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1.3 Heat exchangers

When energy, as heat, has to be transferred from one stream of fluid to another
both fluids are directed through an apparatus known as a heat exchanger. The
two streams are separated by a barrier, normally the wall of a tube or pipe,
through which heat is transferred from the fluid at the higher temperature to the
colder one. Calculations involving heat exchangers use the equations derived in
section 1.2 for overall heat transfer. In addition to these relationships, the energy
balances of the first law of thermodynamics link the heat transferred with the
enthalpy changes and therefore the temperature changes in both the fluids.

Heat exchangers exist in many different forms, and can normally be differenti-
ated by the flow regimes of the two fluids. These different types will be discussed
in the first part of this section. This will be followed by a section on the equations
used in heat exchanger design. These equations can be formulated in a favourable
manner using dimensionless groups. The calculation of countercurrent, cocurrent
and cross current exchangers will then be explained. The final section contains
information on combinations of these three basic flow regimes which are used in
practice.

The calculation, design and application of heat exchangers is covered com-
prehensively in other books, in particular the publications from H. Hausen [1.7],
H. Martin [1.8] as well as W. Roetzel [1.9] should be noted. The following sec-
tions serve only as an introduction to this extensive area of study, and particular
emphasis has been placed on the thermal engineering calculation methods.

1.3.1 Types of heat exchanger and flow configurations

One of the simplest designs for a heat exchanger is the double pipe heat exchanger
which is schematically illustrated in Fig. 1.19. It consists of two concentric tubes,
where fluid 1 flows through the inner pipe and fluid 2 flows in the annular space
between the two tubes. Two different flow regimes are possible, either counter-
current where the two fluids flow in opposite directions, Fig. 1.19a, or cocurrent
as in Fig. 1.19b.

Fig. 1.19 also shows the cross-sectional mean values of the fluid temperatures
ϑ1 and ϑ2 over the whole length of the heat exchanger. The entry temperatures
are indicated by one dash, and the exit temperature by two dashes. At every
cross-section ϑ1 > ϑ2, when fluid 1 is the hotter of the two. In countercurrent
flow the two fluids leave the tube at opposite ends, and so the exit temperature of
the hot fluid can be lower than the exit temperature of the colder fluid (ϑ′′

1 < ϑ′′
2),

because only the conditions ϑ′′
1 > ϑ′

2 and ϑ′
1 > ϑ′′

2 must be met. A marked cooling
of fluid 1 or a considerable temperature rise in fluid 2 is not possible with cocurrent
flow. In this case the exit temperatures of both fluids occur at the same end of the
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Fig. 1.19: Fluid temperatures ϑ1 and ϑ2 in a double-pipe heat exchanger. a countercurrent
flow, b cocurrent flow

exchanger and so ϑ′′
1 > ϑ′′

2 is always the case, no matter how long the exchanger
is. This is the first indication that countercurrent flow is superior to cocurrent
flow: not all heat transfer tasks carried out in countercurrent flow can be realised
in cocurrent flow. In addition to this fact, it will be shown in section 1.3.3, that
for the transfer of the same heat flow, a countercurrent heat exchanger always has
a smaller area than a cocurrent exchanger, assuming of course, that the both flow
regimes are suitable to fulfill the task. Therefore, cocurrent flow is seldom used
in practice.

In practical applications the shell-and-tube heat exchanger, as shown in Fig.
1.20 is the most commonly used design. One of the fluids flows in the many
parallel tubes which make up a tube bundle. The tube bundle is surrounded

Fig. 1.20: Shell-and-tube heat exchanger (schematic)

Fig. 1.21: Shell-and-tube heat exchanger
with baffles
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Fig. 1.22: Scheme of a plate exchanger
with crossflow

by a shell. The second fluid flows around the outside of the tubes within this
shell. Countercurrent flow can be realised here except at the ends at of the heat
exchanger where the shell side fluid enters or leaves the exchanger. The addition
of baffles, as in Fig. 1.21, forces the shell side fluid to flow perpendicular to the
tube bundle, which leads to higher heat transfer coefficients than those found in
flow along the tubes. In the sections between the baffles the fluid is neither in
counter or cocurrent flow but in crossflow.

Pure crossflow is found in flat plate heat exchangers, as indicated by Fig. 1.22.
The temperatures of both fluids also change perpendicular to the flow direction.
This is schematically shown in Fig. 1.23. Each fluid element that flows in a
crossflow heat exchanger experiences its own temperature change, from the entry
temperature ϑ′

i which is the same for all particles to its individual exit tempera-
ture. Crossflow is often applied in a shell-and-tube heat exchanger when one of
the fluids is gaseous. The gas flows around the rows of tubes crosswise to the tube
axis. The other fluid, normally a liquid, flows inside the tubes. The addition of

Fig. 1.23: Fluid temperatures
ϑ1 = ϑ1 (x, y) and ϑ2 = ϑ2 (x, y)
in crossflow



1.3 Heat exchangers 43

Fig. 1.24: Coiled tube heat
exchanger (schematic)

Fig. 1.25: Regenerators for
the periodic heat transfer be-
tween the gases, air and nitro-
gen (schematic)

fins to the outer tube walls, cf. 1.2.3 and 2.2.3, increases the area available for
heat transfer on the gas side, thereby compensating for the lower heat transfer
coefficient.

Fig. 1.24 shows a particularly simple heat exchanger design, a coiled tube inside
a vessel, for example a boiler. One fluid flows through the tube, the other one is
in the vessel and can either flow through the vessel or stay there while it is being
heated up or cooled down. The vessel is usually equipped with a stirrer that mixes
the fluid, improving the heat transfer to the coiled tube.

There are also numerous other special designs for heat exchangers which will
not be discussed here. It is possible to combine the three basic flow regimes of
countercurrent, cocurrent and crossflow in a number of different ways, which leads
to complex calculation procedures.
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The heat exchangers dealt with so far have had two fluids flowing steadily through the
apparatus at the same time. They are always separated by a wall through which heat flows from
the hotter to the colder fluid. These types of heat exchangers are also known as recuperators,
which are different from regenerators. They contain a packing material, for example a lattice of
bricks with channels for the gas or a packed bed of stone or metal strips, that will allow gases to
pass through it. The gases flow alternately through the regenerator. The hot gas transfers heat
to the packing material, where it is stored as internal energy. Then the cold gas flows through
the regenerator, removes heat from the packing and leaves at a higher temperature. Continuous
operation requires at least two regenerators, so that one gas can be heated whilst the other one
is being cooled, Fig. 1.25. Each of the regenerators will be periodically heated and cooled by
switching the gas flows around. This produces a periodic change in the exit temperatures of the
gases.

Regenerators are used as air preheaters in blast furnaces and as heat exchangers in low
temperature gas liquefaction plants. A special design, the Ljungström preheater, equipped with
a rotating packing material serves as a preheater for air in firing equipment and gas turbine
plants.The warm gas in this case is the exhaust gas from combustion which should be cooled as
much as possible for energy recovery.

The regenerator theory was mainly developed by H. Hausen [1.10]. As it includes a number of
complicated calculations of processes that are time dependent no further study of the theory will
be made here. The summary by H. Hausen [1.7] and the VDI-Wärmeatlas [1.11] are suggested
for further study on this topic.

1.3.2 General design equations. Dimensionless groups

Fig. 1.26 is a scheme for a heat exchanger. The temperatures of the two fluids are
denoted by ϑ1 and ϑ2, as in section 1.3.1, and it will be assumed that ϑ1 > ϑ2.
Heat will therefore be transferred from fluid 1 to fluid 2. Entry temperatures are
indicated by one dash, exit temperatures by two dashes.

The first law of thermodynamics is applied to for both fluids. The heat trans-
ferred causes an enthalpy increase in the cold fluid 2 and a decrease in the warm
fluid 1. This gives

Q̇ = Ṁ1(h
′
1 − h′′1) = Ṁ2(h

′′
2 − h′2) , (1.93)

where Ṁi is the mass flow rate of fluid i. The specific enthalpies are calculated

Fig. 1.26: Heat exchanger scheme, with the mass
flow rate Ṁi, entry temperatures ϑ′

i, exit temper-
atures ϑ′′i , entry enthalpy h′i and exit enthalpy h′′i
of both fluids (i = 1, 2)
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at the entry and exit temperatures ϑ′
i and ϑ′′

i respectively. These temperatures
are averaged over the relevant tube cross section, and can be determined using
the explanation in section 1.1.3 for calculating adiabatic mixing temperatures.
Equation (1.93) is only valid for heat exchangers which are adiabatic with respect
to their environment, and this will always be assumed to be the case.

The two fluids flow through the heat exchanger without undergoing a phase
change, i.e. they do not boil or condense. The small change in specific enthalpy
with pressure is neglected. Therefore only the temperature dependence is impor-
tant, and with

cpi :=
h′i − h′′i
ϑ′

i − ϑ′′
i

, i = 1, 2 (1.94)

the mean specific heat capacity between ϑ′
i and ϑ′′

i it follows from (1.93) that

Q̇ = Ṁ1cp1(ϑ
′
1 − ϑ′′

1) = Ṁ2cp2(ϑ
′′
2 − ϑ′

2) .

As an abbreviation the heat capacity flow rate is introduced by

Ẇi := Ṁicpi , i = 1, 2 (1.95)

which then gives
Q̇ = Ẇ1(ϑ

′
1 − ϑ′′

1) = Ẇ2(ϑ
′′
2 − ϑ′

2) . (1.96)

The temperature changes in both fluids are linked to each other due to the first law
of thermodynamics. They are related inversely to the ratio of the heat capacity
flow rates.

The heat flow Q̇ is transferred from fluid 1 to fluid 2 because of the temperature
difference ϑ1−ϑ2 inside the heat exchanger. This means that the heat flow Q̇ has to
overcome the overall resistance to heat transfer 1/kA according to section 1.2.1.
The quantity kA will from now on be called the transfer capability of the heat
exchanger, and is a characteristic quantity of the apparatus. It is calculated using
(1.72) from the transfer resistances in the fluids and the resistance to conduction
in the wall between them. The value for kA is usually taken to be an apparatus
constant, where the overall heat transfer coefficient k is assumed to have the same
value throughout the heat exchanger. However this may not always happen, the
fluid heat transfer coefficient can change due to the temperature dependence of
some of the fluid properties or by a variation in the flow conditions. In cases such
as these, k and kA must be calculated for various points in the heat exchanger
and a suitable mean value can be found, cf. W. Roetzel and B. Spang [1.12], to
represent the characteristic transfer capability kA of the heat exchanger.

Before beginning calculations for heat exchanger design, it is useful to get
an overview of the quantities which have an effect on them. Then the number
of these quantities will be reduced by the introduction of dimensionless groups.
Finally the relevant relationships for the design will be determined. Fig. 1.27
contains the seven quantities that influence the design of a heat exchanger. The
effectiveness of the heat exchanger is characterised by its transfer capability kA,
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Fig. 1.27: Heat exchanger with the
seven quantities which affect its design

Fig. 1.28: The three decisive
temperature differences (ar-
rows) in a heat exchanger

the two fluid flows by their heat capacity flow rates Ẇi, entry temperatures ϑ′
i and

exit temperatures ϑ′′
i . As the temperature level is not important only the three

temperature differences (ϑ′
1 − ϑ′′

1), (ϑ′′
2 − ϑ′

2) and (ϑ′
1 − ϑ′

2), as shown in Fig. 1.28,
are of influence. This reduces the number of quantities that have any effect by
one so that six quantities remain:

kA, (ϑ′
1 − ϑ′′

1), Ẇ1, (ϑ′′
2 − ϑ′

2), Ẇ2 and (ϑ′
1 − ϑ′

2) .

These belong to only two types of quantity either temperature (unit K) or heat
capacity flow rate (units W/K). According to section 1.1.4, that leaves four (= 6−
2) characteristic quantities to be defined. These are the dimensionless temperature
changes in both fluids

ε1 :=
ϑ′

1 − ϑ′′
1

ϑ′
1 − ϑ′

2

and ε2 :=
ϑ′′

2 − ϑ′
2

ϑ′
1 − ϑ′

2

, (1.97)

see Fig. 1.29, and the ratios

N1 :=
kA

Ẇ1

and N2 :=
kA

Ẇ2

. (1.98)

These are also known as the Number of Transfer Units or NTU for short. We
suggest Ni be characterised as the dimensionless transfer capability of the heat
exchanger. Instead of N2 the ratio of the two heat capacity flow rates

C1 :=
Ẇ1

Ẇ2

=
N2

N1

(1.99)

Fig. 1.29: Plot of the dimensionless fluid tempera-
tures ϑ+

i = (ϑi − ϑ′2) / (ϑ′1 − ϑ′2) over the area and il-
lustration of ε1 and ε2 according to (1.97)



1.3 Heat exchangers 47

or its inverse

C2 :=
Ẇ2

Ẇ1

=
1

C1

(1.100)

is often used.
The four groups in (1.97) and (1.98), are not independent of each other, be-

cause applying the first law of thermodynamics gives

ε1

N1

=
ε2

N2

or ε2 = C1ε1 . (1.101)

The relationship which exists between the three remaining characteristic quanti-
ties

F (ε1, N1, N2) = 0 or F (ε1, N1, C1) = 0 (1.102)

is the operating characteristic of the heat exchanger. It depends on the flow
configuration and is found from the temperature pattern of both fluids, that will
be discussed in detail in the following sections.

Heat exchanger design mainly consists of two tasks:
1. Calculating the heat flow transferred in a given heat exchanger.
2. Design of a heat exchanger for a prescribed performance.

In the first case (ϑ′
1 − ϑ′

2), Ẇ1, Ẇ2 and kA will all be given. The temperature
changes in both fluids have to be found so that Q̇, the heat flow transferred, can be
determined from (1.96). As the characteristic numbers, N1 and N2 or N1 and C1

are given this problem can be solved immediately, if the operating characteristic
in (1.102) can be explicitly resolved for ε1:

ε1 = ε1(N1, C1) .

The dimensionless temperature change ε2 of the other fluid follows from (1.101).
In the calculations for the design of a heat exchanger kA has to be found.

Either the temperature changes in both fluids or the two values for the heat
capacity flow and the temperature change in one of the fluids must be known, in
order to determine kA. An operating characteristic which can be explicitly solved
for N1 or N2 is desired:

N1 = N1(ε1, C1) .

This gives for the transfer capability

kA = N1Ẇ1 = N2Ẇ2 .

In Fig. 1.30 an operating characteristic for a heat exchanger with given flow
configuration is shown. The solutions to both tasks, heat transfer calculation and
design calculation are indicated. In many cases the explicit solution of the oper-
ating characteristic for ε1 and N1 is not possible, even if an analytical expression
is available. If this arises a diagram similar to Fig. 1.30 should be used. Further
details are given in section 1.3.5.
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Fig. 1.30: Schematic representation of the operating characteristic for a heat ex-
changer with Ci = const. N is the assumed operating point for the heat trans-
fer calculations: εi = εi (Ni, Ci), A is the assumed operating point for the design:
Ni = Ni (εi, Ci). The determination of the mean temperature difference Θ for point
A is also shown.

When the heat capacity flow rate Ẇi was introduced in (1.95) boiling and con-
densing fluids were not considered. At constant pressure a pure substance which
is boiling or condensing does not undergo a change in temperature, but cpi → ∞.

This leads to εi = 0, whilst Ẇi → ∞ resulting in Ni = 0 and Ci → ∞. This
simplifies the calculations for the heat exchanger, as the operating characteristic
is now a relationship between only two rather than three quantities, namely ε and
N of the other fluid, which is neither boiling nor condensing.

In heat exchanger calculations another quantity alongside those already introduced is often
used, namely the mean temperature difference ∆ϑm. This is found by integrating the local
temperature difference (ϑ1 − ϑ2) between the two fluids over the whole transfer area.

∆ϑm =
1

A

∫

(A)

(ϑ1 − ϑ2) dA . (1.103)

In analogy to (1.71) the heat flow transferred is

Q̇ = kA∆ϑm . (1.104)

This equation can only strictly be used if the heat transfer coefficient k is the same at each point
on A. If this is not true then (1.104) can be considered to be a definition for a mean value of k.

The introduction of ∆ϑm in conjunction with (1.104), gives a relationship between the
heat flow transferred and the transfer capability kA, and therefore with the area A of the heat
exchanger. This produces the following equations

Q̇ = kA∆ϑm = Ẇ1(ϑ
′

1 − ϑ′′1) = Ẇ2(ϑ
′′

2 − ϑ′2) .

With the dimensionless mean temperature difference

Θ =
∆ϑm

ϑ′1 − ϑ′2
(1.105)

the following relationship between the dimensionless groups is found:

Θ =
ε1
N1

=
ε2
N2

. (1.106)
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The mean temperature ∆ϑm and its associated dimensionless quantity Θ can be calculated
using the dimensionless numbers that have already been discussed. The introduction of the
mean temperature difference does not provide any information that cannot be found from the
operating characteristic. This is also illustrated in Fig. 1.30, where Θ is the gradient of the
straight line that joins the operating point and the origin of the graph.

1.3.3 Countercurrent and cocurrent heat exchangers

The operating characteristic F (εi, Ni, Ci) = 0, for a countercurrent heat exchanger
is found by analysing the temperature distribution in both fluids. The results can
easily be transferred for use with the practically less important case of a cocurrent
exchanger.

We will consider the temperature changes, shown in Fig. 1.31, in a countercur-
rent heat exchanger. The temperatures ϑ1 and ϑ2 depend on the z coordinate in
the direction of flow of fluid 1. By applying the first law to a section of length dz
the rate of heat transfer, dQ̇, from fluid 1 to fluid 2 through the surface element
dA is found to be

dQ̇ = −Ṁ1cp1 dϑ1 = −Ẇ1 dϑ1 (1.107)

and
dQ̇ = −Ṁ2cp2 dϑ2 = −Ẇ2 dϑ2 . (1.108)

Now dQ̇ is eliminated by using the equation for overall heat transfer

dQ̇ = k (ϑ1 − ϑ2) dA = kA (ϑ1 − ϑ2)
dz

L
(1.109)

from (1.107) and (1.108) giving

dϑ1 = −(ϑ1 − ϑ2)
kA

Ẇ1

dz

L
= −(ϑ1 − ϑ2)N1

dz

L
(1.110)

Fig. 1.31: Temperature pattern in a
countercurrent heat exchanger



50 1 Introduction. Technical Applications

Table 1.4: Equations for the calculation of the normalised temperature variation εi , the
dimensionless transfer capability Ni and the mean temperature difference Θ in counter and
cocurrent heat exchangers

Flow
regime

εi = εi (Ni, Ci) Ni = Ni (εi, Ci) Θ = Θ(ε1, ε2)

counter
current

Ci 6= 1
i = 1, 2

εi =
1 − exp [(Ci − 1)Ni]

1 − Ci exp [(Ci − 1)Ni]
Ni =

1

1 − Ci
ln

1 − Ciεi

1 − εi
Θ =

ε1 − ε2

ln
1 − ε2
1 − ε1

C = 1 ε =
N

1 +N
N =

ε

1 − ε
Θ = 1 − ε

co-
current

i = 1, 2 εi =
1 − exp [− (1 +Ci)Ni]

1 + Ci
Ni = − ln [1 − εi (1 + Ci)]

1 + Ci
Θ =

− (ε1 + ε2)

ln [1 − (ε1 + ε2)]

Meaning of the characteristic numbers: ε1 =
ϑ

′

1 − ϑ
′′

1

ϑ
′

1 − ϑ
′

2

, ε2 =
ϑ

′′

2 − ϑ
′

2

ϑ
′

1 − ϑ
′

2

Ni = kA/Ẇi , Θ =
∆ϑm

ϑ
′

1 − ϑ
′

2

=
εi

Ni
, C1 =

Ẇ1

Ẇ2

=
ε2
ε1

=
N2

N1
, C2 =

1

C1

and

dϑ2 = −(ϑ1 − ϑ2)
kA

Ẇ2

dz

L
= −(ϑ1 − ϑ2)N2

dz

L
(1.111)

for the temperature changes in both fluids.
The temperatures ϑ1 = ϑ1(z) and ϑ2 = ϑ2(z) will not be calculated from

the two differential equations, instead the variation in the difference between the
temperature of the two fluids ϑ1 − ϑ2 will be determined. By subtracting (1.111)
from (1.110) and dividing by (ϑ1 − ϑ2) it follows that

d(ϑ1 − ϑ2)

ϑ1 − ϑ2

= (N2 −N1)
dz

L
. (1.112)

Integrating this differential equation between z = 0 and z = L leads to

ln
(ϑ1 − ϑ2)L

(ϑ1 − ϑ2)0
= ln

ϑ′′
1 − ϑ′

2

ϑ′
1 − ϑ′′

2

= N2 −N1 . (1.113)

Now, we have
ϑ′′

1 − ϑ′
2

ϑ′
1 − ϑ′′

2

=
ϑ′

1 − ϑ′
2 − (ϑ′

1 − ϑ′′
1)

ϑ′
1 − ϑ′

2 − (ϑ′′
2 − ϑ′

2)
=

1 − ε1

1 − ε2

,
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Fig. 1.32: Operating characteristic εi = εi (Ni, Ci) for countercurrent flow from Tab. 1.4

which gives

ln
1 − ε1

1 − ε2

= N2 −N1 (1.114)

as the implicit form of the operating characteristic of a countercurrent heat ex-
changer. It is invariant with respect to an exchange of the indices 1 and 2. Using
the ratios of C1 and C2 = 1/C1 from (1.99) and (1.100), explicit equations are
obtained,

εi = f(Ni, Ci) and Ni = f(εi, Ci) , i = 1, 2

which have the same form for both fluids. These explicit formulae for the operating
characteristics are shown in Table 1.4. If the heat capacity flow rates are equal,
Ẇ1 = Ẇ2, and because C1 = C2 = 1, it follows that

ε1 = ε2 = ε and N1 = N2 = N ,

and with a series development of the equations valid for Ci 6= 1 towards the limit
of Ci → 1, the simple relationships given in Table 1.4 are obtained.

Fig. 1.32 shows the operating characteristic εi = f(Ni, Ci) as a function of Ni

with Ci as a parameter. As expected the normalised temperature change εi grows
monotonically with increasing Ni, and therefore increasing transfer capability kA.
For Ni → ∞ the limiting value is

lim
Ni→∞

εi =

{
1 for Ci ≤ 1

1/Ci for Ci > 1
.

If Ci ≤ 1, then εi takes on the character of an efficiency. The normalised tem-
perature change of the fluid with the smaller heat capacity flow is known as the
efficiency or effectiveness of the heat exchanger. With an enlargement of the heat
transfer area A the temperature difference between the two fluids can be made as
small as desired, but only at one end of the countercurrent exchanger. Only for
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Ẇ1 = Ẇ2, which means C1 = C2 = 1, can an infinitely small temperature differ-
ence at at both ends, and therefore throughout the heat exchanger, be achieved
by an enlargement of the surface area. The ideal case of reversible heat transfer
between two fluids, often considered in thermodynamics, is thus only attainable
when Ẇ1 = Ẇ2 in a heat exchanger with very high transfer capability.

As already mentioned in section 1.3.2, the function εi = f(Ni, Ci) is used
to calculate the outlet temperature and the transfer capability of a given heat
exchanger. For the sizing of a heat exchanger for a required temperature change
in the fluid, the other form of the operating characteristic, Ni = Ni(εi, Ci), is
used. This is also given in Table 1.4.

In a cocurrent heat exchanger the direction of flow is opposite to that in Fig.
1.31, cf. also Fig. 1.20b. In place of (1.108) the energy balance is

dQ̇ = Ṁ2cp2 dϑ2 = Ẇ2 dϑ2 ,

which gives the relationship

d(ϑ1 − ϑ2)

ϑ1 − ϑ2

= −(N1 +N2)
dz

L
(1.115)

instead of (1.112). According to (1.114) the temperature difference between the
two fluids in the direction of flow is always decreasing. Integration of (1.115)
between z = 0 and z = L yields

ln
ϑ′′

1 − ϑ′′
2

ϑ′
1 − ϑ′

2

= −(N1 +N2) ,

from which follows

ln [1 − (ε1 + ε2)] = −(N1 +N2) = −ε1 + ε2

Θ
(1.116)

as the implicit form of the operating characteristic. This can be solved for εi

and Ni giving the functions noted in Table 1.4. For Ni → ∞ the normalised
temperature variation reaches the limiting value of

lim
Ni→∞

εi =
1

1 + Ci

, i = 1, 2 .

With cocurrent flow the limiting value of εi = 1 is never reached except when
Ci = 0, as will soon be explained.

The calculations for performance and sizing of a heat exchanger can also be carried out
using a mean temperature difference Θ from (1.105) in section 1.3.2. In countercurrent flow, the
difference N2 − N1 in (1.113) is replaced by Θ, ε1 and ε2 giving the expression Θ = Θ(ε1, ε2)
which appears in Table 1.4. Introducing

N2 −N1 =
ε2 − ε1

Θ
=
ϑ′′2 − ϑ′2 − (ϑ′1 − ϑ′′1)

∆ϑm
=
ϑ′′1 − ϑ′2 − (ϑ′1 − ϑ′′2)

∆ϑm
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Fig. 1.33: Temperature in a condenser with cooling of superheated steam,
condensation and subcooling of the condensate (fluid 1) by cooling water
(fluid 2)

into (1.113) , gives

∆ϑm =
ϑ′′1 − ϑ′2 − (ϑ′1 − ϑ′′2)

ln
ϑ′′1 − ϑ′2
ϑ′1 − ϑ′′2

(1.117)

for the mean temperature difference in a countercurrent heat exchanger. It is the logarithmic

mean of the temperature difference between the two fluids at both ends of the apparatus.
The expression, from (1.116), for the normalised mean temperature difference Θ, in cocur-

rent flow is given in Table 1.4. Putting in (1.117) the defining equations for ε1 and ε2 yields

∆ϑm =
ϑ′1 − ϑ′2 − (ϑ′′1 − ϑ′′2)

ln
ϑ′1 − ϑ′2
ϑ′′1 − ϑ′′2

. (1.118)

So ∆ϑm is also the logarithmic mean temperature difference at both ends of the heat exchanger
in cocurrent flow.

We will now compare the two flow configurations. For Ci = 0 the normalised
temperature variation in Table 1.4 is

εi = 1 − exp(−Ni)

and the dimensionless transfer capability

Ni = − ln(1 − εi)

both of which are independent of whether countercurrent or cocurrent flow is
used. Therefore when one of the substances boils or condenses in the exchanger
it is immaterial which flow configuration is chosen. However, if in a condenser,
superheated steam is first cooled from ϑ′

1 to the condensation temperature of
ϑ1s, then completely condensed, after which the condensate is cooled from ϑ1s

to ϑ′′
1, more complex circumstances develop. In these cases it is not permissible

to treat the equipment as simply one heat exchanger, using the equations that
have already been defined, where only the inlet and outlet temperatures ϑ′

i and
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Fig. 1.34: Ratio (kA)co / (kA)cc = N co
i /N cc

i of the transfer capabilities in cocur-
rent (index co) and countercurrent (index cc) flows as a function of εi and Ci

ϑ′′
i (i = 1, 2) are important, cf. Fig. 1.33. The values for the heat capacity flow

rate Ẇ1 change significantly: During the cooling of the steam and the condensate
Ẇ1 has a finite value, whereas in the process of condensation Ẇ1 is infinite. The
exchanger has to be imaginarily split, and then be treated as three units in series.
Energy balances provide the two unknown temperatures, ϑ2a between the cooling
and condensation section, and ϑ2b, between the condensation and sub-cooling
part. These in turn yield the dimensionless temperature differences εia, εib and
εic for the three sections cooler a, condenser b and sub-cooler c (i = 1, 2). The
dimensionless transfer capabilities Nia, Nib and Nic of the three equipment sections
can then be calculated according to the relationships in Table 1.4. From Nij the
values for (kA)j can be found. Then using the relevant overall heat transfer
coefficients kj, we obtain the areas of the three sections Aj (j = a, b, c), which
together make up the total transfer area of the exchanger.

For Ci > 0 the countercurrent configuration is always superior to the cocurrent.
A disadvantage of the cocurrent flow exists in that not all heat transfer tasks can
be solved in such a system. A given temperature change εi is only realisable if
the argument of the logarithmic term in

N co
i = − 1

1 + Ci

ln [1 − εi(1 + Ci)]

is positive. This is only the case for

εi <
1

1 + Ci

. (1.119)

Larger normalised temperature changes cannot be achieved in cocurrent heat ex-
changers even in those with very large values for the transfer capability kA. In
countercurrent exchangers this limitation does not exist. All values for εi are ba-
sically attainable and therefore all required heat loads can be transferred as long
as the area available for heat transfer is made large enough.
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A further disadvantage of cocurrent flow is that a higher transfer capability
kA is required to fulfill the same task (same εi and Ci) when compared with a
countercurrent system. This is shown in Fig. 1.34 in which the ratio

(kA)co/(kA)cc = N co
i /N

cc
i

based on the equations in Table 1.4 is represented. This ratio grows sharply when
εi approaches the limiting value according to (1.119). Even when a cocurrent
exchanger is capable of fulfilling the requirements of the task, the countercurrent
exchanger will be chosen as its dimensions are smaller. Only in a combination of
small enough values of Ci and εi the necessary increase in the area of a cocurrent
exchanger is kept within narrow limits.

Example 1.4: Ammonia, at a pressure of 1.40 MPa, is to be cooled in a countercurrent
heat exchanger from ϑ′

1 = 150.0 ◦C to the saturation temperature ϑ′

1s = 36.3 ◦C, and
then completely condensed. Its mass flow rate is Ṁ1 = 0.200 kg/s. Specific enthalpies of
h(ϑ′1) = 1797.1 kJ/kg, hg(ϑ1s) = 1488.8 kJ/kg, and hfl(ϑ1s) = 372.2 kJ/kg are taken from
the property tables for ammonia, [1.13]. Cooling water with a temperature of ϑ′

2 = 12.0 ◦C
is available, and this can be heated to ϑ′′

2 = 28.5 ◦C. Its mean specific heat capacity is
cp2 = 4.184 kJ/kgK. The required transfer capabilities for the cooling (kA)cooling and
(kA)cond for the condensation of the ammonia have to be determined.
At first the heat flow transferred Q̇, and the required mass flow rate Ṁ2 of water have to
be found. The heat flow removed from the ammonia is

Q̇ = Ṁ1

[
h(ϑ′1) − hfl(ϑ1s)

]
= 0.200

kg

s
(1797.1 − 372.2)

kJ

kg
= 285.0 kW .

From that the mass flow rate of water is found to be

Ṁ2 =
Q̇

cp2 (ϑ′′2 − ϑ′1)
=

285.0 kW

4.184 (kJ/kgK) (28.5 − 12.0) K
= 4.128

kg

s
.

The temperature ϑ2a of the cooling water in the cross section between the cooling and
condensation sections, cf. Fig. 1.35, is required to calculate the transfer capability.

Fig. 1.35: Temperatures of
ammonia and cooling water
in a countercurrent heat ex-
changer (schematic)

From the energy balance for the condensor section

Ṁ2cp2 (ϑa − ϑ′2) = Ṁ1

[
hg(ϑ1s) − hfl(ϑ1s)

]
,

it follows that

ϑ2a = ϑ′2 +
Ṁ1

Ṁ2cp2

[
hg(ϑ1s) − hfl(ϑ1s)

]
= 24.9 ◦C .



56 1 Introduction. Technical Applications

The transfer capability for the ammonia cooling section, using Table 1.4, is

(kA)cooling

Ẇ1

= N1 =
1

1 − C1
ln

1 − C1ε1
1 − ε1

. (1.120)

The ratio of the heat capacity flow rates is found with

Ẇ1 = Ṁ1cp1 = Ṁ1
h(ϑ′1) − hg(ϑs)

ϑ′1 − ϑs
= 0.200

kg

s

1797.1 − 1488.8

150.0 − 36.3

kJ

kgK
= 0.5423

kW

K

and with Ẇ2 = Ṁ2cp2 = 17.272 kW/K giving C1 = 0.0314. The dimensionless temperature
variation of ammonia is

ε1 =
ϑ′1 − ϑs

ϑ′1 − ϑ2a
=

150.0 − 36.3

150.0 − 24.9
= 0.9089.

Then (1.120) yields N1 = 2.443 and finally

(kA)cooling = N1Ẇ1 = 1.325 kW/K .

For the condensation section of the heat exchanger ε1 = 0, and because Ẇ1 → ∞ this
means C2 = Ẇ2/Ẇ1 = 0. From Table 1.4 it follows that

(kA)cond/Ẇ2 = N2 = − ln (1 − ε2) .

With the normalised temperature change of the cooling water

ε2 =
ϑ2a − ϑ′2
ϑ1s − ϑ′2

=
24.9 − 12.0

36.3 − 12.0
= 0.5309 ,

yielding N2 = 0.7569, which then gives

(kA)cond = N2Ẇ2 = 13.07 kW/K .

In order to find the required area A = Acooling + Acond for the countercurrent exchanger,
from the values for (kA)cooling and (kA)cond, the overall heat transfer coefficients for each
part must be calculated. They will be different as the resistance to heat transfer in the
cooling section is greatest on the gaseous ammonia side, whereas in the condensation
section the greatest resistance to heat transfer is experienced on the cooling water side.
The calculations for the overall heat transfer coefficients will not be done here as the design
of the heat exchanger and the flow conditions have to be known for this purpose.

1.3.4 Crossflow heat exchangers

Before discussing pure crossflow as shown in Fig. 1.23, the operating characteristic
for the simple case of crossflow where only the fluid on one side is laterally mixed
will be calculated. In this flow configuration the temperature of one of the two
fluids is only dependent on one position coordinate, e.g. x, while the temperature
of the other fluid changes with both x and y. In Fig. 1.36 the laterally mixed fluid
is indicated by the index 1. Its temperature ϑ1 changes only in the direction of
flow, ϑ1 = ϑ1(x). Ideal lateral mixing is assumed so that ϑ1does not vary with y.
This assumption is closely met when fluid 1 flows through a single row of tubes
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Fig. 1.37: Crossflow with one tube
row as a realisation of the one side
laterally mixed crossflow

Fig. 1.36: Temperature variations in a one side laterally mixed crossflow. ϑ1 = ϑ1 (x) temper-
ature of the laterally mixed fluid, ϑ2 = ϑ2 (x, y) temperature of the other fluid

and fluid 2 flows perpendicular to them, Fig. 1.37. This crossflow with a single
row of tubes corresponds to one side laterally mixed crossflow. The mixed fluid
1 in the tubes does not have to be the fluid with the higher temperature, as was
assumed before.

To determine the temperatures ϑ1 = ϑ1(x) and ϑ2 = ϑ2(x, y) of both fluids, the surface
element, dA = dxdy picked out in Fig. 1.36 will be considered. The heat flow transferred from
fluid 1 to fluid 2 is given as

dQ̇ = [ϑ1(x) − ϑ2(x, y)] k dxdy .

The total heat transfer area is A = L1L2, see Fig. 1.36. With the dimensionless coordinates

x+ := x/L1 and y+ := y/L2 (1.121)

it follows that
dQ̇ =

[
ϑ1(x

+) − ϑ2(x
+, y+)

]
kAdx+ dy+ . (1.122)

A second relationship for dQ̇ is yielded from the application of the first law on fluid 2, which
flows over the surface element dA. Its mass flow rate is

dṀ2 = Ṁ2 dx/L1 = Ṁ2 dx+ ,

which gives

dQ̇ = Ṁ2 dx+cp2

(
ϑ2 +

∂ϑ2

∂y+
dy+ + . . .− ϑ2

)
= Ṁ2cp2

(
∂ϑ2

∂y+
dy+ + . . .

)
dx+

or

dQ̇ = Ẇ2
∂ϑ2

∂y+
dx+ dy+ . (1.123)

The differential equation
∂ϑ2

∂y+
= N2(ϑ1 − ϑ2) (1.124)


