24. The Singular Cardinal Problem

In this chapter we use combinatorial methods to prove theorems (in ZFC) on
cardinal arithmetic of singular cardinals. We introduce a powerful theory of
Shelah, the pcf theory, and apply the theory to present a most remarkable
result of Shelah on powers of singular cardinals.

The Galvin-Hajnal Theorem

Following Silver’s Theorem 8.12 on singular cardinals of uncountable cofinal-
ity, Galvin and Hajnal proved a related result:

Theorem 24.1 (Galvin-Hajnal [1975]). Let X, be a strong limit singular
cardinal of uncountable cofinality. Then 2%« < X, where vy = (2'“‘)*.

Note that the theorem gives a nontrivial information only if N, is not
a fixed point of the aleph function.

In order to simplify the notation, we consider the special case &« = wy. The
following lemma implies the theorem (as in the proof of Silver’s Theorem).
Two functions f and g on w; are almost disjoint if {a : f(a) = g(a)} is at
most countable.

Lemma 24.2. Assume that Nzl < Ny, for all a« < wy. Let F be an almost
disjoint family of functions

Fc [ Aa

a<w

such that |Ay| < Ry, for all a < w;. Then |F| < X, where v = (2%)*.
Proof. We first introduce the following relation among functions ¢ : w3 — w;
(24.1) o<y ifandonlyif {a<w;:p(a)>¥(a)} is nonstationary.

Since the closed unbounded filter is o-complete, it follows that there is no
infinite descending sequence

Yo > Y1 > P2 > ...
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Otherwise, the set {a < w; : pn(a) < ppt1(a) for some n} is nonstationary
and so there is an a such that

wo(a) > p1(a) > pa(a) > ...,

a contradiction.
Hence the relation ¢ < ¢ is well-founded and we can define the rank ||¢||
of ¢ in this relation (called the norm of ¢) such that

lloll = sup{|l¢[l + 1 : ¥ <}

Note that ||| = 0 if and only if p(«) = 0 for a stationary set of a’s.
Lemma 24.2 follows from

Lemma 24.3. Assume that Ngl <N, forall o < wy. Let ¢ : w1 — wy and
let F' be an almost disjoint family of functions

Fc [] Aa

a<wi

such that
|Aa| < Na—i—cp(a)

for every o < wi. Then |F| <Ry 4o

To prove Lemma 24.2 from Lemma 24.3, we let ¢ be such that |A,| <
Rotp(a)- If ¥ is the length of the well-founded relation ¢ < ¢, then certainly
[9] < 2%t and so ¥ < (2%1)*. Hence wy + [|p|| < (2%1)* for every ¢ and
Lemma 24.2 follows. O

Proof of Lemma 24.3. By induction on ||¢]|. If ||¢|| = 0, then ¢(a) = 0 on
a stationary set and the statement is precisely Lemma 8.16.

To handle the case [|¢|| > 0, we first generalize the definition of ¢ < .
Let S C wy be a stationary set. We define

(24.2) ¢ <gy ifandonlyif {a € S:p(a)>(a)} is nonstationary.

The same argument as before shows that ¢ <g 9 is a well-founded relation
and so we define the norm ||¢||s accordingly. Note that if S C T', then ||p||r <
ll¢lls- In particular, ||l < ||¢lls, for any stationary S. Moreover,

(24.3) lpllsur = min{||¢lls, [l¢llr}

as can easily be verified.

For every ¢ : w; — wi, we let I, be the collection of all nonstationary
sets along with those stationary S such that ||| < ||¢l|s. If S is stationary
and X is nonstationary, then ||¢||sux = ||¢||ls. This and (24.3) imply that
I, is a proper ideal on wy.
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If ||¢|| is a limit ordinal, then
S ={a <w; : p(a) is a successor ordinal} € I,

because if S ¢ I,, then ||| = ||¢lls = ||¢]|s + 1, where ¢(a) = p(a) — 1 for
all & € S. Hence

{a < w1 : p(a) is a limit ordinal} ¢ I,.
Similarly, if ||¢]| is a successor ordinal, then
{a < w1 : p(e) is a successor ordinal} ¢ I,.

Now we are ready to proceed with the induction.
(a) Let [|p|| be a limit ordinal, [|¢|| > 0. Let

S ={a<w;:p(a) >0andis alimit ordinal}.

It follows that S ¢ I,.

We may assume that A, C Nyqy(q) for every a, and so we have f(a) <
Rotp(a) for every f € F. Given f € F, we can find for each o € S some 3 <
¢(a) such that f(a) < wa+p; call this 8 = ¢(a). For a ¢ S, let ¥(a) = p(a).
Since S ¢ I,, we have |[¢|| < [|[¥]ls < |lells = |l¢ll.- We also have f € Fy,
where

Fy={f €F: f(a) <waty(a) for all a},
and so

F=U{Fy : 19l < llll}-

By the induction hypothesis, |Fy| < Ny 4j¢| < Nu,4|j0) for every i such
that [j1]] < ||¢||. Since the number of functions v : w; — w; is 2%, and
2™ < R,,, we have |F| < No it llell-

(b) Let ||¢|| be a successor ordinal, ||¢|| = v + 1. Let

So = {a <wy : p(a) is a successor}.

It follows that Sy ¢ I,.
Again, we may assume that A, C waqy(a) for each a < w;. First we
prove that for every f € F, the set

Fy={geF:35C S, S¢1, (VacS)ga)< fla)}
has cardinality N, 1. If S C Sp and S ¢ I, let
Frs ={g € F: (Va € 5) g(a) < f(a)}.
Let ¢ : w; — wy be such that ¥ (a) = p(a) — 1 for a € S, and ¥ (a) = ¢(a)

otherwise. Since S ¢ I,,, we have ||¢|| < |[¢]|s < [l¢lls = ||¢ll = v + 1 and so
ll9[| = 7. Since Fy s C [[,c,, Ba, Where |Ba| < Royy(a) for all a, we use the
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induction hypothesis to conclude that |Fy | < R, . Then it follows that

|Fp| < Ry gy
To complete the proof, we construct a sequence
(24.4) (fe: € <)
such that ¥ <N, 1,41 and
(24.5) F=U{Fy : £ <0}

Given f,, v < &, we let fe € F (if it exists) be such that fe ¢ F},, for all
v < . Then the set

{a € So: fe() < fu(@)}
belongs to I, and so f, € Fy,, for each v < &.
Since |Fy. | < Ny 44 and Fy, D {f, : v < &}, it follows that & < Ny, 1441
if f¢ exists. Thus the sequence (24.4) has length ¢ <N, 1~y+1. Then we have

F =U{Fy, : £ <9}
and so |F| < Ny, 4qyt1- a

Ordinal Functions and Scales

The proof of the Galvin-Hajnal Theorem suggests that ordinal functions play

an important role in arithmetic of singular cardinals. We shall now embark

on a systematic study of ordinal functions and introduce Shelah’s pcf theory.
Let A be an infinite set and let I be an ideal on A.

Definition 24.4. For ordinal functions f, g on A, let

f=rg ifandonlyif {a€ A: f(a)+#g(a)} €,
f<rg ifandonlyif {a€ A: f(a)>g(a)} €,
f<rg ifandonlyif {a€ A: f(a)>g(a)} €l

If F'is a filter on A, then f <p g means f <y g where I is the dual ideal,
and similarly for f <p g and f =r g.

The relation <; is a partial ordering (of equivalence classes). If S is a set
of ordinal functions on A then g is an upper bound of S if f <; g for all
f €5, and g is a least upper bound of S if it is an upper bound and if g <; h
for every upper bound h.

The relation <; is also a partial ordering (different from <; unless T is
a prime ideal), and if I is o-complete then <; is well-founded. If I is the
nonstationary ideal on a regular uncountable cardinal «, then the rank of an
ordinal function f on & is the (Galvin-Hajnal) norm || f|].

The following lemma shows that for every n < s there is a canonical
function f, on & of norm n:
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Lemma 24.5. Let k be a reqular uncountable cardinal. There exist ordinal
functions f,, n < kT, on Kk such that

(i) fola) =0 and fyri(a) = fy(a) + 1, for all o < &,
(i) if n is a limit ordinal then f, is a least upper bound of {fe: €& < n}
in SINS'

The functions are unique up to =, and for every stationary set S C &,
I fnlls = .

Proof. Let (¢, : v < cfn) be some sequence with limit 5. If ¢fn < &, let

fal) = sup{fe, (@) : v < cfn}, and if cfy = r, let fyla) = sup{fe, (@) -
v < a} (for every limit ordinal o), the diagonal limit of fe, £ <n. O

For n > k™, canonical functions may or may not exist. The existence of f,
for all ordinals 7 is equiconsistent with a measurable cardinal. For the relation
between canonical functions and canonical stationary sets, see Exercise 24.10.

A subset A of a partially ordered set (P, <) is cofinal if for every p € P
there exists some a € A such that p < a. The cofinality of (P, <) is the small-
est size of a cofinal set (it need not be a regular cardinal—see Exercise 24.11).
The true cofinality of (P, <) is the least cardinality of a cofinal chain (if it
exists—see Exercise 24.12). The true cofinality is a regular cardinal (or 1 if
P has a greatest element).

Consider again an infinite set A, an ideal I on A, and an indexed set
{Va : @ € A} of limit ordinals.

Definition 24.6. A scale in [], 4 7a is a <7-increasing transfinite sequence
(fa : a < A) of functions in [], . 4 7, that is cofinal in J],. 4 7. in the partial
ordering <y.

If [T,ca Ve has a A-scale (i.e., a scale of length A) and X is a regular
cardinal then it has true cofinality A, and is A-directed, i.e., every set B C
[I.ca Ve of size <y has an upper bound. The ordinal function (7, : a € A)
is the least upper bound of [] . 4 7a; moreover, it is an exact upper bound:

Definition 24.7. In a partially ordered set (P, <), g is an ezact upper bound
of aset S if S is cofinal in the set {f € P: f < g}.

The following theorem is a precursor of the pcf theory. We note that the
pctf theory shows, among others, that different sequences (A, : n < w) with
the same limit will generally result in different cofinalities of ], An-
Theorem 24.8 (Shelah). Let k be a strong limit cardinal of cofinality w.
There exists an increasing sequence (A, : n < w) of regular cardinals with
limit k such that the true cofinality of [] An modulo the ideal of finite
sets is equal to k1.

n<w
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Proof. Let I be the ideal of finite subsets of w. We shall find the A,’s and
a kt-scale in [, A, in the partial ordering <;.

First we choose any increasing sequence k,, n < w, of regular cardinals
with limit x. As every subset of [],_,, &n of size x has an upper bound in
(Hn<w Kn,<r), we can construct inductively a <j-increasing k*-sequence
F = (fe : £ < k™) of functions in ], &,.

Lemma 24.9. There exists a function g : w — k that is an upper bound of F
in <r, and is <r-minimal among such upper bounds.

Proof. Let go = (kn : n < w); we shall construct a maximal transfinite <;-
decreasing sequence (g, ), of upper bounds of F. It suffices to show that the
length of the sequence (g, ), is not a limit ordinal: Then the last function is
<;-minimal.

Thus let ¥ be a limit ordinal, and let (g, : ¥ < ¥) be a <;-decreasing
sequence of upper bounds for F'. We shall find a function g such that g >1 f¢
for all £ < kT, and g <j g, for all v < 9.

First we claim that || < 2%, Thus assume that || > (2%°)* and consider
the partition G : [9]> — w defined as follows (for @ < f3):

G(a, B) = the least n such that g,(n) > gz(n).

By the Erdés-Rado Partition Theorem 9.6 there exists an infinite set of or-
dinals ap < @1 < ay < ... such that for some n, go,(n) > ga, (N) > ga,(n) >
..., a contradiction.

Let A =J,.,ran(g,) and let S = A“. Since [9] < 2%, we have |S| < 2%,
For every g € S, if g is not an upper bound for F', let £, be such that fe, £7 g.
Since |S| < 2%0, there is some n < kT greater than all the &;’s. Now let

g(n) = the least v € A such that v > f,(n).

The function g is an upper bound for F: If not then f;, £; g but fe, <;
fn <1 g. We complete the proof of the lemma by showing that g <; g, for
all v < 8. If v < ¥ then g,(n) > f,(n) for all but finitely many n and, since
gv(n) € A, we have g, > g. ]

Let g be the function given by Lemma 24.9. We claim that g is an exact
upper bound of F. If not, let f <; g be such that f £r f¢ for all . For
each £ < kT, let A¢ be the infinite set of all n such that f(n) > fe(n).
Since 2% < k, there exists an infinite set A, such that for kT many &’s,
f(n) > fe(n) for all @ € A. It follows that f[A > fe]A for every £ < kT,
and therefore the function ¢’ = flAUg[(w — A) <1 g is an upper bound of F
but ¢’ #r g, a contradiction.

Now, if ¢ is increasing with limit x and if every g(n) is a regular cardinal,
then we let A, = g(n) and are done. In general, all but finitely many g(n) are
limit ordinals; without loss of generality, all are. For each n, let Y, be a closed
unbounded subset of g(n) whose order-type is a regular cardinal 7,. Note that
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sup,, Yn = k; otherwise, | [, Y| < & and hence bounded by some fe. So let
(A 1 n < w) = (Y, : n < w) be an increasing subsequence of {(y,)p.
For each f € F', let h; be the function

hy(n) = the least @ € Y}, such that a > f(ky).

and let H = {hy : f € F}. Forevery f € [[,, Y5 there exists some h € H such
that f <r h. Also, |H| = kT since every smaller set of functions is bounded
by some f¢. Thus we can find in H a <j-increasing transfinite sequence
(he : € < k) such that for every f € [], Yy, there is a & with f <; he.
By copying [],, Y» onto [], An, we get a sequence (he : £ < kT) with the
required properties. O

As an application of Theorem 24.8 we give a short proof of Kunen’s The-
orem 17.7, due to Zapletal [1996].

Assume that j : V — M is elementary, with critical point x, and let
A = lim, (k). As X is a strong limit cardinal of cofinality w, let (A, : n < w)
be an increasing sequence of regular cardinals with limit A such that & < Ag
and that [], A, has a At-scale F = (f¢ : £ < AT) (modulo finite). Since
J(A) = A, we have j(A1) = AT, and j(F) is a At-scale in [], j(\n)-

Since j“AT is cofinal in j(AT) = AT, j“F is cofinal in j(F) and thus
in [],,7(An). However, let g € [],, j(An) be the function g(n) = sup j“A,;
we have g(n) < j(A,) because j(A,) is regular. If f € [[, A, then g >
J(f) pointwise because j(f) = j“f. Hence ¢ is an upper bound for j“F,
a contradiction. O

Toward the pcf theory, we shall now prove several results on ordinal func-
tions and scales. Let I be an ideal on A.

Lemma 24.10. If X\ > 2141 is a regular cardinal then every <p-increasing
A-sequence of ordinal functions on A has an exact upper bound.

Proof. Let F = (fo : @ < A) be <;-increasing. Let M be an elementary
submodel of Hy for a sufficiently large ¥ such that I € M, F € M, |M| = 24l
and M/Al ¢ M. For every a, let

go(a) = the least § € M such that 8 > fu(a) (a € A).

Since M4l C M, we have g, € M, and since |[M| < ), there exists some
f € M such that f = g, for A many a’s. Since (f4 ), is increasing and f >1 fo
for A many «’s, f is an upper bound of F'.

To show that whenever h <r f then h <; f, for some «, it is enough to
show this for every h € M. Thus let h € M be such that h <; f.

Let a be any a such that f = g,. For every a € A such that h(a) < g.(a)
we necessarily have h(a) < fa(a) because h(a) € M and g,(a) is the least
B € M such that 8 > fu(a). Hence h <1 fq. O
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If F is a set of ordinal functions on A and ¢ is an upper bound of F', then
we say that F'is bounded below g if it has an upper bound h <y g; F' is cofinal
in g if it is cofinal in [, ., g(a). If X € I'" then f <; g on X, etc., means
f <r1x g where IX is the ideal generated by I U {A — X}

Corollary 24.11. If X > 2l41 is regular, F = (f, : a < )\) is <j-increasing
and g is an upper bound of F, then either F' is bounded below g, or F is
cofinal in g, or A= X UY with X,Y € IT such that F is bounded below g
on X and is cofinal in g on Y.

Proof. Let f be an exact upper bound of F and let X = {a € A : f(a) <

9(a)}- O

Corollary 24.12. Let A > 214l be a reqular cardinal, let ~,, a € A, be
limit ordinals, and assume that HaEA Yo 8 A-directed in <j. Then either
[Toca Yo is AT -directed, or has a A-scale, or A = X UY with X,Y € It such
that [],ca Ya has a A-scale on X and is X -directed on Y.

Proof. Assume that [] . 4 7a is A-directed but not At-directed, and let S C
[I.c4 7a be such that |S| = A and S is not bounded. Using the A-directness,
we construct an increasing sequence F' = (f, : a < A) such that for every
f €S, there exists an a < A such that f <; f,. As F' is not bounded, there
exists some Z € I'" such that F is a scale on Z.

Now let Z be the collection of all Z € IT that have a M-scale, and for
each Z € Z let (fZ : a < \) be a Ascale on Z. Let S = {fZ : a < ),
Z € Z}; since 241 = X, we have |S| = \, and we can construct an increasing
A-sequence F' = (f, : @ < A) such that for every f € S there is an @ < A
with f SI fa-

Either F'is a scale, or A = X UY such that F'is bounded on X and cofinal
on Y. To complete the proof, we show that [, 4 Va is At-directed; i.e., that
for every set of size A is bounded on X. If not, we repeat the argument above
and find a Z C X that has a scale. This contradicts the fact that .S is bounded
on X. a

Definition 24.13. Let F = (f, : a < A), X regular, be a <;-increasing
sequence of ordinal functions on A and let v < A be a regular uncountable
cardinal. F' is y-rapid if for every 8 < X of cofinality 7 there exists a closed
unbounded set C' C 8 such that for every limit ordinal a < 83, fo >71 Scna,
where scnq is the pointwise supremum of {f¢(a) : { € CNa}:

scnala) =sup{fe(a) : £ € CNa} (a € A).

Lemma 24.14. Let F = (f, : a < A) be y-rapid, with v > |A|. For each
a€ A, let S, CA be such that |S,| < . Then there ezists an o < X with the

property that for every h € [[,c4 Sa, if b >1 fa, then h is an upper bound
of F.
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Proof. Assume by contradiction that for every a < A there exists an
h € [l ca Sa such that h >; f, but h is not an upper bound of F. By
induction, we construct a continuous increasing sequence a¢, { < 7, and
functions he € [[,c4 Sa such that for every &, fo, <1 he and fo.,, %1 he.
Let 8 = limg_s .

As F is ~y-rapid, there exists a closed unbounded C' C 3 such that f, >;
scna for every a € C. We may assume that ae € C for every € < 7y (otherwise
replace {ag}e<r by its intersection with C').

For each £ < v we have scna, <1 fae <1 he ;_41 fae,, and so there exists
some a¢ € A such that

scnag(ag) < fae(ag) < helag) < faei,(ag)-

As v > |AJ, there exist a set Z C +y of size v and some a € A such that a; = a
forall £ € Z. Now if { and n are in Z, such that {+1 < n, then a1 € CNay,
and we have

hE (a) < fa5+1 (a') < SCnay (a') < hn(a')-

This is a contradiction because |S,| < v while |Z] = 7. a

Corollary 24.15. If F = (fy : a < A) is y-rapid, with |A| <y < A, and if
f is the least upper bound of F, then cf f(a) > v for I-almost all a € A.

Proof. Let f be an upper bound of F, and assume that B = {a € A :
cf f(a) < v} € I'". We shall find an upper bound h of F such that h <y f
on B.

For a € B, let S, be a cofinal subset of f(a) of size < 7. By Lemma 24.14
there is an a < X such that for every h € [[,c5Sa, I >1 fo on B implies
that h is an upper bound of F' on B. Given this «, we consider a function
h € [[,cp Sa as follows: If f,(a) < f(a), let h(a) € S, be such that f,(a) <
h(a) < f(a). The function h is an upper bound of F on B, and h <j f
on B. O

Theorem 24.16 (Shelah). Let  be a regular uncountable cardinal, and let
I = Ins be the nonstationary ideal on k. Let (ne : & < k) be a continuous
increasing sequence with limit . Then H£<n Nye 11 has true cofinality R,y
(in <[).

We shall prove this theorem only under the assumption 2* < R, (we only
need the weaker version for the proof of Theorem 24.33). For the general
proof, see Burke and Magidor [1990].

Proof. Let A = R, . We wish to find a A-scale. It is not difficult to see that
[Te </ Xpet1 is A-directed. By Corollary 24.12 (as we assume 2% < A), if there
is no A-scale then there is a stationary set S C « such that [, g Ry 41 is
At-directed.

We shall construct a <j-increasing A-sequence in ngs Nye+1 that is -
rapid for all regular v < ;. For every limit ordinal 3 < A, let Cg C 3 be
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closed unbounded, of size cf 3. We construct F' = (f, : @ < A) by induction.
Let a be a limit ordinal. For each limit 8 > a, let sg be the pointwise
supremum of {f, : v € CgNa}. For eventually all £ < &, 5,(§) <N, ,, so
v € [lees Ryey1- Since [[ecgNpe11 is AT-directed, we can find f, so that
fa >1 8g on S for all limit 8 < A. This guarantees that F' is y-rapid for every
regular uncountable v < A.

By Lemma 24.10, F' has an exact upper bound g, and without loss of
generality, g(§) < R, 41 for all £ € S. We claim that g(£) > RN, 1 for almost
all £ € S, and hence F is a scale on S, contrary to the assumption on S. If
g(&) < N4 for stationary many &, then cf g(§) < X,,, and hence for some
v < Rypq, cf g(€) < v for stationary many &. This contradicts Corollary 24.15,
as F'is y-rapid for all v < A. O

The pcf Theory

Shelah’s pcf theory is the theory of possible cofinalities of ultraproducts of
sets of regular cardinals. Let A be a set of regular cardinals, and let D be
an ultrafilter on A. [TA = [[,c4{a : a € A} denotes the product {f :
dom(f) = A and f(a) € a}; the ultraproduct [ A/D is linearly ordered, and
cof D = cof [[ A/D is its cofinality.

Definition 24.17. If A is a set of regular cardinals, then
pcf A = {cof D : D is an ultrafilter on A}.

The set pcf A is a set of regular cardinals, includes A (for every a € A
consider the principal ultrafilter given by a), has cardinality at most 92!
and satisfies pcf(4; U As) = pef Ay U pef As.

We shall investigate the structure of pcf in the next section. In this section
we explore the relation between pcf and cardinal arithmetic. Instead of the
general theory we concentrate on the special case when A = {8,}5°,. We
prove the following theorem:

Theorem 24.18 (Shelah). If XN, is a strong limit cardinal then
max(pcf{R,, }°22,) = 2%,

A stronger theorem is true: If 2% < R, then max(pcf{X,}5,) = X¥;
again, we refer the reader to Burke and Magidor [1990].

We say that a set of regular cardinals A is an interval if it contains every
regular A such that min A < X\ < sup A.

Lemma 24.19. Let A be an interval of reqular cardinals such that min A =
(2140 *. Then pcf A is an interval.
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Proof. Let D be an ultrafilter on A and let A be a regular cardinal such that
min A < A < cof D. We shall find an ultrafilter £ on A such that cof E = A.

Let {fs : a < cof D} be a D-increasing sequence in [] A. Since A > 241,
the sequence has a least upper bound ¢ in <p (by Lemma 24.10). For each
a € Alet h(a) = cfg(a) and let S, be a cofinal subset of g(a) of order-
type h(a). It is easy to see that [[,., S./D has an increasing A-sequence
cofinal in g, and hence [],c 4 h(a)/D has a cofinal sequence {h, : a < A}.

For D-almost all a, h(a) > 2!41: This is because the number of functions
from A into 214 is less than A. Thus we may assume that h(a) € A for all
a € A. Let E be the ultrafilter on A defined by

E={XCA:h(X)eD}.

We now construct, by induction on «, functions g,, @ < A, such that the
sequence {gq 0 h : a < A} is D-increasing and cofinal in h. Then {g, : @ < A}
is E-increasing and cofinal in [ A/E. a

Corollary 24.20. If N, is a strong limit cardinal, then pcf{XN,}52, is an
interval and sup pcf{N,,}22 , < Ry, .

Proof. Apply Lemma 24.19 to the interval A = [(2%)* R,), and use
|pef A] < 22°° < R, 0

Toward the proof of Theorem 24.18, we assume that X, is strong limit
and let
A = sup pcf{N, }72,.

We shall show that 2% = A. Since cf 2% > R, (by Kénig’s Theorem) and
A < Ry, it follows that 28« is a successor cardinal, and therefore 28 =

max(pcf{R,;}22 ;).

Lemma 24.21. There ezists a family F of functions in [[,~ Ry, |[F| = A,
such that for every g € [[,_, Ny there is some f € F with g(n) < f(n) for
all n.

Proof. For every ultrafilter D on w choose a sequence (fP : a < cof D) that

is cofinal in [[)” (R, /D, and let F be the set of all f = max{f2',..., fOm}
where {Dy,..., Dy} is a finite set of ultrafilters and {a, ..., an} a finite set

of ordinals. Since A > N, > 22"°, we have |F| = A.

Assume, by contradiction, that there is a g € [] -, N, that is not ma-
jorized by any f € F. Thus if we let, for every D and every o, X2 = {n :
g(n) > fP(n)}, then the family { X2}, p has the finite intersection property,
and so extends to an ultrafilter U. Then g <y fU for some a, a contradic-
tion. a

Let us fix such a family F of size A, and let k& < w be such that 2%° < 8,
and A < Ry, . Let 9 be sufficiently large, and consider elementary submodels of
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(Hy, €, <) where < is some well-ordering of Hy. For every countable subset a
of R, we shall construct an elementary chain of models Mg, of length wy.
Each M¢ will have size N;, and will be such that M$ D a Uwy.

We choose M of size 8y so that M5 D aUwy. If @ < wy, is a limit ordinal,

we let M5 =z, Mg. Given M, we find Mg, as follows. Let
(24.6) Xa(n) =sup(MS Nwy) (all n > k),

the characteristic function of M$. There exists a function f$ € F such that
f&(n) > x%(n) for all n > k; let M3, be such that f§ € M3, ;.
Then we let M* = Mg, and

a<lwk
x*(n) = sup(M*® Nwy) (all n > k).

Lemma 24.22. If a and b are countable subsets of N, and if x* = x°, then
MenR, = MbNR,,.

Proof. By induction on n we show that M*N R, = M*NR,, for all n > k.
This is true for n = k; thus assume that this is true for n and prove it for
n + 1. Both M*NN,,;; and MPN N1 contain a closed unbounded subset of
the ordinal x*(n + 1) = x®(n + 1) (of cofinality X), and so there is a cofinal
subset C' of this ordinal such that C' C M® and C C M°. For every v > w,
in C there is a one-to-one function 7 that maps w, onto 7. If we let 7 be the
<-least such function in Hy, then 7 is both in M? and in M?. It follows that
YN M®* =~n M" Consequently, wyy1 N M?® = w, 1 N M® and the lemma
follows. O

We shall complete the proof of Theorem 24.18 by showing that the set
{x®:a C X, countable} has size at most \. Since each M® has X;, countable
subsets it will follow that there are at most A countable subsets of X, and
therefore 2% = .

For each a and each n we have

x*(n) = sup, ., Xa(n) =sup,,, fa(n).

If S is any subset of wy, of size N, then x®(n) = sup{f2(n) : « € S} and so
the set {f2:a € S} determines x°.

Lemma 24.23. There exists a family Fy\ of \ subsets of \, each of size Wy,
such that for every subset Z C X\ of size Ny, there exists an X € F\ such that
X CZ.

Proof. We prove (by induction on «) that for every ordinal « such that
2% < o < X there is a family F, C [a]™, |F,| < |a| such that for every
Z € [a]® there is an X € F, such that X C Z. This is true for a = 2%, If
« is not a cardinal, then F, can be obtained by a one-to-one transformation
from Fly. If a is a cardinal then since o < A < Ry, , we have cf a # Ry, and
it follows that F, = 3<a P has the required property. O
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Now we complete the proof of Theorem 24.18. For each countable subset a
of N, let Z, = {f%: a < wy}; each Z, is a subset of F, and |Z| = N;. Apply
Lemma, 24.23 to the set F (instead of \) and obtain a family F) C [F]** such
that for each a there exists some X € F) such that X C Z. Since |X| = Ry,
X determines x®. It follows that [{x®: a C X,, countable}| < \. a

The Structure of pcf

Let A be a set of regular cardinals and let pcf A denote the set of all possible
cofinalities of [] A. First we mention some facts about pcf:

(24.7) (i) A C pcf A.
(ii) If A; C Ay then pcf A C pef A,.
(iii) pcf(Ar U Az) = pef Ay Upcf A,.
(iv) |pef A] < 22
(v)

In Lemma 24.19 we showed:

v) suppcf A < |JT Al

(vi) If A is an interval and 214/ < min A then pcf A is an interval.

This is true in general, under the assumption |A| < min A (see Shelah [1994]).
In the following Lemma 24.24 we prove

(vii) If | pcf A] < min A then pcf(pef A) = pcf A.

Finally, Theorem 24.18 is true in general, and under weaker assumptions; we
state this without a proof.

(viii) If A is an interval without a greatest element and (min A)/4I <
sup A, then (sup A)!4! = max pef A.

For proof, see e.g. Burke and Magidor [1990].

Lemma 24.24. If |pcf A| < min A then pcf(pcf A) = pef A.

Proof. Let B = pcf A. For each A € B choose Dy on A such that cof Dy = A,

and let (f} : a < M) be cofinal in [[ A/Dy. Let u € pcf B; choose D on B

with cof D = p, and let (g, : @ < p) be cofinal in [[ B/D. Let
E={XCA:{AeB:X € Dy,}eD}.

E is an ultrafilter on A and we shall show that cof E = pu, thus proving
i € pcf A, and hence pcf B = B.
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For every a < p, let
ha(a) = supyep an()‘) (a) (all ¢ € A).

Since min A > |B|, we have hy(a) < a for all a € A. We will show that for
each h € [] A, eventually all h, are >g h. The we can find a subsequence of
(ho @ o < p) that is cofinal in [[A/E.

Let h € [T A. For each A € B there exists a g(A) < A such that h <p,
f g"( NE For eventually all a < 1 we have g <p g, and we claim that whenever
g <D 9o then h <g hg.

Let a be such that ¢ <p go. Let X = {a € A : h(a) < ho(a)}. If A is such
that g(\) < ga(\) then for Dy-almost all a, h(a) < f),,(a) < f, ()(a) <
ha(a) and hence a € X. Thus X € D), for D-almost all \, andso X € E. 0O

The fundamental theorem of the pcf theory is the following.

Theorem 24.25 (Shelah). If A is a set of reqular cardinals such that 2141 <
min A, then there exist sets By C A, A € pcf A, such that for every A € pcf A

(a) A =maxpcf Bj.

(b) X ¢ pet(A — By).

(c) [I{a : a € By} has a A-scale mod Jy where Jy is the ideal generated
by the sets B,, v < A.

(To see that Jy is an ideal, we observe that if X € Jy then X C B,, U
...UB,,, hence pcf X C pcfB,, U...UpcfB,, and so by (a), A ¢ pcf X.
Hence X # A.)

The theorem is true under the weaker assumption |A| < min A; see She-
lah [1994] or Burke and Magidor [1990].

Note that (a) and (b) can be formulated as follows:

(a) For every ultrafilter D on By, cof D < ); and there exists some D
on By such that cof D = .
(b) For every ultrafilter D on A, if cof D = X then By € D.

The sets By, A € pcf A, are called the generators of pcf A. It follows from
(a) and (b) that the cofinality of an ultrafilter on A is determined by which
generators it contains:

(24.8) cof D = the least A such that By € D.

Corollary 24.26. If 2141 < min A then |pcf A] < 2041,

Proof. The number of generators is at most 2/41. O
Corollary 24.27. If X, is strong limit then 2% < N(axo)+-

Proof. Corollary 24.26, Corollary 24.20 and Theorem 24.18. O
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Corollary 24.28. If 2141 < min A then pcf A has a greatest element.

Proof. Assume that pcf A does not have a greatest element. Then the set
{A — B, : X € pcf A} has the finite intersection property, and so extends to
an ultrafilter D. By (b), Beot p € D, a contradiction. |

Proof of Theorem 24.25. We shall apply the results on ordinal functions
proved earlier in this chapter. If I is an ideal on a set A of regular cardi-
nals then we say that I has a A-scale if [] A has a A-scale in <j; similarly,
we say that I is A-directed if ] A is A-directed in <j.

We construct the generators By by induction, so that for each cardinal k <
sup pcf A the following conditions are satisfied:

(24.9) (i) the ideal J, generated by {By : A < k and A € pcf A} is k-
directed;

(ii) if k ¢ pcf A then J, is kT -directed;

(iii) if k € pcf A and & is not a maximal element of pcf A then there
exists a B, € JI such that Jy has a k-scale on B,, and J,[By],
the ideal generated by J, U {B}, is a kT -directed ideal;

(iv) if K = max(pcf A) then .J, has a k-scale on A (and we let
B, =A).

If the conditions (24.9) are satisfied, then the sets By satisfy Theorem 24.25:

To prove (a), let A € pcf A. Choose an ultrafilter D on B) that extends
the dual filter of .Jy. Jy has a A-scale on B), and this scale is also a scale
for <p; therefore cof D = A, and so A € pcf By. Also, if D is any ultrafilter
on By, then either DN .Jy = () in which case cof D = ), or else there is some
v < Asuch that B, € D. If v is the least such v then D is an ultrafilter on B,
and DN J, = 0. Since J, has a v-scale on B,, we have cof D = v. In either
case, cof D < .

To prove (b), let D be an ultrafilter on A such that By ¢ D; we claim
that cof D # A. Either D 5 B) for some v < A in which case cof D < A, or
else DN Jy[By] # 0, and since Jy[B,] is AT-directed, D is A™-directed, and
we have cof D > .

Finally, (c) follows from (24.9)(iii) and (iv). We prove (24.9) by induction
on k < sup pcf A:

(i) If kK < min A then J, = {0} is k-directed. If  is a limit cardinal, then
Ji = Uprcr Jx and the claim follows easily. If K = At then either X ¢ pcf A
and J, = Jy is AT-directed by (ii), or A € pcf A and J, = Jy[B,] is AT~
directed by (iii).

(ii) Let k ¢ pcf A and & > min A; hence x > 24l If & is singular,
then it is easy to see that since J, is k-directed, it is k™ -directed. If & is
regular, assume by contradiction that J, is k-directed but not x™-directed.
By Corollary 24.12, J,; has a r-scale on some X € JI. Let D be any ultrafilter
on X such that DN.J,, = (). Then cof D = & and so x € pcf A, a contradiction.
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(iii) Let x € pcf A be such that k < sup pcf A. We claim that J,; is not
kt-directed and that .J,, does not have a k-scale on A. Then a B, exists by
Corollary 24.12. Assume by contradiction that J, is xT-directed, and let D
be any ultrafilter on A. If D 5 B), for some A < k, then cof D < k. Otherwise,
DnJ, =0 and since J, is kt-directed, D is xT-directed and so cof D > k.
In either case cof D # k, hence k ¢ pcf A, a contradiction.

Now assume that J,; does have a k-scale on A. Then for every ultrafilter D
on A, either D > B) for some X < k, and then cof D < k, or DN J, =0, so
D has a k-scale and cof D = k. Hence x = max(pcf A), a contradiction.

(iv) Let k = max(pcf A) and again assume, by contradiction, that J,, does
not have a scale on A. Then by Corollary 24.12 there exists a Y € JF such
that J,,[Y] is st -directed. If D is any ultrafilter on A such that DNJ,[Y] =0
then < p is kT-directed and so cof D > k. Hence & is not the maximal element
of pcf A, a contradiction. O

The same argument that shows that pcf A has a greatest element yields
the following property of pcf, called compactness:

Corollary 24.29. Let By, A € pcf A, be generators of pcf A. For every X C
A there exists a finite set {v1,...,v} C pcf X such that X C B,,U...UB,, .

Proof. Assume the contrary. Then {X — B, : v € pcf X} has the finite
intersection property and there exists an ultrafilter D on X such that B, ¢
D for all v € pcf X. If A\ = cof D then By, € D by Theorem 24.25(b),
a contradiction. O

We conclude this section with the following improvement of Theorem
24.16:

Corollary 24.30. Let k be a regular uncountable cardinal, and let N, be
a singular cardinal of cofinality Kk such that 2% < N,. Then there is a closed
unbounded set C C n such that max(pcf{Not1 : a € C}) = Npyq;
[Iocc Rat1 has true cofinality R,y mod I where I is the ideal of all bounded
subsets of C'.

Proof. Let Cy be any closed unbounded subset of 7 of order-type « such that
2% < Ny, where o = minCy. Let Ag = {Rq41 1 @ € Cp}, let A =N, and
let By be a generator for pcf Ay, for this A (by Theorem 24.16, A € pcf Ay).
Let X = {a € Cy : Ryy1 € Byr}. If D is any ultrafilter on Cj that extends
the closed unbounded filter, then by Theorem 24.16, cof Haecg Not1/D = A,
and by Theorem 24.25(b), X € D. Thus X contains a closed unbounded
set C. Let A ={XN4y1: @ € C}. By Theorem 24.25(a), max(pcf A) < A, and
therefore = .

Now let B,, v < A, denote the generators of pcf A. Every B, for v < X is
a bounded subset of A and so the ideal of all bounded subsets of A extends Jy,

the ideal generated by the B,, v < A. Thus [[,cc Rat1/I has a A-scale. O
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Transitive Generators and Localization

Let A be a set of regular cardinals with 24l < min A, let By, A € pcf A,
be generators for pcf A, and let J, be, for each £ < max(pcf A), the ideal
generated by {By : A < k}. The following shows that the ideals .J,, are
independent of the choice of generators for pcf A:

(24.10) For every X C A, X € J, if and only if cof D < k for every
ultrafilter D on X.

To see this, note first that if X € J, then X C B,, U...U B, for some
Vi,..., Uk < K, and so max(pcf X) < k. Conversely, if X ¢ J, then the set
{X — Bj : A < &} has the finite intersection property, and so there exists an
ultrafilter D on X such that By ¢ D for all A\ < k. By Theorem 24.25(b),
cof D > k. Each generator B) is uniquely determined up to equivalence
mod Jy; if B is any set such that B A By € Jy, then B also satisfies (a)
and (b) of Theorem 24.25. To see this, note that by (24.10), if X AY € Jy
then pcf X — A = pef Y — A; thus maxpcef B = A and A ¢ pcf(A — B).
We shall now produce generators for pcf that are transitive:

Lemma 24.31 (Transitive Generators). Let A be a set of regular cardi-
nals such that A = pcf A and (2141)t < min A. There exist generators By,
A € A, for pcf A with the property

(24.11) if u € By then B, C Bj.

In other words, the relation “u € By” of i and A is transitive. The lemma
holds under weaker assumptions on A; see Shelah [1994].

Proof. Let By, A € A, be generators for pcf A. We shall replace each By by
an equivalent generator By so that (24.11) is satisfied.

For each A € A there exists a sequence (f2 : a < A) of functions in [ A
that is < j,-increasing and is cofinal on By. Moreover, by Lemma 24.10 we
may assume that for each A and each a of cofinality greater than 241, s
an exact upper bound of {f} : 3 < a}.

Let k = (2|A|)+. Let 9 be sufficiently large, and consider elementary sub-
models of (Hy, €,<) where < is some well-ordering of Hy. Consider a con-
tinuous elementary chain

M0-<M1-<...-<Mn'<...'<M,.;:M'<H§

of models, each of size k, such that M, contains A, each X\ € A, all subsets
of A, each (f2 : a < \), every function from a subset of 4 into A<¥ and
such that

(24.12) (Mg 1€ <m) € Myt (all n < k).
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Let x,, n < k, be the characteristic functions of M,:
(24.13) Xn(A) =sup(M, NA) (for all A € A),

and let x = xx, the characteristic function of M. Each x, (n < k) belongs
to M, 11 and therefore to M. If £ < n then x¢(A) < x,(A) for all A € A, and
(Xxn(A) : p < k) is an increasing continuous sequence with limit x(A) < A.

We claim that for each A € A, x is the <, -exact upper bound of (f2 :
a € M N M) on By and consequently,

(24.14) f)?(k) (1) = x(u) for Jy-almost all u € Bj.

If « € MNAthen f) € M and so f2(u) < x(u) for all u € A. Hence x is
an upper bound of (f2 : a € M N \). To show that y is the <, -exact upper
bound on B,, it suffices to show that for each n < &, x, <y, f2 on B, for
some a € M N A, since yx is the pointwise supremum of {x, : n < s}, and
|A] < k. Thus let n < k; there exists an a < A such that x, <j, f2 on By,
and since M is an elementary submodel, there exists such an a in M.

Since cf x(\) = & > 2141, f;‘()\) is a <7, -exact upper bound of {f} : a €
M N A} on By, and (24.14) follows.

Now we let, for each A € A,

(24.15) By ={ne Bx: i) =x(w)};

if follows from (24.14) that Bj is Jx-equivalent to B).
The transitive generators B) are defined as follows:

(24.16) v € B, if and only if there exists a finite increasing sequence (with
k > 0) (vo,...,vk) such that vy = v, v, = X and v; € By, for
every i =0, ..., k— 1.

It is clear that B, is transitive, By C B,, and A = maxB,. It remains
to prove that By is Jy-equivalent to By; for that it suffices to show that
By € Jy\+ = JA[B,]-

For each v € B,, fix a finite sequence p(v) = (vo,...,v;) to sat-
isfy (24.16). Note that the function ¢ on By belongs to M. Let (gq : @ < \)
be the A-sequence of functions in [] A defined as follows:

If v ¢ By, we let go(v) = 0. If v € By then p(v) = (vp,...,v;) with
vo = v and v = A, and we consider the sequence (3o, . .., Bk}, where 3; < v;
for each i, obtained as follows (by descending induction):

(24.17) b =a,
Bi= i) G=k—1,...,0)
and let g, (v) = fBo.

As M is an elementary submodel and ¢ € M, the sequence (g, : @ < \)
is defined in M. Since Jy+ is AT-directed, there exists a function g € [] A4
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such that g, < g mod Jy+ for every a < A. Since M < Hy, such a function g
exists in M. Since g € M, we have g(v) < x(v) for all v and therefore g, < x
mod Jy+ for every a < .

Now let @ = x(X). We shall finish the proof by showing that g,(v) = x(v)
for every v € By. This implies that By € Jy+.

Solet v € By. Let (1, ..,v) = p(v), and let (Bo, ..., Bi) be the sequence
obtained in (24.17) for a = x(\). We claim that for each ¢, 3; = x(v;), and
therefore ga () = fo = x(v0) = x(¥).

For each i we have v; € B, and so by (24.15), f7** | (v;) = x(v;). For

Vit1? x(vig1)
i =k, we have By = a = x(\) = x(vt), and then for each i =k —1, ..., 0,
we have by (24.17)
Bi = faiwi) = £51, ) W) = x(v). O

Using transitive generators we now prove the Localization Lemma:

Lemma 24.32 (Localization). Let A be a set of regular cardinals such that
2Pl Al < min A, let X C pef A and let X € pef X. There exists a set W C X
such that |W| < |A| and such that A € pcf W.

Again, the Localization Lemma holds under the weaker assumption
| pef A| < min A.

Proof. First, since 21X < min X, there exist generators for pcf X, and in
particular there exists a set ¥ C X with max(pcfY) = . Let A = pcf A.
By (24.7)(vii) we have pcf A = A, and since 2/l < min A, we can find
transitive generators B,,, v € A, for pcf A.

For every v € Y, let B/ = B, N A. Since Y C pcf A, there exists an
ultrafilter D on A with cof D = v, and by Theorem 24.25, B,, € D. Hence
v € pcf B2 Let

E={BA:veY}.
Since v € pcf E forevery v € Y, wehave Y C pcf E, hence pcf Y C pcf pef E,
and since (by (24.7)(vil)) pcfpcf E = pcf E, we have pcfY C pcf E. In
particular, A € pcf E.

Since E C A, there exists a set W C Y of size < |A4| such that E C
U{B : v € W}. We shall prove that \ € pcf W.

Assume, by contradiction, that A ¢ pcf W. By compactness (Corol-
lary 24.29) there exist Ay,...,\, € pcf W such that W C By, U...UB,,_,
and since maxpcf W < maxpcfY = A, we have \; < Aforalli=1, ..., n.
Now

EcU{B,:veW}CU{By:veB\}U...UU{B,:v € By, },

and since, by transitivity (Lemma 24.31), |
have

veB, B, C B, for every u, we

ECBMU...UB)‘H.

It follows that pcf E C pcf(By, U...U By, ) = pcf By, U...Upcf By, , and
so max(pcf E) < max{A1,...,\n} < A, a contradiction. a
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Shelah’s Bound on 2%«

As an application of the pcf theory, we shall now present the following result
of Shelah:

Theorem 24.33 (Shelah). If X, is a strong limit cardinal then 2% < X,

Proof. Let us assume that R, is strong limit. We already know, by Corol-
lary 24.27, that 2%« = maxpcf{R,}>°, < Ry _. We shall prove that

max pef{N, 172, < Ny,.
Let ¢ be the ordinal such that 2%~ = Ry, 1; we shall prove that ¥ < w,.

Lemma 24.34. There exists an ordinal function on P(9) with the following
properties:

(24.18) (i) If X CY then F(X) < F(Y).
(ii) For every limit ordinal 1 < ¥ of uncountable cofinality there is
a closed unbounded set C C n such that F(C) =n.
(iii) If X C 9 has order-type wy then there exists some v € X such
that F(X Nv) > sup X.

Proof. Let X C o and consider the set A = {N¢1; : € € X}. As 2141 = x;,
for some finite k, max(pcf A) exists and is equal to some N, y;. We define
F(X)=n.

It is clear that X C Y implies F(X) < F(Y) and that F(X) > sup X.

Property (ii) follows from Corollary 24.30. If k = cf 5 then k < R, and so
2% < R, <N, and the corollary applies.

Property (iii) is a consequence of the Localization Lemma 24.32: If X C o
then {Neiy : € € X} C pef{R,}3, and since 2/Pef{¥atal < 22 < R,
Lemma 24.32 applies (with e.g. A = N, y; where n = supX) and X has
a countable subset W such that F(W) > sup X. a

We complete the proof of Shelah’s Theorem by showing that ¢ < wy.

Assume, by contradiction, that ¥ > w4. Let (Cy, : a € ng) be a club-
guessing sequence (see Theorem 23.3). Each C, is a closed unbounded subset
of a, and for every closed unbounded C' C ws, the set {a € E;ff :Cy CC}is
stationary.

Let M,, a < ws, be a continuous elementary chain of models of size N3
that contain the family {Cy}q, are closed under F, such that (M, : £ < a) €
Mgy for each a, and that for each a, n, = My Nwy is an ordinal. Let
N : ws — wyg be the continuous function n(a) = n,. By (24.18)(ii) there
is a closed unbounded set C' C ws such that F(n“C) = sup,n.. Let o €
E;ff be such that C, C C. By (24.18)(iii) there exists a < a such that
F(n*(Canp)) > n(a). Let X =n*“(Ca N p).

Since C, € M, and 5B € M,, we have X € M,. Since X C n“C we
have F(X) < F(n“C) < ws4. As M, is closed under F, we have F(X) € M,,
and since wg N M, = n(a), it follows that F(X) < n(a), a contradiction. O
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Exercises

24.1. If 8 < wi and if 2% < N, 4 for a stationary set of a’s, then 281 < R, 1 5.
[By induction on 8: If p(a) < B on a stationary set, then ||| < 3.]

24.2. If B < wy, if 2% < R, and if R§e < R,4p for a stationary set of a’s, then
Nﬁi <Ry 48

24.3. If 2%« < N, holds for all cardinals of cofinality w, then the same holds for
all singular cardinals.

24.4. If 8y < cfR, < N, if B < cfR,, and if 2% < R,45 for all @ < 7, then
2%n < N”+B.

24.5. If 2%« < Nota+1 for a stationary set of o < wi, then N1 < Ny twp+1-
[If p(a) = a for all @ < wy, then ||¢|| = wi.]

24.6. If 2%w1+e < Ry tata for all & < wi, then 2%1491 < Ry 4o 1wy -
[Use the sets Ay = wu;+a]

24.7. If 2% < R, and if R}? < Roqaq1 for all @ < wi, then YL < Ry 4oy 41

24.8. Iffn is a strong limit cardinal, K = X,,, and cf K > Ry, then 2" < R,, where
v = ()T

24.9. If R; < ofk < & and if A\*T% < & for all A < &, then % < N,, where
v = (Il )"

The next exercise uses the notation from Chapter 8. Let x be a regular uncount-
able cardinal, let Mo = &, My41 = Tr(My), My =\, o5, Me, or My = A, ) M,
(if cfn = k) as long as M), is stationary.

24.10. Let f,;, n < &, be the canonical functions on . Let S, = {a < k : o(a) =
fn(@)}. Show that S, = M,,— M, 41 mod Ins and that o(S) = n for every stationary
S CSy.

The sets S, are the canonical stationary sets (of order n).
24.11. Find a partially ordered set of cofinality N, ; of cofinality 1, 2, 3, etc.
24.12. The lexicographical ordering w x wi does not have true cofinality.

24.13. Let I = Ins be the nonstationary ideal on wi, let ¢y, v < w1, be the
constant functions (with value v) on w1, and let d(a) = a be the diagonal function.
The function d is a least upper bound, but not an exact upper bound of the set
{¢y 17 <wi},in <.

Historical Notes

The Galvin-Hajnal Theorem appeared in [1975]. Shelah’s investigation leading to
the pcf theory started in [1978], and the book [1982] contains the first proof of
a bound on 2%~. In a sequence of papers starting in 1978, Shelah developed the
theory of possible cofinalities. A complete presentation is in his book [1994].

There are several papers that give an exposition and/or simplified proofs of
Shelah’s results; we mention Burke and Magidor [1990] and Jech [1992].



