
Preface to Second Edition

Why a New Edition?
This edition has essentially the same content as the first. We have resisted the
temptation to ‘soup up’ the content and to deviate from our original aim of
providing a basic introduction to formally based software construction. Rather than
drastically change the content, we have tried to address the educational conflict
between providing lots of detail and giving a very general global overview. Many
readers feel the need to have much of the work described in great detail, but others
find such detail overwhelming and a distraction from the broader picture. However,
‘the devil is in the detail’ — all the details must be correct, otherwise all is lost and
we gain nothing.

This edition makes greater use of footnotes to qualify the main text and add detail to
the exposition. This is done in an attempt to avoid too many distractions whilst
trying to be as technically correct as possible.

So, we keep to basics rather than allow ourselves to be tempted to include more
advanced material — even though the topics included may not be those chosen by
others as their starting point.

Readers should still read the preface to the first edition — it is all still relevant. If
you have not already done so, perhaps now is a good time to read it — before
continuing here.

What’s New?
Although the approach is still constructive rather than retrospective (as is the case
with testing or even verification), we do allow for inspiration to be employed
within our formal framework. This not only encompasses ‘checking’, as in the
first edition, but also facilitates the use of ‘eureka’ steps. These effectively start ‘in
the middle’ and requires that we work both backwards, to the problem, and forwards,
to an implementation. At a first glance, this ‘sideways’ technique looks like more
work than simply working in a single direction, however, providing that our
inspiration works, this approach is very specific to the given problem and moves
quickly to a correct design. But here is not the place to tell the full story.

A proper description of the structure of the book, and how the (rest of the) chapters
relate to one another, is given in Chapter 0. However, we ought to say something
here about the more important changes, which the reader can appreciate without
having to delve into the technical material.

In this edition there are more chapters even though some are very small; there is
slightly less detailed working in the text and hence more for the reader to do
between (printed) steps. The technical appendices have been extended, and more
detailed expositions will be placed on the web (www.springeronline.com/uk/1-
85233-820-2) where extra, supplementary, material will be added as and when
requested / required / available.

There are many small changes and a few major structural ones. At the risk of
glossing over some necessary details we aim to ‘get to the plot’ quickly by
including, in Chapter 0, a few brief ‘sketches’ of the entire synthesis process
applied to some simple numerical calculations. However, in order that we can do
the job properly, this must be counter-balanced by a very large Part A
(Preliminaries), which consists of Chapters 1 and 2 and includes details of the
mathematical notions with which the reader should be familiar , but perhaps not the
notations — well, almost, there are a few novel twists — and matters related to
programming.

Chapter 1 is distilled from four original chapters. This can be skimmed at a first
reading, so that the reader is acquainted with its contents, and then relevant sections
studied more fully as and when needed in the sequel. (The experience of each reader
will be different and hence the need for in-depth study will also be different.)

Chapter 2 is the only one which is completely new. It discusses, in outline, how
specifications have been used by others in the construction of software. Although
this too can be skipped on the first reading, it is included (in this position) so that
the reader is aware of some of the aspirations and problems of earlier work on
Formal Methods. This is mainly to provide a basis for comparison with our
constructive approach, but the techniques can also be used in a mutually supportive
fashion.

In programming we certainly support the idea of using sensible (helpful, indicative,
‘meaningful’) names when referring to data items, functions etc. but we have
serious doubts about the particularly undisciplined use of comments. The use of
comments and assertions and their relationship to program correctness is discussed
here and provides more motivation for adopting Formal Methods.

The language Pascal was used to illustrate certain points in the initial chapter of the
first edition. For those who are unfamiliar with that language — or perhaps did not

xii Preface to Second Edition

appreciate its relative unimportance in the overall scheme of the book and felt
threatened by its unfamiliarity — we have chosen, in this edition, to use a generic
block-structured procedural language. Any similarity with a language known to the
reader should provide useful reinforcement. But we shall resist the temptation to
wander away from our central topic of study and stray into a formal definition of its
semantics. Concepts needed within the language will be discussed in appropriate
detail when encountered.

We shall use the same language in the programs constructed as part of our
‘methodology’ (although that is not a term whose use we would encourage).

Chapters 1 and 2 can be speed read by an experienced and ‘mathematically aware’
programmer. Chapter 3, in Part B (Fundamentals), is where the real work starts.

Elsewhere, original chapters have been split up so as to permit clearer focussing on
important topics that warrant individual discussion and further study. Overall, we
aim to compute (correctly derive) programs that perform calculations. Throughout,
we have tried to place more emphasis on the relationship between problem
breakdown and program assembly. Once mastered, the approach can be applied to
‘larger’ problems using bigger building blocks; it is not only, as often perceived,
for ‘programming in the small’.

What this Book is Not About?

This is not a book about Requirements Engineering or about Programming
Languages, even though both of these subjects impinge on what we do here. Those
topics are closely related to software development and are certainly necessary, but
they are not our main concern. And, as already noted, this book is not about
‘Programming’ — coding — or Data Structures.

Although the book has evolved from taught courses (selected chapters), it is not
really a textbook per se. (Certainly some exercises are included, and there is a lot of
detailed working; but this is to reinforce and emphasize the necessity of paying
attention to detail, both in the theory and as the basis of mathematically based
software engineering tools.) Neither is it a monograph; it is more of an explication
— an extended explanation. We shall try to react to questions received and add extra
material in response to readers’ needs via the web.

Preface to Second Edition xiii

Acknowledgements

The bulk of the material within this book has been distilled from courses presented
by the author and his colleagues over a period of some 20 years. During this period
of time, researchers and teachers have all been influenced (taught!) by the work of
others — sometimes consciously, but often not. Notwithstanding the inevitable
omissions from any list, we include, within the bibliography at the end of the
book, the more obvious textbooks which have helped form and transform our
understanding of Formal Methods. Collectively we share in the ongoing search for
better ways of presenting, explaining, and teaching the most recent developments in
Formal Methods that have matured sufficiently to warrant wider exposure. (Of
course, there are also very many research papers, but to cite any of them would not
be appropriate in a basic introduction such as this.)

Regrettably, many of these books are no longer in print, a tragedy of the need for
publishers to pander to popular needs for trendy IT books rather than support the
Science of Computing or the Engineering of Software. But they all have
something to offer, even if you have to borrow a copy from a library.

Interactions, formal and informal, direct and electronic, with colleagues within
BCS-FACS (the BCS specialist group in Formal Aspects of Computing Science)
and fellow members of the editorial board of Formal Aspects of Computing are
gratefully acknowledged.

Again thanks (and apologies) are due the students who have suffered our attempts to
present a topic whilst it was still in its academic infancy. Particular thanks go to
my friend and colleague Roger Stone.

The first edition was written largely during a period of study leave from
Loughborough University.

I am also indebted to Steve Schuman and Tim Denvir who assisted in honing the
first edition, to Mark Withall who reported more errors (typos?) than anyone else,
and to Rosie Kemp, Helen Callaghan, Jenny Wolkowicki (and others whose names
I do not know) at Springer for their support and patience.

xiv Preface to Second Edition

What Next?

At the risk of being unconventional, we mention here some of the more advanced
aspects of Formal Methods, which follow on naturally from concepts introduced
here and which the reader might pursue next.

The way in which we specify types can also be used to derive and present new,
composite types and, object-oriented, classes. Extra mechanisms need to be
introduced so as to facilitate inheritance between hierarchically related classes; but
the basic framework for reuse is already in place, and the O-O notion of pattern is
merely a generalisation of the tactics introduced here.

Within this text, we meet genuine, non-interfering, parallelism. Other kinds of
parallelism are possible and relate naturally to distributed systems that work in a
non-deterministic fashion (and can be characterised by non-deterministic eureka
rules). Such systems may need to be specified using temporal logic (in which
properties change with time). They therefore provide instances of situations where
we need to distinguish between (and link) requirements and specifications. And they
may well be implemented by multi-processor systems.

As you will see, program transformation plays an important role in our
constructions since it allows us to move from recursive functions to iterative
statements. But that is all we use it for. When we know more about the target
implementation systems (hardware and software) we can study the complexity of the
designs we produce and further transform these, correct, programs and systems so as
to improve their efficiency.

So there is certainly plenty of scope for development and application of the basic
material to be put to use, once it has been fully mastered. Now to work.

John Cooke
Loughborough University
May 2004

Preface to Second Edition xv

Preface to Second Edition

Why a New Edition?
This edition has essentially the same content as the first. We have resisted the
temptation to ‘soup up’ the content and to deviate from our original aim of
providing a basic introduction to formally based software construction. Rather than
drastically change the content, we have tried to address the educational conflict
between providing lots of detail and giving a very general global overview. Many
readers feel the need to have much of the work described in great detail, but others
find such detail overwhelming and a distraction from the broader picture. However,
‘the devil is in the detail’ — all the details must be correct, otherwise all is lost and
we gain nothing.

This edition makes greater use of footnotes to qualify the main text and add detail to
the exposition. This is done in an attempt to avoid too many distractions whilst
trying to be as technically correct as possible.

So, we keep to basics rather than allow ourselves to be tempted to include more
advanced material — even though the topics included may not be those chosen by
others as their starting point.

Readers should still read the preface to the first edition — it is all still relevant. If
you have not already done so, perhaps now is a good time to read it — before
continuing here.

What’s New?
Although the approach is still constructive rather than retrospective (as is the case
with testing or even verification), we do allow for inspiration to be employed
within our formal framework. This not only encompasses ‘checking’, as in the
first edition, but also facilitates the use of ‘eureka’ steps. These effectively start ‘in
the middle’ and requires that we work both backwards, to the problem, and forwards,
to an implementation. At a first glance, this ‘sideways’ technique looks like more
work than simply working in a single direction, however, providing that our
inspiration works, this approach is very specific to the given problem and moves
quickly to a correct design. But here is not the place to tell the full story.

A proper description of the structure of the book, and how the (rest of the) chapters
relate to one another, is given in Chapter 0. However, we ought to say something
here about the more important changes, which the reader can appreciate without
having to delve into the technical material.

In this edition there are more chapters even though some are very small; there is
slightly less detailed working in the text and hence more for the reader to do
between (printed) steps. The technical appendices have been extended, and more
detailed expositions will be placed on the web (www.springeronline.com/uk/1-
85233-820-2) where extra, supplementary, material will be added as and when
requested / required / available.

There are many small changes and a few major structural ones. At the risk of
glossing over some necessary details we aim to ‘get to the plot’ quickly by
including, in Chapter 0, a few brief ‘sketches’ of the entire synthesis process
applied to some simple numerical calculations. However, in order that we can do
the job properly, this must be counter-balanced by a very large Part A
(Preliminaries), which consists of Chapters 1 and 2 and includes details of the
mathematical notions with which the reader should be familiar , but perhaps not the
notations — well, almost, there are a few novel twists — and matters related to
programming.

Chapter 1 is distilled from four original chapters. This can be skimmed at a first
reading, so that the reader is acquainted with its contents, and then relevant sections
studied more fully as and when needed in the sequel. (The experience of each reader
will be different and hence the need for in-depth study will also be different.)

Chapter 2 is the only one which is completely new. It discusses, in outline, how
specifications have been used by others in the construction of software. Although
this too can be skipped on the first reading, it is included (in this position) so that
the reader is aware of some of the aspirations and problems of earlier work on
Formal Methods. This is mainly to provide a basis for comparison with our
constructive approach, but the techniques can also be used in a mutually supportive
fashion.

In programming we certainly support the idea of using sensible (helpful, indicative,
‘meaningful’) names when referring to data items, functions etc. but we have
serious doubts about the particularly undisciplined use of comments. The use of
comments and assertions and their relationship to program correctness is discussed
here and provides more motivation for adopting Formal Methods.

The language Pascal was used to illustrate certain points in the initial chapter of the
first edition. For those who are unfamiliar with that language — or perhaps did not

xii Preface to Second Edition

appreciate its relative unimportance in the overall scheme of the book and felt
threatened by its unfamiliarity — we have chosen, in this edition, to use a generic
block-structured procedural language. Any similarity with a language known to the
reader should provide useful reinforcement. But we shall resist the temptation to
wander away from our central topic of study and stray into a formal definition of its
semantics. Concepts needed within the language will be discussed in appropriate
detail when encountered.

We shall use the same language in the programs constructed as part of our
‘methodology’ (although that is not a term whose use we would encourage).

Chapters 1 and 2 can be speed read by an experienced and ‘mathematically aware’
programmer. Chapter 3, in Part B (Fundamentals), is where the real work starts.

Elsewhere, original chapters have been split up so as to permit clearer focussing on
important topics that warrant individual discussion and further study. Overall, we
aim to compute (correctly derive) programs that perform calculations. Throughout,
we have tried to place more emphasis on the relationship between problem
breakdown and program assembly. Once mastered, the approach can be applied to
‘larger’ problems using bigger building blocks; it is not only, as often perceived,
for ‘programming in the small’.

What this Book is Not About?

This is not a book about Requirements Engineering or about Programming
Languages, even though both of these subjects impinge on what we do here. Those
topics are closely related to software development and are certainly necessary, but
they are not our main concern. And, as already noted, this book is not about
‘Programming’ — coding — or Data Structures.

Although the book has evolved from taught courses (selected chapters), it is not
really a textbook per se. (Certainly some exercises are included, and there is a lot of
detailed working; but this is to reinforce and emphasize the necessity of paying
attention to detail, both in the theory and as the basis of mathematically based
software engineering tools.) Neither is it a monograph; it is more of an explication
— an extended explanation. We shall try to react to questions received and add extra
material in response to readers’ needs via the web.

Preface to Second Edition xiii

Acknowledgements

The bulk of the material within this book has been distilled from courses presented
by the author and his colleagues over a period of some 20 years. During this period
of time, researchers and teachers have all been influenced (taught!) by the work of
others — sometimes consciously, but often not. Notwithstanding the inevitable
omissions from any list, we include, within the bibliography at the end of the
book, the more obvious textbooks which have helped form and transform our
understanding of Formal Methods. Collectively we share in the ongoing search for
better ways of presenting, explaining, and teaching the most recent developments in
Formal Methods that have matured sufficiently to warrant wider exposure. (Of
course, there are also very many research papers, but to cite any of them would not
be appropriate in a basic introduction such as this.)

Regrettably, many of these books are no longer in print, a tragedy of the need for
publishers to pander to popular needs for trendy IT books rather than support the
Science of Computing or the Engineering of Software. But they all have
something to offer, even if you have to borrow a copy from a library.

Interactions, formal and informal, direct and electronic, with colleagues within
BCS-FACS (the BCS specialist group in Formal Aspects of Computing Science)
and fellow members of the editorial board of Formal Aspects of Computing are
gratefully acknowledged.

Again thanks (and apologies) are due the students who have suffered our attempts to
present a topic whilst it was still in its academic infancy. Particular thanks go to
my friend and colleague Roger Stone.

The first edition was written largely during a period of study leave from
Loughborough University.

I am also indebted to Steve Schuman and Tim Denvir who assisted in honing the
first edition, to Mark Withall who reported more errors (typos?) than anyone else,
and to Rosie Kemp, Helen Callaghan, Jenny Wolkowicki (and others whose names
I do not know) at Springer for their support and patience.

xiv Preface to Second Edition

What Next?

At the risk of being unconventional, we mention here some of the more advanced
aspects of Formal Methods, which follow on naturally from concepts introduced
here and which the reader might pursue next.

The way in which we specify types can also be used to derive and present new,
composite types and, object-oriented, classes. Extra mechanisms need to be
introduced so as to facilitate inheritance between hierarchically related classes; but
the basic framework for reuse is already in place, and the O-O notion of pattern is
merely a generalisation of the tactics introduced here.

Within this text, we meet genuine, non-interfering, parallelism. Other kinds of
parallelism are possible and relate naturally to distributed systems that work in a
non-deterministic fashion (and can be characterised by non-deterministic eureka
rules). Such systems may need to be specified using temporal logic (in which
properties change with time). They therefore provide instances of situations where
we need to distinguish between (and link) requirements and specifications. And they
may well be implemented by multi-processor systems.

As you will see, program transformation plays an important role in our
constructions since it allows us to move from recursive functions to iterative
statements. But that is all we use it for. When we know more about the target
implementation systems (hardware and software) we can study the complexity of the
designs we produce and further transform these, correct, programs and systems so as
to improve their efficiency.

So there is certainly plenty of scope for development and application of the basic
material to be put to use, once it has been fully mastered. Now to work.

John Cooke
Loughborough University
May 2004

Preface to Second Edition xv

Chapter 2
On Programming

We are not going to try to ‘teach programming’ in the sense that the reader might
understand the term. In this chapter, we are going to make some observations on
programs and programming — and on ways in which programmers have tried to
‘guarantee’ that their programs were ‘right’. In Chapter 3, we shall set about the
formal derivation of programs from specifications. In some sense, therefore, these
chapters are competing. We make no pretence that the competition is fair. For the
reader who skips through this chapter, some common elements are repeated in
Chapter 3.

Of course, not all programs are written by professional or even trainee or student
programmers1; and not all programmers are Computer Scientists or Software
Engineers. Many of those involved in training or examining student programmers
will often advocate the use of well-commented, well-structured code which uses
meaningful identifiers. Nobody would argue with this, but it is certainly not
enough. Merely adhering to these maxims produces programs which look pretty;
programming is more properly about the way in which a program (denoted by the
program text) is derived, how it is built, how it is constructed. What most people
regard as a program — the final text or what it does when it is loaded into a
computer and executed — is merely the output of the programming process.

Paradoxically, most good programs look simple (the converse need not be true), but
it is how you get the program — and how you know that it does what it is required
to do — which is important, not its appearance per se.

1 But by workers in other professions who have decided to, or have been asked to, ‘write a
program’. The mere fact that this situation arises frequently confirms the commonly held — but
certainly erroneous — belief that programming is easy and can be undertaken by almost anybody.
There is more to playing chess (well) than simply knowing the moves.

2.0 Overview.

We start, in Section 2.1, with a discussion about the essential features of procedural
programs and procedural programming. This is the kind of programming which is
most common (so common that the qualification ‘procedural’ is usually omitted).
Other terms are sometimes included (such as object-oriented, or user-centered), but
these do not contradict the fact that much of the central code is still procedural and
hence all that we have to say is still relevant. This is followed with a brief
digression on what some people regard as ‘good’ programming.

Then, in Section 2.3, we start to get a little more technical and introduce the notion
of flowcharts and their structure. We then introduce the PDL language, which we
use for the code of examples throughout the book. Although we give a reasonably
complete description of the syntax (which includes some features that might be
unfamiliar to the reader), the semantics — the meaning — is described less
formally. There is sufficient information to allow the reader to construct and
interpret PDL programs but perhaps not enough for someone to construct a
compiler.

We move, gradually, to the important question of the required and actual effects of a
program by discussing (in Section 2.5) comments and then the related, but more
formal, notion of assertions — executable comments! Assertions can be used to
demonstrate program correctness but are expensive to evaluate. (Essentially each
assertion is a small program, written in another kind of language, and we shall
return to this idea in Chapter 3.) In Section 2.6, we go ‘all technical’ and introduce
the concept of program verification. Here, in principle, we can take a program
together with a formal specification of what it is supposed to compute, and justify,
mathematically, that they fit together in the required way; namely, that for each
valid data input value, the result produced by the program (together with the data)
satisfies the specification. We only consider the verification of PDL ‘structured
programs’ and give the basic verification rules; we do not develop the theory or
illustrate its use. The main reason for this is that using assertions, or verification
(or indeed testing2) is a retrospective process; we have to build a program and then
try to demonstrate that it is ‘right’. And if it is not then we are stuck.

We wish to adopt an alternative approach and move in the opposite direction; we
want to write a program so that it is ‘correct by construction’. This is the central
theme of our book, and hence we go into it in some considerable detail. As a way
of ‘breaking the ice’, we discuss the idea briefly in Section 2.7.

2 As we shall say many times, for programs which are used with many different inputs, testing is
simply not a serious option. Unless you can apply exhaustive test methods (which take more time than
any of us have in a single lifetime), testing can only demonstrate program failure, not correctness.

126 Constructing Correct Software

2.1 Procedural Programming

In procedural programming, the programmer indicates, explicitly, how the
execution of the program should proceed; or how a collection of procedures should
be sequenced, controlled. Most programmers (certainly most ‘occasional’
programmers and indeed many professional programmers) equate all ‘programs’
with ‘procedural programs’ — they are simply not aware of other programming
paradigms.

So, we are not teaching programming, in the sense of coding. We assume that the
reader is familiar with some (possibly object-oriented) procedural programming
language. Here we merely make observations on ‘style’, typical features, and later
(cursory remarks on) their verification.

Procedural programs are thought of as being easy to write because they only do
simple things — essentially assignments. But, it is the ways in which these
simple actions can be combined which cause difficulties in keeping track of the
overall effect caused by these actions.

Characteristically, procedural programs work by causing changes in ‘state’. The
state (of a computation at a particular place in the program, when execution has
reached this point, at this time) can be thought of as the current set of values
associated with the ‘variables’ to which the program has access at that point.

The name x might refer to different locations (and possibly different types of
values) in different parts of the program. Moreover, a given x might be required to
change in value as the execution proceeds, and the value of x at a given place in the
program will often be different when the execution passes through the same place
on a subsequent occasion.

A lot can change, and indeed we require that some values do change, but keeping
track of these changes, and reasoning about them, can be complicated. It is
specifically to avoid (or at least to defer) the complexity of state changes that we
shall adopt the LFP3 scheme for program derivation in Chapter 3. It is also for this
reason that we do not include much detail when describing the (direct) verification
and construction of procedural programs.

In any procedural language (such as our PDL — Program Design Language — in
Section 2.4), there are three basic kinds of components: declarations, expressions
and commands. Declarations introduce new (local) names which will be associated
with entities within the surrounding block. These entities are typically locations
— ‘variables’ in colloquial, but erroneous, terminology — in which we may store
3 Logic, Functions and Procedures, or Logical, Functional and Procedural.

On Programming 127

values of a given type. This type is given in the declaration. We can also declare
functions (see ‘expressions’ below — a function call, here, is little more than a
parameterised expression). A block, in many languages delimited by ‘begin ...
end’, is really a compound command and consists of an optional list of declarations
followed by a list of commands. Declarations perform no computation; they
merely introduce entities which can be used in subsequent expressions and
commands.

Expressions can be evaluated to compute values, and change nothing (in our
language we do not allow ‘unexpected’ side effects). They are well-formed
mathematical expressions and as such follow certain syntactic and semantic rules
— the rules are those given as type specifications in Chapter 1. The evaluation of
an expression gives a value which can be used in a command. Expressions cannot
occur in isolation4. (In PDL, expressions can be conditional, and again the forms
introduced in Chapter 1 are used.) Function calls yield values, and hence may such
calls may occur within expressions.

In general terms, commands are language components which have the facility to
change the values stored in named locations5, to import a value from the input
stream into a named location, export the value of an expression (to the output
stream), or influence the flow of program control.

Though not regarded as essential, we also admit the existence of labels (which
label, identify, commands). Indeed, although very messy, we could regard all
commands as a labelled ‘proper’ command followed by a conditional or
unconditional “goto” statement 6 which then directs the program to the labelled
command to be executed next. Fortunately we can do much better than this — but
flow of control is important and should not be taken for granted or disregarded.

Alternatively, a procedural program could be regarded as a description of journeys
which can be taken around a (control) flowchart. The program text is simply a
description of that flowchart. The route of this journey is sometimes referred to as
the locus of control.

The fundamental building blocks of flowcharts are: one start point, and (for
convenience) one stop point, (optionally labelled) 1-in, 1-out rectangles
representing computational commands7, and diamond shapes with one in path and
two out paths (labelled True and False), the diamond containing a Boolean
4 There is one exception in the shorthand form: the expression which delivers the result of a function
evaluation.
5 They may not always cause a change. For example, when executing the sequence ‘x æ 1;
x æ 1’, the second statement never causes a state change; it replaces the ‘value of x’ with ‘the value
of x’, which is 1.
6 ‘Statement’ is simply another name for ‘command’.
7 ‘Leaning’ parallelograms are also often used to indicate input/out commands. We shall ignore
them since we presume that all input precedes proper processing and output comes last.

128 Constructing Correct Software

expression. These facilitate the switching of control flow between two alternatives.
Graphically, these are typically as depicted in Figure 2.1.

START

STOP

True False

False

True

Figure 2.1

More problematic is how components are put together. We take one START node,
one STOP node and as many computation rectangles and test diamonds as required.
The rectangles can be inscribed with a description of a computational step (a
command) and the diamonds with a Boolean expression. So far, so good. Now
join up the arrows, but preserve the number of inward and outward arrows shown in
the illustration. The only other ways of linking arrows is by means of joining
points, at which several (but usually two) incoming arrows link up with one
outgoing arrow, such as in Figure 2.2.

Figure 2.2

Absolutely any configuration is possible. We certainly are not going to give an
example. Try it for yourself and see exactly why we can end up with what have
been called ‘spaghetti’ programs.

On Programming 129

Execution of a flowchart program is as follows. Control starts at the START node
and follows the arrows until we reach STOP. Upon encountering a rectangle, we
carry out the enclosed command (usually resulting in a state change) and follow the
‘out’ arrow. On reaching a test, we evaluate the enclosed Boolean expression and
follow either the True arrow or the False arrow depending on the result of that
evaluation. Yes, it sounds easy — after all, computers can only perform simple
tasks (but very many, very quickly).

A procedural program (or, more properly, the text of such a program) is simply a
representation of one such flowchart.

By virtue of having only a single way in and a single way out, the entire flowchart
can be regarded as another higher-level ‘rectangle’. Adding extra entry points and
extra (abnormal?) exit points will usually complicate any description of what the
program actually does. It is for the same reason, at a lower level, that the
computational rectangles are restricted to having unique entry and exit points. We
will say more about program structure in Section 2.3.

Other features commonly found in procedural language include recursive
expressions (achieved by means of recursive functions) and blocks which can be
named (and parameterised) to give procedures which may or may not be recursive.
There are also array types, but these are not central to our exposition and will only
be used in certain (small) sections.

2.2 ‘Good’ Programming

Today, most programming is done in so-called high-level languages. One
characteristic of such languages is that they allow the programmer to devise and use
‘long’ names. [But it may not be easy to invent enough names which are
meaningful, distinct, and not too long. Some language implementations have in
the past permitted the use of very long names but then only took notice of the first
‘n’ characters — not so clever!]. They also have English8 keywords that are fixed
in the language and are supposed to convey the appropriate semantic meaning. The
upshot of these possibilities is that the program text can be made more ‘readable’,
less cryptic. In the reverse direction, there is the desire to make the written form of
the program reasonably compact. This is the same argument as applied to
specifications. They should not be needlessly verbose: otherwise, you cannot see
what is there because there is too much ‘noise’.

8 We expect that the reader will encounter these situations, but, for example, French would be
perfectly acceptable for a French reader or writer of programs.

130 Constructing Correct Software

So, for instance, in place of

“evaluate E and store the result in L”
we may write

“put E in L”
or

“E — L” — yes there are languages where assignment
statements are strictly from left to right.

rather than
“L := E” — the ‘:=’ combination being an accident of

(the lack of) technology.
We shall use

“L æ E”. — location L is given the value of expression E.

Within the body of this text9, ‘=’ means ‘equals’ — the predicate, the test — and
nothing else. It certainly has nothing to do with the assignment command per se.

Making the program text more readable reduces the need for comments. Certainly
comments that merely describe adjacent commands in a program are a waste of time
and effort (but see Section 2.5).

[Similar principles can be used when using systems-programming languages.
These look like high-level languages but also have lower level operations.]

2.3 Structuring and (Control) Flowcharts

Any 1-in, 1-out block can be thought of as a state-to-state assignment. Any part of
a flowchart having this 1-in, 1-out property can be regarded as a logical sub-
program and can, for documentation purposes and to aid reasoning, be drawn
separately as a stand-alone flowchart and referenced — in the appropriate position
— in the ‘main’ flowchart by means of a labelled (named) rectangle as shown in
Fgure 2.3.

Figure 2.3
9 Except for brief segments where we try to draw similarities (or familiarity) with more traditional
manipulations.

On Programming 131

In so-called structured programs, only certain ways of combining components into
higher-level 1-in, 1-out ‘structures’ are used. These assist in breaking down the
overall problem/solution into fewer pieces, the computational elements of which
are again 1-in, 1-out. Moreover, the meanings of the components are ‘easily’
related logically to the combination. These are not independent, nor are they
exhaustive. The major ones used are shown, in flowchart form, in Figure 2.4. At
the top left we have the conditional construct “if ... then ... else ... fi”. The test is
performed and either the left or right fork taken, depending on whether the result is
True or False. In the top right of Figure 2.4, we have the often forgotten sequence
construct. This is represented by the “;” operator, the “go - on” symbol. Here we
simply execute the upper command first and then the lower one. Notice that we
use the semi-colon as a separator, not a terminator. In the lower two diagrams in
Figure 2.4, we have two kinds of loop configurations. On the left is a “while .. do
... od” loop in which the test is performed and, if - and only if - the result is True,
the body of the loop is performed and we return (hopefully with a changed state) to
the beginning of the loop and execute the construct again. The loop exits when the
test evaluation yields False. [Remember that the evaluation of a test — and indeed
any expression — causes no change in state.] On the right is a “repeat ... until ...”
construct. Here we start by executing the enclosed command and then we evaluate
the test. We loop back to the start, with the current state, if the result from the test
is False.

The ‘while’ loop is also called a pre-check loop because the test comes before the
body; the body of the loop may not be executed at all. Executed zero times. On
the other hand, the ‘repeat’ loop — a post-check loop because the test comes after
the body — always executes the body at least once.

Notice that by default flow is from top to bottom and left to right, and therefore
many arrowheads can be omitted. But put them in if you feel that any confusion
might arise.

Using only these ways of combining commands and tests within a program means
that there is no technical need for gotos, but labels can still be used to assist in
documentation (comments etc.).

132 Constructing Correct Software

True False

True

True

False

False

Figure 2.4

On Programming 133

2.4 PDL Overview

The language we use to express implementation designs is PDL, which stands for
Program Design Language. It is like many actual languages but is not intended to
be exactly the same as any of them. Indeed, you may also regard it as a pseudo-
code which then needs to be translated into a locally available (supported and
implemented) language.

PDL has deterministic control (it does not have, as is commonly seen in similar
texts, guarded commands, which are loop structures with the possibility of different
execution sequences from a given initial state).

We shall follow the common practice of using the notation A[i] to represent the ith
location of the array A, with A subscripted by i. This is the location, offset by an
amount associated10 with i, relative to the location of (the array base address) A.
Some languages make this more explicit, and perhaps more confusing but
technically correct, by using the notation for a function call; i.e., A.i or A(i).

We do not give a fully formal description of PDL. We do not intend that it
necessarily be implemented, and hence such a definition is not required 11. Instead,
we describe its syntactic structures in a variant of BNF 12 which avoids the need for
more new symbols.

Our style of presenting the syntax of PDL uses capitals to name syntactic classes.
The occurrence of such a name as part of a definition must be expanded using one
of the possible alternatives in its definition. Symbols used as part of the language
(and which therefore might appear within the text of a program) are delimited by
double quotation marks. The lowest level of detail is omitted. Explanations of
related semantic notions are given in italic text.

The syntax is recursive, and hence the syntactic classes have no natural ordering.
We use an ordering that approximates to ‘bottom up’; that is, we describe the
smaller units first and then assemble them into larger units and ultimately an entire
program. Remember, this description is precisely that — a description. In an
attempt to keep the description readable and hence useful, some details have been
omitted.
1 0 The precise details depend on the layout of the computer store and the type of date held in the
array.
1 1 We shun the temptation to include huge amounts of material quite tangential to the main theme of
our text. It is certainly true that programming languages do need formal specifications, which may be
thought of as specifications of compilers, and compilers are programs. But they are very special
programs and best specified using techniques other than the general ones discussed elsewhere in this
book.
1 2 Backus Naur (or Backus Normal) Form, with which we assume the reader has at least a passing
acquaintance. The more traditional form of BNF is used in the Appendix.

134 Constructing Correct Software

IDENT an identifier
is

a meaningful(?) name consisting of a string of letters, digits and the
symbol “_”, starting with a letter

IDENTS a list of IDENTs
is

IDENT “,” IDENTS
or

IDENT

EXP an expression
is

any well-formed expression using the types defined in Chapter 1
or

IDENT “(”EXPS “)” a function call
or

“if ” EXP “then” EXP “else” EXP “fi” a conditional expression
the first expression is of type Boolean;
if it yields True, then the middle
expression delivers the result, if False
then the third expression gives the
result. (Here and elsewhere, there is
no specific connection between the
different occurrences of the same class
name, such as ‘EXP’.)

or
EXP “where:” EXP the second EXP yields a Boolean value

— see later in this section.
or

“if ” EXP “then” EXP
“else_if ” EXP “then” EXP “else” EXP “fi”

one contracted form of nested
conditional expressions

or
CAST “:” EXP

The result from the EXP is ‘coerced’
into the type indicated by the CAST.
Refer to Section 1.4.10

CAST
is

TYPE

On Programming 135

TYPE type
here undefined but includes all the type indicators given in Chapter 1

TYPES
is

TYPE “,” TYPES
or

TYPE

EXPS an expression list
is

EXP “,” EXPS the “,” is a list separator
or

EXP

DEC a declaration13
is

“var” IDENTS “:” TYPE a ‘variable’14 declaration
or

IDENT “(” IDENTS “)” “–” EXP a function declaration
or

IDENT “(” IDENTS “)” “–” “(” EXP “)” alternative form
or

IDENT “(” IDENTS “)” “–” BLOCK a function / procedure
declaration

a form of function declaration in
which each flow through the BLOCK
terminates in an EXP, implicitly or
explicitly assigned to the ‘result’.
Without a ‘result’, this is a procedure

or
IDENT “–” BLOCK15 a procedure declaration

a procedure with no parameters
or

“var” IDENT “[” TYPES “]” “:” TYPE an array declaration
the TYPES are index types and must
be subranges. TYPE is the type of
the data held in the array.

1 3 Other contracted forms are also allowed by way of ‘syntactic sugar’.
1 4 These are names of constant locations, but the contents can be changed. Hence they are often
described as ‘variables’.
1 5 Or a statement other than a ‘goto’ statement.

136 Constructing Correct Software

DECS declarations
is

DEC “;” DECS
or

DEC
STMT a statement
is

IDENT “:” STMT the identifier is a label
or

BLOCK
or

STMT “«” STMT parallel execution
or

“skip” the skip command, change nothing
or

IDENT “æ” EXP assignment, evaluate the EXP and
pass the value to the location
associated with IDENT

or
IDENT “[” EXPS “]” “æ” EXP assignment to an array element

or
” IDENTS ’ “æ” ” EXPS’ parallel assignment. The lists are of

equal length and of corresponding
types. All the EXPS are evaluated.
Then the values are deposited in the
locations named by the
corresponding IDENTS.

or
“if ” EXP “then” STMT “else” STMT “fi” conditional statement

or
“if ” EXP “then” STMT “fi” contracted form, presumes “else skip”

or
“if ” EXP “then” STMT “else_if”

EXP “then” STMT “else” STMT “fi”
one contracted version of one form of
the nested conditional statement.

or
“while” EXP “do” STMT “od” ‘while’ loop16, EXP is Boolean

or
“repeat” STMT “until” EXP ‘repeat’ loop, EXP is Boolean

or
“goto” IDENT IDENT is a label in the same BLOCK

1 6 We could also have ‘for’ commands as syntactic sugar for certain ‘while’ loops.

On Programming 137

or
[“result æ”] EXP delivers the result of a function

evaluation
[“result æ”] denotes optionality

or
IDENT “(” EXPS “)” procedure call

or
IDENT procedure call with no parameters

BLOCK17
is

“begin” DECS “;” STMTS “end”
or

“begin” STMTS “end”

STMTS
is

STMT “;” STMTS
or

STMT

PROG a program
is

BLOCK

We also have comments and assertions. These may be placed between statements.

COMMENT
any sequence of characters (other than quotation marks)

delimited by “ and ”.

ASSERTION
“$” EXP “$”

or where EXP is of type Boolean
“$” “assert” EXP “$”

These syntax rules can be used either in the generation of programs or the analysis
of strings (as part of the process of determining whether you have a valid program).
They can also be regarded as rewrite rules, albeit in a context different from that

found throughout the rest of this book.

2.4.1 “Let” and “Where”. Conventionally, and for very good practical reasons,
most procedural languages require that all named entities, functions etc., be declared
before use. This is the ‘let’ style of presentation, even if the word ‘let’ is not used

1 7 And “(...)” can be used in place of “begin ... end” as delimiters.

138 Constructing Correct Software

explicitly. This is available in PDL, but for use in intermediate forms we also
have the ‘where’ style, which allows the use of incomplete (or general) expressions
that are then completed (or restricted) by quoting additional Boolean information,
definitions or specifications.

For example:

x + f(y) where: x = a + b and f – (¬x:X)(x + 3)

which means a + b + y + 3

2.4.2 Scope and Parameters. ‘Variables’ referenced within a block but not
declared within that block are those declared within the smallest surrounding block.
Within function and procedure calls, that block is a block surrounding the call
rather than the declaration. Notice also that parameters are passed by value and are

therefore constants, which cannot be changed within a function or procedure.

2.5 Comments and Assertions
Programs written in modern programming languages should be very nearly self-
documenting and hence there is less need for comments. Nevertheless, comments,
if up-to-date and related to the code, can be very useful. However, they may not
have anything to do with the code. They may be out of date, or just plain wrong.

Comments are sometimes written at the same time as the code and hence are likely
to be related to the code (in a meaningful and relevant way). When code is
modified, since the comments are ignored by the compiler and need not be changed
in order to make the code work, it is probable that the comments are not modified.
Hence the comments, even if helpful once, may not always be so. The fewer the
comments, the easier it is to ensure that they are up-to-date.

Of course, they are only there for the benefit of the human reader; they are totally
ignored by the compiler.

Instead of comments, we could use assertions — executable comments. If the
evaluation of an assertion (the body of an assertion, is a Boolean expression) gives
the value False, then the program is aborted (halted) preferably with some
indication of where the failure took place. If the assertion yields True, indicating
that some property you thought ought to hold (at that point in the program) was
actually true, and execution of the program continues, albeit at some computational
cost. Using the pre-condition18 as an assertion immediately after the input phase
reflects the assumptions made about acceptable input values19.

1 8 Part of the specification of the function which the program is supposed to compute.
1 9 Together with the data type constraints imposed by the read command is as far as we can go to
cope with robustness.

On Programming 139

Similarly, if we keep a copy of the input values (and that means making no
subsequent changes to the relevant ‘variables’), then, just before the output phase,
we can include the post-condition as another assertion. This would then check that
the answer which we had computed was in fact an acceptable answer for the given
input.

This sounds fine, and it is much easier than doing lots of technical work with
specifications and programs, but evaluating assertions can be very expensive and
take huge amounts of time and other (machine) resources. Moreover, placing
assertions between every pair of commands and including all information that the
programmer thinks may be of relevance would make the text completely
unreadable. Of course, the assertions which are True immediately before a certain
command are logically related to those that are True immediately afterwards, and
hence not everything need be repeated.

The see how these assertions are connected mathematically, we consider the three
basic computational components of a flowchart. These are depicted (with
assertions) in Figure 2.5.

Xæ Y

P

Q

R
B

Q

P

True False
P Q

R

Figure 2.5

The three kinds of component are tests, joins and assignments. The first two are
often forgotten because nothing seems to be happening, but they are crucially
important. In Figure 2.5 the assertions (annotations?) are Boolean expressions but
we shall also treat P, Q and R as being synonymous with labels at the positions
indicated on the segments of the flowchart.

In the test flowchart, any facts within P are clearly also within Q and R since we
have done nothing to change that information(?). Here we assume that the test B
was useful within the program and hence that either outcome of the test was

140 Constructing Correct Software

possible. If this is not so, then we could simply always go from P to Q, or always
go from P to R, and remove the test. By similar reasoning, Q and R should be
different; otherwise it makes no sense to ‘follow’ them with different program
segments. So what is the difference? The difference is that at Q we know that the
value of B is True and, if we get to R then the value of B is False. Hence we can
write

Q ¢ P ¯ B and R ¢ P ¯ ⁄B

These are the strongest assertions which can be used in positions Q and R . We
may not wish to retain all this information; we may simply not need it, and hence
some of the information could be discarded without compromising further
reasoning. However, in all cases we do know the following:

P ¯ B fi Q and P ¯ ⁄B fi R

This helps in appreciating the inter-relationships between the assertions associated
with the join flowchart. Here, we have:

P fi R and Q fi R

These implications always hold. The (logically) strongest assertion we can use for
R is

R › P ˘ Q
— we simply do not know which branch we followed

on our way to R.

Now for explicit computation steps, as indicated by rectangles within flowcharts.
First notice that we have written an assignment command to represent the
computational process between $ P $ and $ Q $. Any command20 can be regarded
as an assignment, albeit, in general, a parallel multiple assignment (in which n
expressions are evaluated and then placed in the corresponding named locations),
with the possibility of conditional expressions and/or recursive function calls. So,
in restricting consideration to an assignment, we lose nothing.

Obviously, with complex expressions, logical reasoning is more complicated; we
shall content ourselves with simple illustrations to introduce the necessary
relationships.

The situation depicted in Figure 2.5 can be written as

$ P $
X æ Y
$ Q $

2 0 Other than a ‘goto’ command.

On Programming 141

If we need Q to be True, what can we say about P? That is, what do we need to be
True at P in order to guarantee that Q will be True after we have executed the
assignment statement? Suppose either that P is initially absent or that it is present
but tells us nothing (it provides no information, no reason for halting the
program), in which case it is logically, identically, True.

Example 2 .1
$ P? $
z æ x + 9
$ z > 0 $

For P we could have x + 9 > 0 since the final value of z is equal to x + 9 and
hence the properties of z must be equivalent to the properties of the expression
x + 9. In fact, here we can say more:

$ x + 9 > 0 $
z æ x + 9
$ z = x + 9 ¯ z > 0 $

❑

Of course, it gets rather involved if values change (and we often need them to) as in

$ x + 9 > 0 $
x æ x + 9
$ x > 0 $

In general, if we have

$ P $
X æ Y
$ Q $

then, given Q, we have that

P fi Q[X æ Y]

That is, given P (is True) we can deduce the expression Q in which X has been
replaced by Y. P must logically include Q[X æ Y].

Of course, the coincidental use of this notation is not accidental. If P initially tells
us nothing (so it is identically True) then we can have P › Q[X æ Y] and hence

$ Q[X æ Y] $
X æ Y
$ Q $

142 Constructing Correct Software

Example 2.2 We can extend this idea in a natural way; for instance

$ (x + 9) * 2 – 1 > 0 $
x æ x + 9;
$ (x * 2) – 1 > 0 $
x æ x * 2 – 1
$ x > 0 $

Consequently, we can remove the intermediate working and simply write

$ (x + 9) * 2 – 1 > 0 $
x æ x + 9;
x æ x * 2 – 1
$ x > 0 $

❑

Working backwards from the final required predicate, the post-condition, we can2 1
— in principle — move through a finite sequence of statements (each equivalent to
an assignment statement) with the aim of obtaining an initial assertion (which
logically follows, using ‘¿’, from the post-condition).

But there are problems. Very few procedural programs are totally sequential but
involve some repetition, such as loops, a possibility which we consider below.

More serious is the possibility of including an inappropriate assignment which
effectively destroys information, making it impossible to complete the calculation.
[If a program is wrong, there is no way that assertions can be inserted which prove
it correct!] Moreover, an assertion is applicable at one specific point in the
program code (although that point may be revisited on numerous occasions), but a
specification, in particular the post-condition part of a specification, refers to the
input a n d output of a (sub-) calculation. Hence, to use assertions to
enforce/affirm/check adherence to a specification requires that we keep a copy of the
original input values to the corresponding segment of code.

We need to address the possibility of state changes (which are fundamental to the
philosophy of procedural languages) and slip from a classical function, f , to a
(computational) operation 22, F. To illustrate this, consider the pair of assignment
commands

y æ f(x)
and

”x’, y’’ æ F(”x, y’)
2 1 There is an extra technicality involved here, which means that we may need to refer to an earlier
‘state’.
2 2 These are akin to commands in programming languages, not traditional mathematical operations,
which are merely alternative syntactic forms for common functions.

On Programming 143

For these to represent the same action, we need to interpret the second as

y’ æ f(x)
and

x’æ x assuming that x and y are different.

or, more generally,

σ’ æ F(σ)

where σ (lower case Greek letter sigma) denotes the state, which can be thought of
as the n-tuple of (allowed/accessible) locations, and σ’ (and, as required, σ1, σ2 etc.)

represents the same n-tuple at another point in the program. Remember that we are
usually dealing with changes in value, and hence σ may represent different values
even within the same command.

So, instead of
σ’ æ F(σ)

we would usually write (in PDL)

σ æ F(σ)

which represents the context shown in Figure 2.6.

F or σ æ F(σ)

σ1

σ2

σ1

σ2

Figure 2.6

Here, the state σ2 can be calculated from σ1 using

σ2 ¢ F(σ1) derived from σ2 – F(σ1)

Having set up the necessary notation, we can explain the basic concept of
correctness. Suppose we had program P, which was intended to compute some
function F specified using pre-F and post-F. The program (or program segment) P
is linked to states σ1 and σ2 as in Figure 2.7.

144 Constructing Correct Software

P

σ2

σ1

Figure 2.7

For P to correctly compute the specified function, F , we must be able to
demonstrate the truth of the implication:

pre-F(σ1)

¿
post-F(σ1, σ2) where σ2 = P(σ1)

Therefore, in terms of assertions, we need

P

σ2

σ1 pre-F(σ1)

post-F(σ1, σ2)

Figure 2.8

To implement such (post-) assertions we need to allocate extra storage to save the
value of σ1 for future use. Clearly, the problem of extra storage and its

management can get out of hand, particularly when we try to decompose P into
smaller parts more closely resembling primitive (rather than multiple) assignments.
However, this is more manageable when we insist on the discipline of structured
programming, as in the next section.

So, we can relate assertions within programs to the specifications of the
functions/operations they are intended to compute. We have seen a simple example
of how an intermediate assertion can be removed once it has been used to establish
the logical link between earlier and later ones.

Verification (the next section) may thus be seen as removing the need for
assertions, and hence because, for valid input, the output is correct, the post-
condition (which is usually very expensive to calculate/evaluate) does not need to

On Programming 145

be included explicitly. All predicates used in the verification proof obligations (in
Section 2.6) may be ‘implemented’ as assertions (and, by some, regarded as more
practical than theoretical)23 but at considerable cost and risk.

We make one final observation on assertions. Very many true but irrelevant pieces
of information can be included within acceptable assertions. These add nothing to
our understanding of the computational processes and can be very distracting and
misleading. They also make the evaluation of assertions more complex and time
consuming to compute. Therefore, to be informative to the reader, assertions
should be as concise as possible, whilst providing adequate information to enable
the logical links with the specifications to be established.

2.6 Verification of Procedural Programs

Verification of a program is the process of justifying that it is correct with respect
to (wrt) its specification.

This means that

“for every valid input, the program runs to completion
and delivers an acceptable (correct) result”.

Using the formal notation introduced in Chapter 1, we can express this requirement
as a theorem, the correctness theorem:

 f is a correct implementation (of its specification) if

(∀x:X)(pre-f(x) ¿ post-f(x, f(x)))
where

pre-f(x) – ... the test for valid input x
post-f(x,y) – ... the test that y is a valid output for input x

Another way to look at verification is to regard it as justification for the removal of
all24 assertions (because, for valid input, the output is correct, so the usually very
expensive post-condition does not need to checked/evaluated)

2 3 This is, of course, not true. The only difference is that failure in verification prevents a program
being ‘delivered’ and used; failure in the evaluation of a run-time assertion would cause the program
to fail/abort/halt at run time, and this may be catastrophic.
2 4 With the possible exception of that associated with the pre-condition to address the problem of the
robustness of a program.

146 Constructing Correct Software

Reasoning (constructing useful assertions and hence eventually including the pre-
and post-conditions) with an arbitrary flowchart program can be very hard.
Fortunately, Structured Programming comes to the rescue.

Identifying states by σ1, etc., as in Section 2.5, we give the required logical

relationships between various points (positions, ‘line segments’) in the flowcharts
of non-atomic structured program components.

Note that here we are not concerned with how a program is created but presume that
a program has (somehow) been written and the task is to verify that it satisfies a
given specification — retrospectively!

The structure of a ‘structured program’ is defined so that any 1-in, 1-out segment is
either a single, atomic, command or can be decomposed into smaller components
using one of the following forms25, which we have already met:

(1) Sequencing P; Q

(2) Alternation (choice) if b then P
else Q

fi

(3) Iteration while b
do P od

For each of these we attach ‘state markers’ and then quote the so-called ‘proof
obligations’ which when discharged (i.e., proven to be True) guarantee correctness
of the overall combination, provided that its proper sub-components are correct
(relative to their own specifications).

2.6.1 Sequencing
We refer to the flowchart in Figure 2.9.

P is a correct implementation of (the specification of) F1

if (∀σ1) pre-F1(σ1) ¿ post-F1(σ1, σ2)

where: σ2 = P(σ1)

So, taking the (∀σ1) as implicit,

pre-F1(σ1) ¿ post-F1(σ1, P(σ1))

2 5 Others are possible, but they can be derived from the three given here; they are syntactic sugar.

On Programming 147

P

σ2

σ1

σ3

Q

Figure 2.9

Similarly, Q is correct wrt F2 if

pre-F2(σ2) ¿ post-F2(σ2, Q(σ2))

We require that the sequential combination P; Q be correct wrt F,

i.e., pre-F(σ1) ¿ post-F(σ1, Q°P(σ1)) see26

Instead of trying to tackle this directly (which could be quite difficult since we may
not know explicitly the details of P and Q , but merely that they are correct
implementations of F1 and F2 respectively), we consider the inter-relationships

between states and take our lead from the flowchart.

The logical links (rules) are:

D1: pre-F(σ1) ¿ pre-F1(σ1)

D2: pre-F1(σ1)  post-F1(σ1, σ2) ¿ pre-F2(σ2)

R1: pre-F(σ1)  post-F1(σ1, σ2)  post-F2(σ2, σ3)

¿ post-F(σ1, σ3)

Notice that these rules do not mention P and Q explicitly; we only need to know
that they satisfy their respective specifications. These rules together justify that P;

Q satisfies F.

D1 and D2 are domain (or data) rules. D1 says that we can start to execute P if we

can start to execute P; Q.

2 6 Recall the change in order, which is necessary so as to fit with the ‘function of a function’
notation.

148 Constructing Correct Software

D2 says that, after executing P, the state reached (σ2) is suitable for input to Q.

R2 is a range (or result) rule. This says that with a suitable initial state (σ1) we can

first derive σ2 and then σ3, which is a correct output for P; Q relative to the initial

state σ1 and (the specification of) F.

Already27 we know something about how σ2 is related to σ3 (in such a way that Q

always works correctly), but working forward is more difficult.
❑

2.6.2 Alternation

For this, see Figure 2.10.

σ2

σ1

P Q

b
True False

σ1

σ1

Figure 2.10

With the previous assumptions about P and Q, we now consider the requirements
for the construction:

if b then P else Q fi satisfies the specification G.

Using the same kind of diagrammatic/logical reasoning, we have

D1: pre-G(σ1)  b(σ1) ¿ pre-F1(σ1)

D2: pre-G(σ1)  ⁄b(σ1) ¿ pre-F2(σ1)

R1: pre-G(σ1)  b(σ1)  post-F1(σ1, σ2) ¿ post-G(σ1, σ2)

R2: pre-G(σ1)  ⁄b(σ1)  post-F2(σ1, σ2) ¿ post-G(σ1, σ2)

2 7 See Section 2.5.

On Programming 149

Here the D rules check that σ 1, the initial state, is a valid input for the

combination, together with b being either True or False ensure that P or Q can be
executed correctly wrt their own specifications. The R rules then check that the
results / changes produced by P and Q, respectively, fit with those required by G.

❑

2.6 .3 Iteration. This is the most complex construct. For total correctness 28 a
‘while’ loop can pass through a finite but unbounded number of states29.

We first deal with partial correctness. By this we mean that, if we get to the end,
the result is acceptable, but The reasoning here is similar to that used for the
previous constructs but with two extra (seemingly unproductive but logically
useful) predicates which provide a link between one iteration and the next. The
implications can be deduced by the use of recursion together with sequencing and
alternation, but we shall go straight to the rules.

We want to use the construct

while b do P od to implement H.

Again we appeal to a flowchart with some named states; see Figure 2.11.

σ2

σ3
P

b

True

False

σ1

Figure 2.11

Notice that although σ1 and σ3 are visited only once, σ2 may be visited many

times. Here is where invar is evaluated.
2 8 Here ‘total’ correctness stresses what we have implicitly taken for granted — that the evaluation
of an expression or command terminates, concludes, in a finite number of steps.
2 9 Each loop will exit legally in n steps, for some n:P, but we can always construct a case where we
will need more than n steps.

150 Constructing Correct Software

Now, ‘out of the hat’ we postulate the predicates:

invar: state — B
and

to-end: state Ù state — B.

The rules which allow us to join the three marked places and the computational/test
components are:

D1: pre-H(σ1) ¿ invar(σ1) enter the loop

(pre-H(σ1) ¿ invar(σ2) but no calculation takes place,

 so on the first time through σ1 = σ2)

D2: invar(σ2)  b(σ2) ¿ pre-F1(σ2)

remember that P satisfies F1

D3: pre-F1(σ2)  post-F1(σ2, σ2’) ¿ invar(σ2’)
round again, σ2’ is σ2 on the next iteration.

R1: invar(σ2)  ⁄b(σ2) ¿ to-end(σ2, σ3)

no change has taken place here so, at this stage
of the iteration we could write
 invar(σ2)  ⁄b(σ2) ¿ to-end(σ2, σ2)

R2: pre-F1(σ2)  post-F1(σ2, σ2’)  to-end(σ2’, σ3) ¿ to-end(σ2, σ3)

link the final state to a σ2 state which is one

iteration further back, if there is one.

R3: pre-H(σ1)  to-end(σ1, σ3) ¿ post-H(σ1, σ3)

link back to initial state, σ1.

The justification that this does prove partial correctness of the loop follows from
‘joining up’ segments of any execution path through the flowchart. For each rule,
track it through the relevant part of the flowchart (Figure 2.11). We shall not
attempt an inductive proof that the rules are suitable; In Chapter Four you will see
that these rules are not necessary. They are included here for completeness and
because it is via such rules that the science of verification was developed30.

3 0 The thesis of this book is that we should construct a program to be correct, not that we write a
program and then, retrospectively, (try to) prove it to be correct.

On Programming 151

But we have not yet finished. We provide a mechanism to show termination of an
iterative loop. Technically, we need a ‘well-ordering’ on the different σ2 states as

the iteration progresses. We require a function:

term: state — P (at the σ2 point in the flowchart)

Evaluation of term on successive iterations of the loop must yield strictly reducing
integer values, reaching zero when we eventually exit from the loop. Hence the
rules are:

T1: pre-H(σ1) ¿ term(σ1) ≥ 0 initial value

T2: invar(σ2) ¯ (term(σ1) > 0) ¿ b(σ2)

T3: invar(σ2) ¯ (term(σ1) = 0) ¿ ⁄b(σ2)

(so (term(σ) = 0) › ⁄b(σ2),

 term is a measure of how close we
 are to the exit condition)

T4: pre-F1(σ2)  post-F1(σ2, σ2’) ¿ term(σ2’) < term(σ2)

Again you should check the rules against segments of Figure 2.11. In practice,
given the code, the selection of a suitable expression with which to define term is
usually quite straightforward, providing that the loop actually does terminate.

The analogue of term in the recursive situation will be seen as very important
(Section 3.1). It cannot be avoided, but once it has been successfully handled, it
will guarantee that derived loops terminate automatically.

❑

So that is how (logically and physically) components (commands) can be
assembled and linked to their specifications. But what are the ‘atomic’ units from
which they are constructed? They are Boolean expressions, about which we shall
say nothing further, and either composite processes (which logically add nothing
new) or multiple assignments such as

 ”x, y, ... ’ æ C(”x, y, ... ’) where C denotes a computation,
 a function.

or
 σ æ C(σ)

152 Constructing Correct Software

whence $ P(σ) $
σ æ C(σ)
$ P(σ) ¯ σ’ = C(σ) $

where σ is the state before the assignment and σ’ is the state immediately after its
execution.

But is the assignment correct? What is P?

Essentially, both these questions relate to a specification; let’s suppose it is
[pre, post]. Using assertions, we could require that

$ assert pre(σ) $
σ æ C(σ)
$ assert post(σ, C(σ)) $

If σ represents all the data to which the program has access, then this works
perfectly well and we can use these relationships (again) but now we write them as
proof obligations.

The assignment σ æ C(σ)

is a correct implementation of the specification J if

D1: pre-J(σ) ¿ pre-C(σ)

R1: pre-J(σ)  post-C(σ, σ’) ¿ post-J(σ, σ’)

Often, by design, the calculation, C, can always be evaluated, and hence pre-C(σ) is
True and therefore D1 holds. Moreover, R1 can often be simplified to

pre-J(σ) ¿ post-J(σ, C(σ))

So, for example, if J is [x > 0 , y’ > x + 3] and we have the assignment

 y æ x + 6 where: x,y:Z
Namely

 ”x, y’ æ ”x, x + 6’
so

”x’, y’’ = ”x, x + 6’

On Programming 153

then, since the validity of x > 0 implies that x must have some valid Z value,

D1 ¢ True

and
R1 ¢ pre-J(σ) ¿ post-J(σ, C(σ))

¢ pre-J(σ) ¿ post-J(”x, y’, ”x’, y’’)
¢ x > 0 ¿ y’ > x + 3

 ¢ x > 0 ¿ x + 6 > x + 3
 ¢ x > 0 ¿ 6 > 3
 ¢ x > 0 ¿ True
 ¢ True

So, that is all we want to say about verification. Theorists would say that this is
all we need, but finding feasible predicates and then showing that they work — by
discharging the proof obligations given above — is very time consuming, even
with a tame theorem prover to do all the calculations, hopefully in an error-free
way. And what if one of the required obligations is False? There is no routine way
of correcting an error even when we have located it. The actual problem may be
elsewhere in the program, not where it has caused a problem.

Can we do anything about this? Can we apply the basic theory in a different way?
Yes, as we will show in the next section.

2.7 Program Derivation
Just as we usually assume ‘correctness’ of computer hardware when we run a
program, we must also presume that the language support systems are also
‘correct’. We are therefore more properly concerned with contextual correctness (or
relative correctness), so running the hardware system, the run-time system (etc.),
and the user program together, in parallel, works in accordance with the
specification. Of course, the only component within this parallel combination on
which we have any influence is our own program. If any of the other components
is ‘wrong’ in some way, there is nothing that we can do to fix the error. We can
only try to ensure that our contribution is error-free.

Given a program, we could attempt to argue its correctness using assertions. But,
apart from the assertions which express the pre- and post-conditions (as supplied
within the given specification), other, intermediate, assertions can be difficult to
find. And once we have found them and used them to substantiate adequate logical
connections between the program components, since they could be expensive to
evaluate, we may remove31 them or convert them into comments.

3 1 Adequate (minimal) assertions c a n b e deleted, or transformed (using ¢) but not otherwise
changed.

154 Constructing Correct Software

An alternative approach is to start with the specification and use it to create a
program design. One way to view this process is to begin with a single unknown
command (one which is totally lacking in detail), as in Figure 2.12, and try to ‘fill
it in’.

P

input

output

Figure 2.12

A general technique for the construction of program P is to ‘divide and conquer’ the
problem and build it from smaller ‘sub-programs’ which solve ‘parts’ of the
problem; but in a way that is consistent with the logical requirements within the
specification.

Two (of the many) ways in which this could be done are by ‘vertical
decomposition’ and by ‘horizontal decomposition’. These can be illustrated as in
Figures 2.13 and 2.14

P1

input

output

P2

intermediate

Figure 2.13 Vertical Decomposition

On Programming 155

In vertical decomposition, P1 takes the input and produces an intermediate result (or

state), which then acts as input to P2. Execution of P2 then delivers the final

result. This can be written as:

output ¢ P2(P1(input))

which fits exactly with the concept of a ‘function of a function’. But, again,
determining a suitable intermediate state is not always easy.

P

input

output

P3 P4

Figure 2.14 Horizontal Decomposition (i)

P3

input

output

P4

Figure 2.15 Horizontal Decomposition (ii)

In horizontal32 decomposition, the input is divided up (somehow), each part is
processed separately, and the two (or more) intermediate results from P3 and P4 are

combined to give the overall result, from P.
3 2 Of course. drawing the diagrams so that the flow is left to right would mean that the use of
alternative (opposite?) terminology would seem ‘natural’. Be careful. As in many situations, the
terminology is not ‘standard’.

156 Constructing Correct Software

Much of the material presented in Chapter 3 concerns variants of horizontal (de-)
composition. In practice, most program derivations involve a mix of the two
approaches, applying vertical decomposition whenever an opportunity (usually a
clear case of ‘function of a function’) presents itself.

On Programming 157

