
Chapter 6

Fluid Mechanics Applications

This chapter brings together numerical and implementational topics from
the previous chapters in three application areas taken from fluid mechanics.
First we present a solver for a general time-dependent and possibly nonlinear
convection-diffusion equation, where the implementation constitutes a syn-
thesis of most of the Diffpack tools mentioned in Chapters 3 and 4.2. The
next application concerns waves in shallow water. We first treat finite differ-
ence methods for the system of PDEs on staggered grids in space and time.
Thereafter we describe suitable finite element methods for weakly nonlinear
and dispersive shallow water waves. The rest of the chapter is devoted to
incompressible viscous flow governed by the Navier-Stokes equations. A clas-
sical finite difference method on staggered grid in 3D extends the ideas of the
finite difference-based numerical model for shallow water waves. A penalty
method for the Navier-Stokes equations, in combination with finite element
discretization, demonstrates how numerical and implementational tools from
the Poisson2, NlHeat1, and Elasticity1 solvers in previous chapters can be
combined to solve a time-dependent nonlinear vector PDE. Another finite
element method for the Navier-Stokes equations, based on operator splitting,
is also discussed, with special emphasis on efficient implementation.

6.1 Convection-Diffusion Equations

6.1.1 The Physical and Mathematical Model

The Governing Equations. Convection-diffusion equations appear in a wide
range of mathematical models. The particular initial-boundary value problem
to be addressed here reads

b

(
α

∂u

∂t
+ v · ∇u

)
= ∇ · (k∇u) − au + f, x ∈ Ω ∈ IRd, t > 0, (6.1)

u(x, 0) = I(x), x ∈ Ω, (6.2)
u(x, t) = D1, x ∈ ∂ΩE1 , t > 0, (6.3)
u(x, t) = D2, x ∈ ∂ΩE2 , t > 0, (6.4)

−k
∂u

∂n
(x, t) = ν, x ∈ ∂ΩN , t > 0, (6.5)

−k
∂u

∂n
(x, t) = hT (u − U0), x ∈ ∂ΩR, t > 0, (6.6)

540 6. Fluid Mechanics Applications

where b, k, v, a, f , hT , and U0 are functions of x and possibly t, and D1,
D2, and ν are constants. Moreover, α is an indicator (1 or 0) that turns the
time dependence on or off. The complete boundary ∂Ω consists of the four
parts ∂ΩE1 , ∂ΩE2 , ∂ΩN , and ∂ΩR, having Dirichlet, Neumann, and Robin
conditions.

Convection-diffusion equations are of particular importance in heat trans-
fer and specie transport problems. Moreover, such equations also arise in the
intermediate steps of numerical methods for the Navier-Stokes equations and
multi-phase porous media flow.

Physical Interpretations. In the field of heat transfer, equation (6.1) stems
from the first law of thermodynamics and expresses energy balance of a con-
tinuous medium. The primary unknown u(x, t) represents the temperature,
b is the product of the density of the medium times the heat capacity, v is
the velocity of the medium, k is the medium’s heat conduction coefficient,
and f − au represents external heat sources. The time-derivative term is the
accumulation of internal energy at a fixed point in space, the convective term
v · ∇u models transport of internal energy with the flow, ∇ · (k∇u) reflects
transport of thermal energy by molecular vibrations (i.e. heat conduction),
and the source term f − au might represent heat generation or extraction
due to, for example, internal friction in the fluid, chemical reactions, or ra-
dioactivity. The boundary condition (6.6) is explained in Project 2.6.1.

One can also interpret equation (6.1) as a mass conservation equation that
governs specie transport in a fluid. In this case, u is the concentration of the
specie, b is the density of the specie, v is the velocity field of the fluid, k is a
diffusion coefficient, which is normally constant, and f −au represents specie
production or destruction. The time-derivative term expresses accumulation
of mass at a point in space, while the convection (v · ∇u) and the diffusion
(k∇2u) terms reflects transport of mass with the flow and due to molecular
diffusion, respectively. The source or sink term f − au might model, for in-
stance, injection or extraction of the specie or mass loss/gain due to chemical
reactions. If the heat transfer or the specie transport takes place in a porous
medium, the governing PDE is still the same, but the interpretation of the
coefficients must be slightly adjusted.

It must also be mentioned that special cases of equation (6.1) appear in
many other branches of engineering and science. For example, simple model
equations like the Laplace, Poisson, and Helmholtz equations are contained in
(6.1). We can also make (6.1) nonlinear, e.g., by letting k = k(u) and replacing
f − au by f(u). Such nonlinearities arise both in simple model problems as
well as in the heat transfer (cf. Chapter 1.3.7) and specie transport problems.

6.1. Convection-Diffusion Equations 541

6.1.2 A Finite Element Method

By means of a θ-rule in time and the weighted residual method in space we
can derive the following discrete equations:∫

Ω

[(
θb� + (1 − θ)b�−1

)
α

(
û� − û�−1

)
Wi +

θ∆tb�Wiv
� · ∇û� + (1 − θ)∆tb�−1Wiv

�−1 · ∇û�−1 +
θ∆tk�∇Wi · ∇û� + (1 − θ)∆tk�−1∇Wi · ∇û�−1 +
θ∆tWia

�û� + (1 − θ)∆tWia
�−1û�−1 −

(
θ∆tWif

� + (1 − θ)∆tWif
�−1

)]
dΩ

+
∫

∂ΩN

Wi∆tνdΓ

+
∫

∂ΩR

Wi∆t
[
h�

T θ(u� − U �
0) + h�−1

T (1 − θ)(u�−1 − U �−1
0)

]
dΓ = 0 .(6.7)

Superscript � denotes the time level, û�(x) =
∑n

j=1 u�
jNj(x) is an approxi-

mation to u(x, t) at time level �, and (6.7) is supposed to hold for n linearly
independent weighting functions Wi, i = 1, . . . , n. If some of the details in
the derivation of (6.7) are unclear, we refer to similar examples in Chapter 2.

The formula for the element matrix follows from restricting the domain of
integration to an element, replacing û� by

∑
j u�

jNj and collecting the terms
at level � containing the indices i and j. The remaining terms belong to the
element vector.

Exercise 6.1. Write down the precise expressions for the integrands of the
element matrix and vector associated with (6.7). �

6.1.3 Incorporation of Nonlinearities

A flexible convection-diffusion solver must handle nonlinear coefficients. Here
we suppose that b, k, and f can possibly depend on u. To solve the resulting
system of nonlinear algebraic equations, we introduce an iteration with q as
iteration index, and where û�,q is the approximation to û� in iteration q. The
Successive Substitution method (Picard iteration) implies that one simply
evaluates the expressions b�, k�, and f � as b(û�,q−1), k(û�,q−1), and f(û�,q−1).
The corresponding modifications of the expressions in the element matrix
and vector are trivial to incorporate.

As usual, the Newton-Raphson method involves more book-keeping. A
term like Wib(û�)û� now gives the contribution

∂

∂u�
j

(
Wib(û�)û�

)
= Wib(û�,q−1)Nj + Wi

db

du
(û�,q−1)Nj û

�,q−1

542 6. Fluid Mechanics Applications

to the integrands in the expression for the element matrix. Notice that only
the first term is used in the Successive Substitution method.

Exercise 6.2. Derive the precise expressions for the integrands of the ele-
ment matrix and vector when b, k, and f can depend on u. Try to write
the expressions in a form that is valid both in the Successive Substitution
and Newton-Raphson methods (introduce for example an on-off indicator as
coefficient in the Newton-Raphson-specific terms related to derivatives of b,
k, and f). �

6.1.4 Software Tools

Ideally, we would like to have a flexible solver for the linear model problem
(6.1)–(6.6), with a fast specialized version in the case the coefficients are not
time dependent and the matrix assembly process can be avoided at each time
level, and another version that treats the computationally more demanding
problem when b, k, and f depend on u. The different program modules should
share as much common code as possible. This is straightforwardly realized
using the ideas of Chapter 3.5.7 and the optimization technique from Ap-
pendix B.7.2.

We create a base class CdBase that implements the linear version of (6.1)–
(6.6) in a flexible way, with the coefficients b, k, v, a, f , and U0 as virtual
functions that can be customized in specialized subclasses written by a user.
The default implementation of these functions in class CdBase applies the
general field representation Handle(Field) for the coefficients, as we explained
in Chapter 3.15.4. This means that we typically implement f as

virtual real f (const FiniteElement& fe, real t = DUMMY)
{ return f_field->valueFEM (fe, t); }

where f field is of type Handle(Field). A FieldFormat object is used to
allocate and initialize f field based on menu information at run time. In
integrands we call f before the loop over the element matrix and vector
entries,

const real f_value = f(fe,t);

A subclass CdEff specializes class CdBase in the case where the coefficients and
boundary conditions in the PDE are time independent. Two matrices are then
assembled initially, and the actual coefficient matrix and right-hand side in
the linear system at each time level are obtained by efficient matrix-vector op-
erations. The algorithms and software tools are explained in Appendix B.7.2.

Another subclass CdNonlin of CdBase implements the nonlinear version
of (6.1)–(6.6). New virtual functions for db/du, dk/du, and df/du are intro-
duced. The typical representation of, for example, the function k in the code
becomes

6.1. Convection-Diffusion Equations 543

virtual real ku (real u, const FiniteElement& fe, real t = DUMMY)
{ return u*u/2; }

virtual real dkdu (real u, const FiniteElement& fe, real t = DUMMY)
{ return u; }

Here k(u, x, t) = u2/2 is just an example. In integrands we evaluate k and
dk/du by statements like

const real u_pt = u->valueFEM(fe); // u at current point
const real k_value = ku (u_pt, fe, t);
const real dkdu_value = dkdu (u_pt, fe, t);

Notice that we actually do not use the function for k as defined in the base
class CdBase, i.e. a k(const FiniteElement&, real) function as we had in the
solvers in Chapter 3, because we find it more convenient to have u as an
explicit argument. However, the k function is convenient when computing
the flux by the FEM::makeFlux function, and its proper form for this purpose
is

real CdNonlin:: k (const FiniteElement& fe, real t)
{
const real u_pt = u->valueFEM(fe); return ku (u_pt, fe, t); }

}

In integrands it is better to use ku instead of k since this allows precompu-
tation of u pt and reuse in several functions.

Particular expressions for the coefficients b(u), k(u), and f(u), as well as
their derivatives, must be hardcoded in subclasses of CdNonlin. Class CdNonlin
must also implement a generalized edition of integrands and integrands4side.

In the case (6.1) is convection dominated, the numerical solution can
develop nonphysical oscillations at high mesh Peclet numbers Pe∆ = b||v||h/k
(h reflects the element size). Chapters 2.9 and 3.9 outline algorithms and
software tools for handling numerical problems associated with convection-
dominated phenomena. Class UpwindFE is a convenient tool for representing
different choices of Wi in the CdBase class.

Figure 6.1 depicts the class hierarchy for the convection-diffusion solver.
The source code is located in the directory src/app/Cd.

Exercise 6.3. Suppose you want to apply the suggested framework as ba-
sis for your own software development, but that you need to make an ef-
ficient solver for the Poisson equation on grids with linear triangular ele-
ments. Although class CdBase will work in this problem, the implementation
of integrands can be made much more efficient (see Appendix B.7.3). Suggest
how to derive a subclass CdTriPoisson where you rely on data structures in
class CdBase, but avoid the integrands function and fill analytically integrated
expressions for the element matrix and vector directly in the ElmMatVec ob-
ject in the calcElmMatVec function. The material in Chapter 2.7.3 is useful
for developing the relevant analytical expressions. �

544 6. Fluid Mechanics Applications

CdCase2

CdCase1CdEffCdNonlin

CdBase

CdStefan

Fig. 6.1. A sketch of the convection-diffusion solver, with the base class CdBase,
the efficient implementation CdEff, the more general nonlinear convection-diffusion
solver CdNonlin, and the specialization CdStefan of CdNonlin to solve problems
with freezing or melting. The classes CdCase1 and CdCase2 just indicate possible
user-defined small classes that customize the b, k, and f functions in a particular
problem. The arrows indicate class derivation.

Remark. The framework for the convection-diffusion solver as sketched in this
chapter is quite flexible, but some users may find it too flexible and not very
easy to use for a novice C++ programmer. In such cases it is advantageous to
build an interface to the convection-diffusion solver and only apply the class
hierarchy as a hidden computational engine. The ideas from Chapter 3.12.9
can be used as a starting point for building an easy-to-use, perhaps graphical,
interface in (e.g.) Python. The interface should allow the user to change only
some of the input data to the solver, while others are kept at suitable default
values. The script must process input data from the user, run the simulator,
and visualize the results. Further development of such scripting interfaces
might lead to truly easy-to-use flexible simulation environments, where the
user can assign even mathematical expressions to b, k, etc. in the interface
and interactively specify the grid and boundary conditions. Diffpack was
designed for being a flexible computational engine in such problem solving
environments.

6.1.5 Melting and Solidification

Many heat transfer applications also involve solidification or melting, i.e.,
phase changes. An example is heat conduction in a fluid, where parts of the
fluid are frozen, while other parts are in a liquid state. The interface between
the frozen and melted region is an unknown moving internal boundary. Let
us consider a basic one-dimensional mathematical model for such a problem.
There are two substances, denoted by the subscripts s (solid) and l (liquid).
At the temperature T = Tb, a phase change between solid and liquid takes
place. At time t we assume that the liquid part of the substance occupies the
region 0 ≤ x ≤ b(t), whereas the solid part is located for b(t) < x ≤ a. In

6.1. Convection-Diffusion Equations 545

each of these domains, a heat conduction equation is valid:

	lCl
∂Tl

∂t
= κl

∂2Tl

∂x2
, 0 < x < b(t), t > 0, (6.8)

	sCs
∂Ts

∂t
= κs

∂2Ts

∂x2
, b(t) < x < a, t > 0, (6.9)

Tl = τ0, x = 0, (6.10)
Ts = τa, x = a . (6.11)

Here, 	 is the density, C is the heat capacity, T is the temperature, κ is the
heat conduction coefficient, and τ0 and τa are prescribed temperatures at the
end points of the domain. At the interface x = b we have continuity in the
temperature and a jump in the heat flux:

κs
∂Ts

∂x
− κl

∂Tl

∂x
= L

db

dt
, x = b(t), t > 0, (6.12)

Tl = Ts = Tb, x = b(t), t > 0, (6.13)

with L being the latent heat of phase transformation per unit volume. One
difficulty with such a moving boundary problem is that different PDEs must
be solved in different parts of the domain (0, a). However, in the present
problem it is possible to formulate a unified PDE that can be solved over the
whole domain (0, a), with the interface condition (6.12) being automatically
satisfied without explicitly tracking the internal boundary. The key to this
simplification is to employ an enthalpy formulation.

We introduce the enthalpy H(T) according to

H(T) =
{

	sCsT, T < Tb

	lClT + L, T > Tb

with
	sCsT ≤ H(T) ≤ 	lClT + L, T = Tb .

The PDEs and the interface conditions in (6.8)–(6.13) can now be recast in
the unified form

∂H

∂t
=

∂

∂x

(
κ(T)

∂T

∂x

)
, 0 ≤ x ≤ a, t > 0, (6.14)

where

κ(T) =
{

κs, T < Tb

κl, T > Tb

Usually, one solves (6.14) with respect to H . We then need the function T (H):

T (H) =

⎧⎨
⎩

H/(sCs), H < 	sCsTb

Tb, 	sCsTb ≤ H ≤ 	lClTb + L
(H − L)/(lCl), H > 	lClTb + L

(6.15)

