be based will have arisen as a combination of
the underlying process and the chance events which led to that particular data
set being generated and chosen (sampling variability, measurement error, time
variation, and so on). If the chosen model fits the data too well, then it will
not merely be fitting the underlying process but will also be fitting the chance
factors. Since future data will have different values for the chance factors, this
will mean that our inference about future values will be poor. This phenomenon
- in which the model goes too far in fitting the data - is termed overfitting.
Various strategies have been developed in attempts to overcome it. Some are
formal - a probability model for the chance factors is developed - while others
are more ad hoc - for example, penalising the measure of how well the model fits
the data, so that more complex models are penalised more heavily, or shrinking
a well-fitting model. Examples are given in later chapters.

As model fitting techniques have become more refined (and quick to carry
out, even on large data sets), and as massive amounts of data have accumulated,
so other issues have come to light which generally, in the past, did not cause
problems. In particular, subtle aspects of the underlying process can now often
be detected, aspects which are so small as to be irrelevant in practice, even
though they highly statistically significant are and almost certainly real. The
decision as to how complex a model to choose must be based on the size of the
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effects one regards as important, and not merely on the fact that a feature of
the data is very unlikely to be a chance variation.

Moreover, if the data analysis is being undertaken for a colleague, or in
collaboration, there are other practical bounds on how sophisticated a model
should be used. The model must be comprehensible and interpretable in the
terms of the discipline from which it arose.

If a significant chunk of intelligent data analysis is concerned with finding a
model for data or the structures which led to the data, then another significant
chunk is concerned with algorithms. These are the computational facilitators
which enable us to analyse data at all. Although some basic forms of algorithm
have been around since before the dawn of the computer age, others have only
been developed - could only be imagined - since computers became sufficiently
powerful. Computer intensive methods such as resampling, and Bayesian meth-
ods based on avoiding integration by generating random samples from arbitrary
distributions, have revolutionised modern data analysis. However, to every fun-
damental idea, every idea which opens up a wealth of new possibilities, there are
published descriptions of a hundred (Why be conservative? A thousand.) algo-
rithms which lead to little significant progress. In fact, I would claim that there
are too many algorithms being developed without any critical assessment, with-
out any theoretical base, and without any comparison with existing methods.
Often they are developed in the abstract, without any real problem in mind.
I recall a suggestion being made as far back as twenty years ago, only partly
tongue-in-cheek, that a moratorium should be declared on the development of
new cluster analysis algorithms until a better understanding had been found for
those (many) that had already been developed. This has not happened. Since
then work has continued at an even more breakneck pace.

The adverse implication of this is that work is being duplicated, that effort
and resources are being wasted, and that sub-optimal methods are being used. I
would like to make an appeal for more critical assessment, more evaluation, more
meta-analysis and synthesis of the different algorithms and methods, and more
effort to place the methods in an overall context by means of their properties.
I have appealed elsewhere (for example [240]) for more teaching of higher level
courses in data analysis, with the emphasis being placed on the concepts and
properties of the methods, rather than on the mechanical details of how to
apply them. Obtaining a deeper understanding of the methods, how they behave,
and why they behave the way they do, is another side of this same coin. Some
institutions now give courses on data analytic consultancy work - aspects of the
job other than the mechanics of how to carry out a regression, etc. - but there
is still a long way to go.

Of course, because of the lack of this synthesis, what happens in practice
at present is that, despite the huge wealth of methods available, the standard
methods - those that are readily available in widespread data analytic packages
- are the ones that get used. The others are simply ignored, even if a critical
assessment might have established that they had some valuable properties, or
that they were “best” in some sense under some circumstances.
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Although in this section we have focused on the relationship between data
analysis and the two disciplines of statistics and machine learning, we should note
in passing that those two disciplines also cover other areas. This is one reason
why they are not merely subdisciplines of “intelligent data analysis”. Statis-
tics, for example, subsumes efficient design methodologies, such as experimental
design and survey design, described briefly in the next section, and machine
learning also covers syntactic approaches to learning. Likewise, we should also
note that there are other influences on modern data analysis. The impact of
the huge data sets which are being collected is one example. Modern electronics
facilitates automatic data acquisition (e.g. in supermarket point of sale systems,
in electronic measurement systems, in satellite photography, and so on) and
some vast databases have been compiled. The new discipline of data mining has
developed especially to extract valuable information from such huge data sets
(see [244] for detailed discussion of such databases and ways to cope with them).

As data sets have grown in size and complexity, so there has been an in-
evitable shift away from direct hands-on data analysis towards indirect data
analysis in which the analyst works via more complex and sophisticated tools.
In a sense this is automatic data analysis. An early illustration is the use of vari-
able selection techniques in regression. Given a clearly defined criterion (sum of
squared errors, for example), one can let the computer conduct a much larger
search than could have been conducted by hand. The program has become a key
part of the analysis and has moved the analyst’s capabilities into realms which
would be impossible unaided. Modern intelligent data analysis relies heavily on
such distanced analysis. By virtue of the power it provides, it extends the an-
alyst’s capabilities substantially (by orders of magnitude, one might say). The
perspective that the analyst instructs a program to go and do the work is essen-
tially a machine learning perspective.

1.3. The Nature of Data

This book is primarily concerned with numerical data, but other kinds exist.
Examples include text data and image data. In text data the basic symbols are
words rather than numbers, and they can be combined in more ways than can
numbers. Two of the major challenges with text data are search and matching.
These have become especially important with the advent of the World Wide
Web. Note that the objects of textual data analysis are the blocks of text them-
selves, but the objects of numerical data analysis are really the things which
have given rise to the numbers. The numbers are the result of a mapping, by
means of measuring instruments, from the world being studied (be it physical,
psychological, or whatever), to a convenient representation. The numerical rep-
resentation is convenient because we can manipulate the numbers easily and
relatively effortlessly. Directly manipulating the world which is the objective of
the study is generally less convenient. (For example, to discover which of two
groups of men is heavier, we could have them all stand on the pans of a giant
weighing scales and see which way the scales tipped. Or we could simply add up
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their weights and compare the two resulting numbers.) The gradual development
of a quantitative view of the world which took place around the fourteenth and
fifteenth centuries (one can argue about timescales) is what underpinned the sci-
entific revolution and what led ultimately to our current view of the world. The
development of the computer, and what it implies about data analysis means
that this process is continuing.

The chapters in this book present rather idealised views on data analysis.
All data, perhaps especially modern data sets which are often large and many
of which relate to human beings, has the potential for being messy. A priori
one should expect to find (or rather, not to find) missing values, distortions,
misrecording, inadequate sampling and so on. Raw data which do not appear
to show any of these problems should immediately arouse suspicion. A very real
possibility is that the presented data have been cleaned up before the analyst
sees them. This has all sorts of implications. Here are some illustrations.

Data may be missing for a huge variety of reasons. In particular, however,
data may be missing for reasons connected with the values they would have
had, had they been recorded. For example, in pain research, it would be entirely
reasonable to suppose that those patients who would have had the most severe
pain are precisely those who have taken an analgesic and dropped out of the
study. Imagine the mistakes which would result from studying only the apparent
pain scores. Clearly, to cope with this, a larger data analysis is required. Somehow
one must model not only the scores which have been presented, but also the
mechanism by which the missing ones went missing.

Data may be misrecorded. I can recall one incident in which the most signifi-
cant digit was missed from a column of numbers because it went over the edge of
the printing space. (Fortunately, the results in this case were so counter-intuitive
that they prompted a detailed search for an explanation.)

Data may not be from the population they are supposed to be from. In
clinical trials, for example, the patients are typically not a random sample from
some well-defined population, but are typically those who happened to attend
a given clinic and who also satisfied a complex of inclusion/exclusion criteria.
Outliers are also a classic example here, requiring careful thought about whether
they should be dropped from the analysis as anomalous, or included as genuine,
if unusual, examples from the population under study.

Given that all data are contaminated, special problems can arise if one is
seeking small structures in large data sets. In such cases, the distortions due to
contamination may be just as large, and just as statistically significant, as the
effects being sought.

In view of all this, it is very important to examine the data thoroughly
before undertaking any formal analysis. Traditionally, data analysts have been
taught to “familiarise themselves with their data” before beginning to model it
or test it against algorithms. However, with the large size of modern data sets
this is less feasible (or even entirely impossible in many cases). Here we must
rely on computer programs to check the data for us. There is scope here for
much research: anomalous data, or data with hidden peculiarities, can only be
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shown to be such if we can tell the computer what to search for. Peculiarities
which we have not imagined will slip through the net and could have all sorts of
implications for the value of the conclusions one draws.

In many, perhaps most, cases a “large” data set is one which has many cases
or records. Sometimes, however, the word “large” can refer to the number of
variables describing each record. In bank or supermarket records, for example,
details of each transaction may be retained, while in high resolution nuclear mag-
netic resonance spectroscopy there may be several hundred thousand variables.
When there are more variables than cases, problems can arise: covariance ma-
trices become singular, so that inversion is impossible. Even if things are not so
extreme, strong correlations between variables can induce instability in parame-
ter estimates. And even if the data are well-behaved, large numbers of variables
mean that the curse of dimensionality really begins to bite. (This refers to the
exponentially increasing size of sample required to obtain accurate estimates
of probabilities as the number of variables increases. It manifests itself in such
counterintuitive effects as the fact that most of the data in a high dimensional
hypercube with uniformly distributed data will lie in a thin shell around the edge,
and that the nearest sample point to any given point in a high dimensional space
will be far from the given point on average.)

At the end of the previous section we commented about the role of design in
collecting data. Adequate design can make the difference between a productive
and an unproductive analysis. Adequate design can permit intelligent data anal-
ysis - whereas data which has been collected with little thought for how it might
be analysed may not succumb to even the most intelligent of analyses. This, of
course, poses problems for those concerned with secondary data analysis - the
analysis of data which have been collected for some purpose other than that
being addressed by the current analysis.

In scientific circles the word “experiment” describes an investigation in which
(some of) the potentially influential variables can be controlled. So, for example,
we might have an experiment in which we control the diet subjects receive,
the distance vehicles travel, the temperature at which a reaction occurs, or the
proportion of people over 40 who receive each treatment. We can then study
how other variables differ between different values of those which have been
controlled. The hope is that by such means one can unequivocally attribute
changes to those variables which have been controlled - that one can identify
causal relationships between variables.

Of course, there are many subtleties. Typically it is not possible to control
all the potentially influential variables. To overcome this, subjects (or objects)
are randomly assigned to the classes defined by those variables which one wishes
to control. Note that this is a rather subtle point. The random assignment does
not guarantee that the different groups are balanced in terms of the uncontrolled
variables - it is entirely possible that a higher proportion of men (or whatever)
will fall in one group than another, simply by random fluctuations. What the
random assignment does do, however, is permit us to argue about the average



1.3. The Nature of Data 11

outcomes over the class of similar experiments, also carried out by such random
allocations.

Apart from its use in eliminating bias and other distortions, so that the
question of interest is really being answered, experimental design also enables
one to choose an efficient data collection strategy - to find the most accurate
answer to the question for given resources or the least resources required to
achieve a specified accuracy. To illustrate: an obvious way to control for six
factors is to use each of them at several levels (say three, for the purposes of
this illustration) - but this produces 729 groups of subjects. The numbers soon
mount up. Often, however, one can decide a priori that certain high order effects
are unlikely to occur - perhaps the way that the effect of treatment changes
according age and sex is unlikely to be affected by weight, for example (even
though weight itself influences the treatment effect, and so on). In such cases it
is possible to collect information on only a subset of the 729 (or however many)
groups and still answer the questions of interest.

Experiments are fundamentally manipulative - by definition they require that
one can control values of variables or choose objects which have particular values
of variables. In contrast, surveys are fundamentally observational. We study an
existing population to try to work out what is related to what. To find out how
a particular population (not necessarily of people, though surveys are used very
often to study groups of people) behaves one could measure every individual
within it. Alternatively, one could take measurements merely on a sample. The
Law of Large Numbers of statistics tells us that if we repeatedly draw samples of
a given size from a population, then for larger samples the variance of the mean
of the samples is less. So if we only draw a small sample from our population
we might obtain only an inaccurate estimate of the mean value in which we are
interested. But we can obtain an accurate estimate, to any degree of accuracy we
like, by choosing a large enough sample. Interestingly enough, it is essentially the
size of the sample which is of relevance here. A sample of 1000 from a population
of 100,000 will have the same accuracy as one from a population of a million (if
the two populations have the same distribution shape).

The way in which the sample is drawn is fundamental to survey work. If one
wanted to draw conclusions about population of New York one would not merely
interview people who worked in delicatessens. There is a classic example of a
survey going wildly wrong in predicting people’s Presidential voting intentions
in the US: the survey was carried out by phone, and failed to take account of the
fact that the less well-off sections of the population did not have phones. Such
problems are avoided by drawing up a “sampling frame” - a list of the entire
population of interest - and ensuring that the sample is randomly selected from
this frame.

The idea of a simple random sample, implicit in the preceding paragraph,
underlies survey work. However, more sophisticated sampling schemes have been
developed - again with the objective of achieving maximum efficiency, as with
experimental design. For example, in stratified sampling, the sampling frame
is divided into strata according to the value of a (known) variable which is
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thought to be well correlated with the target variable. Separate estimates are
then obtained within each stratum, and these are combined to yield an overall
estimate.

The subdisciplines of experimental and survey design have developed over
the years and are now very sophisticated, with recent developments involving
high level mathematics. They provide good illustrations of the effort which is
necessary to ensure good and accurate data so that effective answers can be ob-
tained in data analysis. Without such tools, if the data are distorted or have been
obtained by an unknown process, then no matter how powerful one’s computers
and data analysis tools, one will obtain results of dubious value. The familiar
computer adage “garbage in, garbage out” is particularly relevant.

1.4. Modern Data Analytic Tools

The chapters in this book illustrate the range of tools available to the mod-
ern data analyst. The opening chapters adopt a mainly statistical perspective,
illustrating the modelling orientation.

Chapter 2 describes basic statistical concepts, covering such things as what
‘probability means’, the notions of sampling and estimates based on samples,
elements of inference, as well as more recently developed tools of intelligent data
analysis such as cross-validation and bootstrapping.

Chapter 3 describes some of the more important statistical model structures.
Most intelligent data analysis involves issues of how variables are related, and
this chapter describes such multivariate models, illustrating some of them with
simple examples. The discussion includes the wide range of generalised linear
models, which are a key tool in the data analyst’s armoury.

Up until recently, almost all statistical practice was carried out in the ’fre-
quentist’ tradition. This is based on an objective interpretation of probability,
regarding it as a real property of events. Chapter 3 assumes this approach. Re-
cently, however, thanks to advances in computer power, an alternative approach,
based on a subjective interpretation of probability as a degree of belief, has be-
come feasible. This is the Bayesian approach. Chapter 4 provides an introductory
overview of Bayesian methods.

A classical approach to supervised classification methods was to combine and
transform the raw measured variables to produce 'features’, defining a new data
space in which the classes were linearly separable. This basic principle has been
developed very substantially in the notion of support vector machines, which use
some clever mathematics to permit the use of an effectively infinite number of
features. Early experience suggests that methods based on these ideas produce
highly effective classification algorithms. The ideas are described in Chapter 5.

Time series occupy a special place in data analysis because they are so ubiq-
uitous. As a result of their importance, a wide variety of methods has been
developed. Chapter 6 describes some of these approaches

I remarked above, that statistics and machine learning, the two legs on which
modern intelligent data analysis stands, have differences in emphasis. One of
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these differences is the importance given to the interpretability of a model. For
example, in both domains, recursive partitioning or tree methods have been
developed. These are essentially predictive models which seek to predict the
value of a response variable from one or more explanatory variables. They do
this by partitioning the space of explanatory variables into discrete regions,
such that a unique predicted value of the response variable is associated with
each region. While there is overlap, the statistical development has been more
concerned with predictive accuracy, and the machine learning development with
interpretability. Tree models are closely related to (indeed, some might say are
a form of) methods for rule induction, which is the subject of Chapter 7. A rule
is a substructure of a model which recognises a specific pattern in the database
and takes some action. From this perspective, such tools for data analysis are
very much machine learning tools.

It is unlikely that anyone reading this book will not have heard the phrase
“neural network”. In the context of this book an artificial neural network is a
structure of simple processors with parameterised interconnections. By choosing
the values of the parameters appropriately, one can use the network as a very
flexible function estimator. This makes such networks powerful tools - essentially
providing a very good fit to a data set and then being shrunk to avoid overfitting
problems. Their flexibility means that they are less subject to the bias problems
intrinsic to methods which assume a particular model form to start with (e.g.
the linear form of classical regression). Artificial neural networks are important
because of their power as models, but they may turn out to be just as important
because of the impetus they are giving to enhanced understanding of inference
and the nature of induction. Chapter 8 discusses such tools for intelligent data
analysis.

Probability, and the theories of inferential statistics built on it, are the most
widely accepted and used tool for handling uncertainty. However, uncertainty
comes in many shapes and forms. There is, for example, stochastic uncertainty
arising from the basic mechanism leading to the data, but there is also un-
certainty about the values of measurements or the meaning of terms. While
many - especially Bayesians - feel that this second kind can also be handled by
probabilistic arguments, not everyone agrees, and other approaches have been
developed. One such is the school of fuzzy reasoning and fuzzy logic. Essentially,
this replaces the (acknowledged false) notion that classes are precisely known
by a membership function, which allows an object to belong to more than one
class, but with differing degrees. The details are given in Chapter 9, which also
describes fuzzy numbers and how they may be manipulated.

One of the most exciting developments which has resulted from the growth
of computer power has been the probabilistic solution of previously intractable
methods by means of stochastic search and optimisation methods, such as simu-
lated annealing and genetic algorithms. These sort of strategies are the subject
of Chapter 10.

Methods for graphical display of data are as old as data itself. However, mod-
ern computational facilities have extended the scope considerably: with such



14 1. Introduction

facilities, dynamic and interactive graphics are possible. Coupled with the in-
creasingly tough demands of modern data analysis, arising from such things as
huge data sets and time-dependent data sets, the field of graphical displays —or
data visualization, as it is now called - has blossomed. Such developments are
described in Chapter 11.

Chapters 12 and Appendix A round off the book. Chapter 12 presents some
examples of real applications of the ideas in the book, ranging from relatively
standard statistical applications to novel machine learning applications such as
the “No hands across America” experiment. Appendix A lists and describes some
of the many tools available for intelligent data analysis which now abound. The
variety and range of origins of these tools indicates the interdisciplinary nature
of intelligent data analysis.

1.5. Conclusion

This book is about intelligent data analysis. But if data analysis can be in-
telligent, then it can also be unintelligent. Unfortunately, as with good health,
departures from intelligent data analysis can be in many directions. Distorted
data, incorrect choice of questions, misapplication of data analytic tools, over-
fitting, too idealised a model, a model which goes beyond the various sources of
uncertainty and ambiguity in the data, and so on, all represent possibilities for
unintelligent data analysis. Because of this, it is less easy to characterise unin-
telligent data analysis than it is to characterise intelligent data analysis. Often
only in retrospect can we see that an analysis was not such a good idea after
all. This is one of the reasons why the domain of intelligent data analysis is so
interesting. It is very much not a case of simply applying a directory of tools to
a given problem, but rather one of critical assessment, exploration, testing, and
evaluation. It is a domain which requires intelligence and care, as well as the
application of knowledge and expertise about the data. It is a challenging and
demanding discipline. Moreover, it is a fundamentally interdisciplinary, taking
ideas from several fields of endeavour. And it is a discipline which is continuing
to evolve. People sometimes speak of “new technology” as if it were a change
which would happen and then finish - like the transition to decimal coinage from
the old pounds, shillings, and pence in the UK in the early 1970s. But so-called
“new technology” is not like that. It is really a state of permanent change. And
riding on the back of it is the development of new methods of data analysis. Of
course, if the problems of data analysis remain the same, then the impact of new
technology will be limited - we will simply be able to do things faster and big-
ger. But as technology advances so the possibilities change - the frontiers of what
can be achieved, what can be imagined, move back. The current state of data
analysis illustrates this. Neural networks, stochastic search methods, practical
Bayesian tools, all illustrate possibilities which were inconceivable not so many
years ago. Moreover, new application areas present new challenges, posing new
problems and requiring new solutions. Examples include financial applications
and biometrics (in the sense of person identification through retina and voice
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prints). Beyond this, the meaning of data is shifting: we have commented above
about the growing importance of non-numeric data such as text and image data.
But data about data - metadata - is also attracting growing nterest (in the face
of such problems as how to merge or fuse data sets which define their basic
units in different ways, for example). One thing is clear, data analysis is in the
most exciting period of its history. And the evidence is that the possibilities and
excitement will continue to grow for many years to come.





