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The Probability Background

2.1 Probability and Measure

The mathematical framework for statistical decision theory is provided by the
theory of probability, which in turn has its foundations in the theory of measure
and integration. The present chapter serves to define some of the basic concepts of
these theories, to establish some notation, and to state without proof some of the
principal results which will be used throughout Chapters 3–9. In the remainder
of this chapter, certain special topics are treated in more detail. Basic notions of
convergence in probability theory which will be needed for large sample statistical
theory are deferred to Section 11.2.

Probability theory is concerned with situations which may result in different
outcomes. The totality of these possible outcomes is represented abstractly by
the totality of points in a space Z. Since the events to be studied are aggregates
of such outcomes, they are represented by subsets of Z. The union of two sets
C1, C2 will be denoted by C1 ∪C2, their intersection by C1 ∩C2, the complement
of C by Cc = Z − C, and the empty set by 0. The probability P (C) of an event
C is a real number between 0 and 1; in particular

P (0) = 0 and P (Z) = 1 (2.1)

Probabilities have the property of countable additivity,

P
(⋃

Ci
)

=
∑

P (Ci) if Ci ∩ Cj = 0 for all i 	= j. (2.2)

Unfortunately it turns out that the set functions with which we shall be con-
cerned usually cannot be defined in a reasonable manner for all subsets of Z
if they are to satisfy (2.2). It is, for example, not possible to give a reasonable
definition of “area” for all subsets of a unit square in the plane.
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The sets for which the probability function P will be defined are said to be
“measurable.” The domain of definition of P should include with any set C its
complement Cc, and with any countable number of events their union. By (2.1),
it should also include Z. A class of sets that contains Z and is closed under
complementation and countable unions is a σ-field. Such a class is automatically
also closed under countable intersections.

The starting point of any probabilistic considerations is therefore a space Z,
representing the possible outcomes, and a σ-field C of subsets of Z, representing
the events whose probability is to be defined. Such a couple (Z, C) is called
a measurable space, and the elements of C constitute the measurable sets. A
countably additive nonnegative (not necessarily finite) set function µ defined
over C and such that µ(0) = 0 is called a measure. If it assigns the value 1 to Z,
it is a probability measure. More generally, µ is finite if µ(Z) < ∞ and σ-finite if
there exist C1, C2, . . . in C (which may always be taken to be mutually exclusive)
such that ∪Ci = Z and µ(Ci) < ∞ for i = 1, 2, . . . . Important special cases are
provided by the following examples.

Example 2.1.1 (Lebesgue measure) Let Z be the n-dimensional Euclidean
space En, and C the smallest σ-field containing all rectangles1

R = {(z1, . . . , zn) : ai < zi ≤ bi, i = 1, . . . , n}.

The elements of C are called the Borel sets of En. Over C a unique measure µ
can be defined, which to any rectangle R assigns as its measure the volume of R,

µ(R) =
n∏
i=1

(bi − ai).

The measure µ can be completed by adjoining to C all subsets of sets of measure
zero. The domain of µ is thereby enlarged to a σ-field C′, the class of Lebesgue-
measurable sets. The term Lebesgue-measure is used for µ both when it is defined
over the Borel sets and when it is defined over the Lebesgue-measurable sets.

This example can be generalized to any nonnegative set function ν, which is
defined and countably additive over the class of rectangles R. There exists then,
as before, a unique measure µ over (Z, C) that agrees with ν for all R. This
measure can again be completed; however, the resulting σ-field depends on µ and
need not agree with the σ-field C′ obtained above.

Example 2.1.2 (Counting measure) Suppose the Z is countable, and let C
be the class of all subsets of Z. For any set C, define µ(C) as the number of
elements of C if that number is finite, and otherwise as +∞. This measure is
sometimes called counting measure.

In applications, the probabilities over (Z, C) refer to random experiments or
observations, the possible outcomes of which are the points z ∈ Z. When record-
ing the results of an experiment, one is usually interested only in certain of its

1If π(z) is a statement concerning certain objects z, then {z : π(z)} denotes the set
of all those z for which π(z) is true.
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aspects, typically some counts or measurements. These may be represented by a
function T taking values in some space T .

Such a function generates in T the σ-field B′ of sets B whose inverse image

C = T−1(B) = {z : z ∈ Z, T (z) ∈ B}

is in C, and for any given probability measure P over (Z, C) a probability measure
Q over (T ,B′) defined by

Q(B) = P (T−1(B)). (2.3)

Frequently, there is given a σ-field B of sets in T such that the probability
of B should be defined if and only if B ∈ B. This requires that T−1(B) ∈ C
for all B ∈ B, and the function (or transformation) T from (Z, C) into2(T ,B) is
then said to be C-measurable. Another implication is the sometimes convenient
restriction of probability statements to the sets B ∈ B even though there may
exist sets B /∈ B for which T−1(B) ∈ C and whose probability therefore could be
defined.

Of particular interest is the case of a single measurement in which the function
of T is real-valued. Let us denote it by X, and let A be the class of Borel sets
on the real line X . Such a measurable real-valued X is called a random variable,
and the probability measure it generates over (X ,A) will be denoted by PX and
called the probability distribution of X. The value this measure assigns to a set
A ∈ A will be denoted interchangeably by PX(A) and P (X ∈ A). Since the
intervals {x : x ≤ a} are in A, the probabilities F (a) = P (X ≤ a) are defined for
all a. The function F , the cumulative distribution function (cdf) of X, is nonde-
creasing and continuous on the right, and F (−∞) = 0, F (+∞) = 1. Conversely,
if F is any function with these properties, a measure can be defined over the
intervals by P{a < X ≤ b} = F (b) − F (a). It follows from Example 2.1.1 that
this measure uniquely determines a probability distribution over the Borel sets.
Thus the probability distribution PX and the cumulative distribution function F
uniquely determine each other. These remarks extend to probability distributions
over n-dimensional Euclidean space, where the cumulative distribution function
is defined by

F (a1, . . . , an) = P{X1 ≤ a1, . . . , Xn ≤ an}.

In concrete problems, the space (Z, C), corresponding to the totality of possi-
ble outcomes, is usually not specified and remains in the background. The real
starting point is the set X of observations (typically vector-valued) that are be-
ing recorded and which constitute the data, and the associated measurable space
(X ,A), the sample space. Random variables or vectors that are measurable trans-
formations T from (X ,A) into some (T ,B) are called statistics. The distribution
of T is then given by (2.3) applied to all B ∈ B. With this definition, a statistic
is specified by the function T and the σ-field B. We shall, however, adopt the
convention that when a function T takes on its values in a Euclidean space, unless
otherwise stated the σ-field B of measurable sets will be taken to be the class of

2The term into indicates that the range of T is in T ; if T (Z) = T , the transformation
is said to be from Z onto T .
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Borel sets. It then becomes unnecessary to mention it explicitly or to indicate it
in the notation.

The distinction between statistics and random variables as defined here is
slight. The term statistic is used to indicate that the quantity is a function of
more basic observations; all statistics in a given problem are functions defined
over the same sample space (X ,A). On the other hand, any real-valued statistic
T is a random variable, since it has a distribution over (T ,B), and it will be
referred to as a random variable when its origin is irrelevant. Which term is used
therefore depends on the point of view and to some extent is arbitrary.

2.2 Integration

According to the convention of the preceding section, a real-valued function f
defined over (X ,A) is measurable if f−1(B) ∈ A for every Borel set B on the
real line. Such a function f is said to be simple if it takes on only a finite number
of values. Let µ be a measure defined over (X ,A), and let f be a simple function
taking on the distinct values a1, . . . , am on the sets A1, . . . , Am, which are in A,
since f is measurable. If µ(Ai) < ∞ when ai 	= 0, the integral of f with respect
to µ is defined by ∫

f dµ =
∑

aiµ(Ai). (2.4)

Given any nonnegative measurable function f , there exists a nondecreasing
sequence of simple functions fn converging to f . Then the integral of f is defined
as ∫

f dµ = lim
n→∞

∫
fn dµ, (2.5)

which can be shown to be independent of the particular sequence of fn’s chosen.
For any measurable function f its positive and negative parts

f+(x) = max[f(x), 0] and f−(x) = max[−f(x), 0] (2.6)

are also measurable, and

f(x) = f+(x) − f−(x).

If the integrals of f+ and f− are both finite, then f is said to be integrable, and
its integral is defined as ∫

f dµ =
∫
f+ dµ−

∫
f− dµ.

If of the two integrals one is finite and one infinite, then the integral of f is
defined to be the appropriate infinite value; if both are infinite, the integral is
not defined.

Example 2.2.1 Let X be the closed interval [a, b], A be the class of Borel sets or
of Lebesgue measurable sets in X , and µ be Lebesgue measure. Then the integral
of f with respect to µ is written as

∫ b
a
f(x) dx, and is called the Lebesgue integral

of f . This integral generalizes the Riemann integral in that it exists and agrees
with the Riemann integral of f whenever the latter exists.
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Example 2.2.2 Let X be countable and consist of the points x1, x2, . . . ; let A
be the class of all subsets of X , and let µ assign measure bi to the point xi. Then
f is integrable provided

∑
f(xi)bi converges absolutely, and

∫
f dµ is given by

this sum.

Let PX be the probability distribution of a random variable X, and let T be a
real-valued statistic. If the function T (x) is integrable, its expectation is defined
by

E(T ) =
∫
T (x) dPX(x). (2.7)

It will be seen from Lemma 2.3.2 in Section 2.3 below that the integration can be
carried out alternatively in t-space with respect to the distribution of T defined
by (2.3), so that also

E(T ) =
∫
t dPT (t). (2.8)

The definition (2.5) of the integral permits the basic convergence theorems.

Theorem 2.2.1 Fatou’s Lemma Let fn be a sequence of measurable functions
such that fn(x) ≥ 0 and fn(x) → f(x), except possibly on a set of x values having
µ measure 0. Then, ∫

fdµ ≤ lim inf
∫
fndµ .

Theorem 2.2.2 Let fn be a sequence of measurable functions, and let fn(x) →
f(x), except possibly on a set of x values having µ measure 0. Then∫

fn dµ →
∫
f dµ

if any one of the following conditions holds:

(i) Lebesgue Monotone Convergence Theorem: the fn’s are nonneg-
ative and the sequence is nondecreasing;

or

(ii) Lebesgue Dominated Convergence Theorem: there exists an
integrable function g such that |fn(x)| ≤ g(x) for n and x.

or

(iii) General Form: there exist gn and g with |fn| ≤ gn, gn(x) → g(x)
except possibly on a µ null set, and

∫
gndµ →

∫
gdµ.

Corollary 2.2.1 Vitali’s Theorem Suppose fn and f are real-valued measur-
able functions with fn(x) → f(x), except possibly on a set having µ measure 0.
Assume

lim sup
n

∫
f2
n(x)dµ(x) ≤

∫
f2(x)dµ(x) < ∞ .
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Then, ∫
|fn(x) − f(x)|2dµ(x) → 0 .

For a proof of this result, see Theorem 6.1.3 of Hájek, Sidák, and Sen (1999).
For any set A ∈ A, let IA be its indicator function defined by

IA(x) = 1 or 0 as x ∈ A or x ∈ Ac, (2.9)

and let ∫
A

f dµ =
∫
fIA dµ. (2.10)

If µ is a measure and f a nonnegative measurable function over (X ,A), then

ν(A) =
∫
A

f dµ (2.11)

defines a new measure over (X ,A). The fact that (2.11) holds for all A ∈ A is
expressed by writing

dν = f dµ or f =
dν

dµ
. (2.12)

Let µ and ν be two given σ-finite measures over (X ,A). If there exists a function
f satisfying (2.12), it is determined through this relation up to sets of measure
zero, since ∫

A

f dµ =
∫
A

g dµ for all A ∈ A

implies that f = g a.e. µ.3 Such an f is called the Radon–Nikodym derivative of
ν with respect to µ, and in the particular case that ν is a probability measure,
the probability density of ν with respect to µ.

The question of existence of a function f satisfying (2.12) for given measures µ
and ν is answered in terms of the following definition. A measure ν is absolutely
continuous with respect to µ if

µ(A) = 0 implies ν(A) = 0.

Theorem 2.2.3 (Radon–Nikodym) If µ and ν are σ-finite measures over
(X ,A), then there exists a measurable function f satisfying (2.12) if and only
if ν is absolutely continuous with respect to µ.

The direct (or Cartesian) product A×B of two sets A and B is the set of all
pairs (x, y) with x ∈ A, y ∈ B. Let (X ,A) and (Y,B) be two measurable spaces,
and let A × B be the smallest σ-field containing all sets A× B with A ∈ A and
B ∈ B. If µ and ν are two σ-finite measures over (X ,A) and (Y,B) respectively,

3A statement that holds for all points x except possibly on a set of µ-measure zero
is said to hold almost everywhere µ, abbreviated a.e. µ; or to hold a.e. (A, µ) if it is
desirable to indicate the σ-field over which µ is defined.
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then there exists a unique measure λ = µ × ν over (X × Y,A × B), the product
of µ and ν, such that for any A ∈ A, B ∈ B,

λ(A×B) = µ(A)ν(B). (2.13)

Example 2.2.3 Let X ,Y be Euclidean spaces of m and n dimensions, and let
A,B be the σ-fields of Borel sets in these spaces. Then X × Y is an (m + n)-
dimensional Euclidean space, and A × B the class of its Borel sets.

Example 2.2.4 Let Z = (X,Y ) be a random variable defined over (X × Y,A ×
B), and suppose that the random variables X and Y have distributions PX , PY

over (X ,A) and (Y,B). Then X and Y are said to be independent if the
probability distribution PZ of Z is the product PX × PY .

In terms of these concepts the reduction of a double integral to a repeated one
is given by the following theorem.

Theorem 2.2.4 (Fubini) Let µ and ν be σ-finite measures over (X ,A) and
(Y,B) respectively, and let λ = µ × ν. If f(x, y) is integrable with respect to λ,
then

(i) for almost all (ν) fixed y, the function f(x, y) is integrable with respect to µ,

(ii) the function
∫
f(x, y) dµ(x) is integrable with respect to ν, and∫
f(x, y) dλ(x, y) =

∫ [∫
f(x, y) dµ(x)

]
dν(y). (2.14)

2.3 Statistics and Subfields

According to the definition of Section 2.1, a statistic is a measurable transfor-
mation T from the sample space (X ,A) into a measurable space (T ,B). Such a
transformation induces in the original sample space the subfield4

A0 = T−1(B) =
{
T−1(B) : B ∈ B

}
. (2.15)

Since the set T−1[T (A)] contains A but is not necessarily equal to A, the σ-field
A0 need not coincide with A and hence can be a proper subfield of A. On the other
hand, suppose for a moment that T = T (X ), that is, that the transformation T
is onto rather than into T . Then

T
[
T−1(B)

]
= B for all B ∈ B, (2.16)

so that the relationship A0 = T−1(B) establishes a 1:1 correspondence between
the sets of A0 and B, which is an isomorphism—that is, which preserves the set
operations of intersection, union, and complementation. For most purposes it is
therefore immaterial whether one works in the space (X ,A0) or in (T ,B). These
generate two equivalent classes of events, and therefore of measurable functions,
possible decision procedures, etc. If the transformation T is only into T , the above

4We shall use this term in place of the more cumbersome “sub-σ-field.”
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1:1 correspondence applies to the class B′ of subsets of T ′ = T (X ) which belong
to B, rather than to B itself. However, any set B ∈ B is equivalent to B′ = B∩T ′

in the sense that any measure over (X ,A) assigns the same measure to B′ as to
B. Considered as classes of events, A0 and B therefore continue to be equivalent,
with the only difference that B contains several (equivalent) representations of
the same event.

As an example, let X be the real line and A the class of Borel sets, and let
T (x) = x2. Let T be either the positive real axis or the whole real axis, and let
B be the class of Borel subsets of T . Then A0 is the class of Borel sets that are
symmetric with respect to the origin. When considering, for example, real-valued
measurable functions, one would, when working in T -space, restrict attention
to measurable function of x2. Instead, one could remain in the original space,
where the restriction would be to the class of even measurable functions of x.
The equivalence is clear. Which representation is more convenient depends on
the situation.

That the correspondence between the sets A0 = T−1(B) ∈ A0 and B ∈ B
establishes an analogous correspondence between measurable functions defined
over (X ,A0) and (T ,B) is shown by the following lemma.

Lemma 2.3.1 Let the statistic T from (X ,A) into (T ,B) induce the subfield A0.
Then a real-valued A-measurable function f is A0-measurable if and only if there
exists a B-measurable function g such that

f(x) = g[T (x)]

for all x.

Proof. Suppose first that such a function g exists. Then the set

{x : f(x) < r} = T−1({t : g(t) < r})

is in A0, and f is A0-measurable. Conversely, if f is A0-measurable, then the sets

Ain =
{
x :

i

2n
< f(x) ≤ i+ 1

2n

}
, i = 0,±1,±2, . . . ,

are (for fixed n) disjoint sets in A0 whose union is X , and there exist Bin ∈ B
such that Ain = T−1(Bin). Let

B∗
in = Bin ∩ {

⋃
j �=i

Bjn}c .

Since Ain and Ajn are mutually exclusive for i 	= j, the set T−1(Bin ∩ Bjn) is
empty and so is the set T−1(Bin ∩ {B∗

in}c). Hence, for fixed n, the sets B∗
in are

disjoint, and still satisfy Ain = T−1(B∗
in). Defining

fn(x) =
i

2n
if x ∈ Ain, i = 0 ± 1,±2, . . . ,

one can write

fn(x) = gn[T (x)],
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where

gn(t) =


i

2n for t ∈ B∗
in, i = 0 ± 1,±2, . . . ,

0 otherwise.

Since the functions gn are B-measurable, the set B on which gn(t) converges to
a finite limit is in B. Let R = T (X ) be the range of T . Then for t ∈ R,

lim gn[T (x)] = lim fn(x) = f(x)

for all x ∈ X so that R is contained in B. Therefore, the function g defined
by g(t) = lim gn(t) for t ∈ B and g(t) = 0 otherwise possesses the required
properties.

The relationship between integrals of the functions f and g above is given by
the following lemma.

Lemma 2.3.2 Let T be a measurable transformation from (X ,A) into (T ,B), µ
a σ-finite measure over (X ,A), and g a real-valued measurable function of t. If
µ∗ is the measure defined over (T ,B) by

µ∗(B) = µ
[
T−1(B)

]
for all B ∈ B, (2.17)

then for any B ∈ B, ∫
T−1(B)

g[T (x)] dµ(x) =
∫
B

g(t) dµ∗(t) (2.18)

in the sense that if either integral exists, so does the other and the two are equal.

Proof. Without loss of generality let B be the whole space T . If g is the indicator
of a set B0 ∈ B, the lemma holds, since the left- and right-hand sides of (2.18)
reduce respectively to µ[T−1(B0)] and µ∗(B0), which are equal by the definition
of µ∗. If follows that (2.18) holds successively for all simple functions, for all
nonnegative measurable functions, and hence finally for all integrable functions.

2.4 Conditional Expectation and Probability

If two statistics induce the same subfield A0, they are equivalent in the sense of
leading to equivalent classes of measurable events. This equivalence is particu-
larly relevant to considerations of conditional probability. Thus if X is normally
distributed with zero mean, the information carried by the statistics |X|, X2,
e−X2

, and so on, is the same. Given that |X| = t, X2 = t2, e−X2
= e−t2 , it

follows that X is ±t, and any reasonable definition of conditional probability will
assign probability 1

2 to each of these values. The general definition of conditional
probability to be given below will in fact involve essentially only A0 and not the
range space T of T . However, when referred to A0 alone the concept loses much
of its intuitive meaning, and the gap between the elementary definition and that
of the general case becomes unnecessarily wide. For these reasons it is frequently
more convenient to work with a particular representation of a statistic, involving
a definite range space (T ,B).
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Let P be a probability measure over (X ,A), T a statistic with range space
(T ,B), and A0 the subfield it induces. Consider a nonnegative function f which is
integrable (A, P ), that is A-measurable and P -integrable. Then

∫
A
f dP is defined

for all A ∈ A and therefore for all A0 ∈ A0. If follows from the Radon–Nikodym
theorem (Theorem 2.2.3) that there exists a function f0 which is integrable
(A0, P ) and such that∫

A0

f dP =
∫
A0

f0 dP for all A0 ∈ A0, (2.19)

and that f0 is unique (A0, P ). By Lemma 2.3.1, f0 depends on x only through
T (x). In the example of a normally distributed variable X with zero mean, and
T = X2, the function f0 is determined by (2.19) holding for all sets A0 that are
symmetric with respect to the origin, so that f0(x) = 1

2 [f(x) + f(−x)].
The function f0 defined through (2.19) is determined by two properties:

(i) Its average value over any set A0 with respect to P is the same as that of f ;

(ii) It depends on x only through T (x) and hence is constant on the sets Dx over
which T is constant.

Intuitively, what one attempts to do in order to construct such a function is
to define f0(x) as the conditional P -average of f over the set Dx. One would
thereby replace the single averaging process of integrating f represented by the
left-hand side with a two-stage averaging process such as an iterated integral.
Such a construction can actually be carried out when X is a discrete variable
and in the regular case considered in Section 1.9; f0(x) is then just the condi-
tional expectation of f(X) given T (x). In general, it is not clear how to define
this conditional expectation directly. Since it should, however, possess properties
(i) and (ii), and since these through (2.19) determine f0 uniquely (A0, P ), we
shall take f0(x) of (2.19) as the general definition of the conditional expectation
E[f(X) | T (x)]. Equivalently, if f0(x) = g[T (x)], one can write

E[f(X) | t] = E[f(X) | T = t] = g(t),

so that E[f(X) | t] is a B-measurable function defined up to equivalence (B, PT ).
In the relationship of integrals given in Lemma 2.3.2, if µ = PX , then µ∗ = PT ,
and it is seen that the function g can be defined directly in terms of f through∫

T−1(B)
f(x) dPX(x) =

∫
B

g(t) dPT (t) for all B ∈ B, (2.20)

which is equivalent to (2.19).
So far, f has been assumed to be nonnegative. In the general case, the

conditional expectation of f is defined as

E[f(X) | t] = E[f+(X) | t] − E[f−(X) | t].

Example 2.4.1 (Order statistics) Let X1, . . . , Xn be identically and inde-
pendently distributed random variables with continuous distribution function,
and let

T (x1, . . . , xn) = (x(1), . . . , x(n))
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where x(1) ≤ · · · ≤ x(n) denote the ordered x’s. Without loss of generality one
can restrict attention to the points with x(1) < · · · < x(n), since the probability
of two coordinates being equal is 0. Then X is the set of all n-tuples with distinct
coordinates, T the set of all ordered n-tuples, and A and B are the classes of
Borel subsets of X and T . Under T−1 the set consisting of the single point a =
(a1, . . . , an) is transformed into the set consisting of the n! points (ai1 , . . . , ain)
that are obtained from a by permuting the coordinates in all possible ways. It
follows that A0 is the class of all sets that are symmetric in the sense that if A0

contains a point x = (x1, . . . , xn), then it also contains all points (xi1 , . . . , xin).
For any integrable function f , let

f0(x) =
1
n!

∑
f(xi1 , . . . , xin),

where the summation extends over the n! permutations of (x1, . . . , xn). Then f0
is A0-measurable, since it is symmetric in its n arguments. Also∫

A0

f(x1, . . . , xn) dP (x1) . . . dP (xn) =
∫
A0

f(xi1 , . . . , xin) dP (x1) . . . dP (xn),

so that f0 satisfies (2.19). It follows that f0(x) is the conditional expectation of
f(X) given T (x).

The conditional expectation of f(X) given the above statistic T (x) can also be
found without assuming the X’s to be identically and independently distributed.
Suppose that X has a density h(x) with respect to a measure µ (such as Lebesgue
measure), which is symmetric in the variables x1, . . . , xn in the sense that for any
A ∈ A it assigns to the set {x : (xi1 , . . . , xin) ∈ A} the same measure for all
permutations (i1, . . . , in). Let

f0(x1, . . . , xn) =
∑
f(xi1 , . . . , xin)h(xi1 , . . . , xin)∑

h(xi1 , . . . , xin)
;

here and in the sums below the summation extends over the n! permutations
of (x1, . . . , xn). The function f0 is symmetric in its n arguments and hence A0-
measurable. For any symmetric set A0, the integral∫

A0

f0(x1, . . . , xn)h(xj1 , . . . , xjn) dµ(x1, . . . , xn)

has the same value for each permutation (xj1 , . . . , xjn), and therefore∫
A0

f0(x1, . . . , xn)h(x1, . . . , xn) dµ(x1, . . . , xn)

=
∫
A0

f0(x1, . . . , xn)
1
n!

∑
h(xi1 , . . . , xin) dµ(x1, . . . , xn)

=
∫
A0

f(x1, . . . , xn)h(x1, . . . , xn) dµ(x1, . . . , xn).

It follows that f0(x) = E[f(X) | T (x)].
Equivalent to the statistic T (x) = (x(1), . . . , x(n)), the set of order statistics, is

U(x) =
(∑

xi,
∑
x2
i , . . . ,

∑
xni

)
. This is an immediate consequence of the fact,

to be shown below, that if T (x0) = t0 and U(x0) = u0, then

T−1 ({t0}) = U−1 ({u0}) = S
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where
{
t0
}

and
{
u0} denote the sets consisting of the single point t0 and u0 re-

spectively, and where S consists of the totality of points x = (x1, . . . , xn) obtained
by permuting the coordinates of x0 = (x0

1, . . . , x
0
n) in all possible ways.

That T−1 ({t0}) = S is obvious. To see the corresponding fact for U−1, let

V (x) =

∑
i

xi,
∑
i<j

xixj ,
∑
i<j<k

xixjxk, . . . , x1x2 · · ·xn

 ,

so that the components of V (x) are the elementary symmetric functions v1 =∑
xi, . . . , vn = x1 . . . xn of the n arguments x1, . . . , xn. Then

(x− x1) . . . (x− xn) = xn − v1x
n−1 + v2x

n−2 − · · · + (−1)nvn.

Hence V (x0) = v0 = (v0
1 , . . . , v

0
n) implies that V −1({v0}) = S. That then also

U−1({u0}) = S follows from the 1:1 correspondence between u and v established
by the relations (known as Newton’s identities):5

uk − v1uk−1 + v2uk−2 − · · · + (−1)k−1vk−1u1 + (−1)kkvk = 0

for 1 ≤ k ≤ n.

It is easily verified from the above definition that conditional expectation pos-
sesses most of the usual properties of expectation. It follows of course from the
nonuniqueness of the definition that these properties can hold only (B, PT ). We
state this formally in the following lemma.

Lemma 2.4.1 If T is a statistic and the functions f , g, . . . are integrable (A, P ),
then a.e. (B, PT )

(i) E[af(X) + bg(X) | t] = aE[f(X) | t] + bE[g(X) | t];

(ii) E[h(T )f(X) | t] = h(t)E[f(X) | t];

(iii) a ≤ f(x) ≤ b (A, P ) implies a ≤ E[f(X) | t] ≤ b;

(iv) |fn| ≤ g, fn(x) → f(x) (A, P ) implies E[fn(X) | t] → E[f(X) | t].

A further useful result is obtained by specializing (2.20) to the case that B is
the whole space T . One then has

Lemma 2.4.2 If E[|f(X)|] < ∞, and if g(t) = E[f(X) | t], then

E[f(X)] = E[g(T )] ; (2.21)

that is, the expectation can be obtained as the expected value of the conditional
expectation.

Since P{X ∈ A} = E[IA(X)], where IA denotes the indicator of the set A, it
is natural to define the conditional probability of A given T = t by

P (A | t) = E[IA(X) | t]. (2.22)

5For a proof of these relations see for example Turnbull (1952), Section 32.
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In view of (2.20) the defining equation for P (A | t) can therefore be written as

PX
(
A ∩ T−1(B)

)
=

∫
A∩T−1(B)

dPX(x) (2.23)

=
∫
B

P (A | t) dPT (t) for all B ∈ B.

It is an immediate consequence of Lemma 2.4.1 that subject to the appropriate
null-set6 qualifications, P (A | t) possesses the usual properties of probabilities,
as summarized in the following lemma.

Lemma 2.4.3 If T is a statistic with range space (T ,B), and A,B,A1, A2, . . .
are sets belonging to A, then a.e. (B, PT )

(i) 0 ≤ P (A | t) ≤ 1;

(ii) if the sets A1, A2, . . . are mutually exclusive,

P
(⋃

Ai | t
)

=
∑

P (Ai | t);

(iii) A ⊂ B implies P (A | t) ≤ P (B | t).

According to the definition (2.22), the conditional probability P (A | t) must
be considered for fixed A as a B-measurable function of t. This is in contrast to
the elementary definition in which one takes t as fixed and considers P (A | t)
for varying A as a set function over A. Lemma 2.4.3 suggests the possibility that
the interpretation of P (A | t) for fixed t as a probability distribution over A
may be valid also in the general case. However, the equality P (A1 ∪ A2 | t) =
P (A1 | t) + P (A2 | t), for example, can break down on a null set that may vary
with A1 and A2, and the union of all these null sets need no longer have measure
zero.

For an important class of cases, this difficulty can be overcome through the
nonuniqueness of the functions P (A | t), which for each fixed A are determined
only up to sets of measure zero in t. Since all determinations of these functions
are equivalent, it is enough to find a specific determination for each A so that for
each fixed t these determinations jointly constitute a probability distribution over
A. This possibility is illustrated by Example 2.4.1, in which the conditional prob-
ability distribution given T (x) = t can be taken to assign probability 1/n! to each
of the n! points satisfying T (x) = t. Sufficient conditions for the existence of such
conditional distributions will be given in the next section. For counterexamples
see Blackwell and Dubins (1975).

6This term is used as an alternative to the more cumbersome “set of measure zero.”
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2.5 Conditional Probability Distributions7

We shall now investigate the existence of conditional probability distributions
under the assumption, satisfied in most statistical applications, that X is a Borel
set in a Euclidean space. We shall then say for short that X is Euclidean and
assume that, unless otherwise stated, A is the class of Borel subsets of X .

Theorem 2.5.1 If X is Euclidean, there exist determinations of the functions
P (A | t) such that for each t, P (A | t) is a probability measure over A.

Proof. By setting equal to 0 the probability of any Borel set in the complement
of X , one can extend the given probability measure to the class of all Borel sets
and can therefore assume without loss of generality that X is the full Euclidean
space. For simplicity we shall give the proof only in the one-dimensional case.
For each real x put F (x, t) = P ((−∞, x] | t) for some version of this conditional
probability function, and let r1, r2, . . . denote the set of all rational numbers in
some order. Then ri < rj implies that F (ri, t) ≤ F (rj , t) for all t except those in a
null setNij , and hence that F (x, t) is nondecreasing in x over the rationals for all t
outside of the null set N ′ =

⋃
Nij . Similarly, it follows from Lemma 2.4.1(iv) that

for all t not in a null set N ′′, as n tends to infinity limF (ri+1/n, t) = F (ri, t) for
i = 1, 2, . . . , limF (n, t) = 1, and limF (−n, t) = 0. Therefore, for all t outside of
the null set N ′ ∪N ′′, F (x, t) considered as a function of x is properly normalized,
monotone, and continuous on the right over the rationals. For t not in N ′ ∪N ′′

let F ∗(x, t) be the unique function that is continuous on the right in x and agrees
with F (x, t) for all rational x. Then F ∗(x, t) is a cumulative distribution function
and therefore determines a probability measure P ∗(A | t) over A. We shall now
show that P ∗(A | t) is a conditional probability of A given t, by showing that
for each fixed A it is a B-measurable function of t satisfying (2.23). This will be
accomplished by proving that for each fixed A ∈ A

P ∗(A | t) = P (A | t) (B, PT ).

By definition of P ∗ this is true whenever A is one of the sets (−∞, x] with x
rational. It holds next when A is an interval (a, b] = (−∞, b] − (−∞, a] with
a, b rational, since P ∗ is a measure and P satisfies Lemma 2.4.3(ii). Therefore,
the desired equation holds for the field F of all sets A which are finite unions
of intervals (ai, bi] with rational end points. Finally, the class of sets for which
the equation holds is a monotone class (see Problem 2.1) and hence contains the
smallest σ-field containing F , which is A. The measure P ∗(A | t) over A was
defined above for all t not in N ′ ∪N ′′. However, since neither the measurability
of a function nor the values of its integrals are affected by its values on a null set,
one can take arbitrary probability measures over A for t in N ′ ∪N ′′ and thereby
complete the determination.

If X is a vector-valued random variable with probability distribution PX and
T is a statistic defined over (X ,A), let PX|t denote any version of the family

7This section may be omitted at first reading. Its principal application is in the proof
of Lemma 2.7.2(ii) in Section 2.7, which in turn is used only in the proof of Theorem
4.4.1
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of conditional distributions P (A | t) over A guaranteed by Theorem 2.5.1. The
connection with conditional expectation is given by the following theorem.

Theorem 2.5.2 If X is a vector-valued random variable and E|f(X)| < ∞,
then

E[f(X) | t] =
∫
f(x) dPX|t(x) (B, PT ). (2.24)

Proof. Equation (2.24) holds if f is the indicator of any set A ∈ A. It then
follows from Lemma 2.4.1 that it also holds for any simple function and hence
for any integrable function.

The determination of the conditional expectation E[f(X) | t] given by the
right-hand side of (2.24) possesses for each t the usual properties of an expecta-
tion, (i), (iii), and (iv) of Lemma 2.4.1, which previously could be asserted only
up to sets of measure zero depending on the functions f, g, . . . involved. Under
the assumptions of Theorem 2.5.1 a similar strengthening is possible with respect
to (ii) of Lemma 2.4.1, which can be shown to hold except possibly on a null set
N not depending on the function h. It will be sufficient for the present purpose to
prove this under the additional assumption that the range space of the statistic T
is also Euclidean. For a proof without this restriction see for example Billingsley
(1995).

Theorem 2.5.3 If T is a statistic with Euclidean domain and range spaces
(X ,A) and (T ,B), there exists a determination PX|t of the conditional probabil-
ity distribution and a null set N such that the conditional expectation computed
by

E[f(X) | t] =
∫
f(x) dPX|t(x)

satisfies for all t /∈ N .

E[h(T )f(X) | t] = h(t)E[f(X) | t]. (2.25)

Proof. For the sake of simplicity and without essential loss of generality suppose
that T is real-valued. Let PX|t(A) be a probability distribution over A for each t,
the existence of which is guaranteed by Theorem 2.5.1. For B ∈ B, the indicator
function IB(t) is B-measurable and∫

B′
IB(t) dPT (t)=PT (B′ ∩B)=PX(T−1B′ ∩ T−1B)

for all B′ ∈ B.

Thus by (2.20)

IB(t) = PX|t (T−1B
)

a.e. PT .

Let Bn, n = 1, 2, . . . , be the intervals of T with rational end points. Then there
exists a P -null set N = ∪Nn such that for t /∈ N

IBn(t) = PX|t (T−1Bn
)
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for all n. For fixed t /∈ N , the two set functions PX|t (T−1B
)

and IB(t) are
probability distributions over B, the latter assigning probability 1 or 0 to a set as
it does or does not contain the point t. Since these distributions agree over the
rational intervals Bn, they agree for all B ∈ B. In particular, for t /∈ N , the set
consisting of the single point t is in B, and if

A(t) = {x : T (x) = t},

it follows that for all t /∈ N

PX|t
(
A(t)

)
= 1. (2.26)

Thus ∫
h[T (x)]f(x) dPX|t(x) =

∫
A(t)

h[T (x)]f(x) dPX|t(x)

= h(t)
∫
f(x) dPX|t(x)

for t /∈ N , as was to be proved.
It is a consequence of Theorem 2.5.3 that for all t /∈ N , E[h(T ) | t] = h(t) and

hence in particular P (T ∈ B | t) = 1 or 0 as t ∈ B or t /∈ B.
The conditional distributions PX|t still differ from those of the elementary case

considered in Section 1.9, in being defined over (X ,A) rather than over the set
A(t) and the σ-field A(t) of its Borel subsets. However, (2.26) implies that for
t /∈ N

PX|t(A) = PX|t(A ∩A(t)).

The calculations of conditional probabilities and expectations are therefore un-
changed if for t /∈ N , PX|t is replaced by the distribution P̄X|t, which is defined
over (A(t),A(t)) and which assigns to any subset of A(t) the same probability as
PX|t.

Theorem 2.5.3 establishes for all t /∈ N the existence of conditional probability
distributions P̄X|t, which are defined over (A(t),A(t)) and which by Lemma 2.4.2
satisfy

E[f(X)] =
∫

T −N

[∫
A(t)

f(x) dP (X|t)(x)
]
dPT (t) (2.27)

for all integrable functions f . Conversely, consider any family of distributions
satisfying (2.27), and the experiment of observing first T , and then, if T = t, a
random quantity with distribution P̄X|t. The result of this two-stage procedure
is a point distributed over (X ,A) with the same distribution as the original X.
Thus P̄X|t satisfies this “functional” definition of conditional probability.

If (X ,A) is a product space (T ×Y,B×C), then A(t) is the product of Y with the
set consisting of the single point t. For t /∈ N , the conditional distribution P̄X|t

then induces a distribution over (Y, C), which in analogy with the elementary
case will be denoted by PY |t. In this case the definition can be extended to all
of T by letting PY |t assign probability 1 to a common specified point y0 for all
t ∈ N . With this definition, (2.27) becomes

Ef(T, Y ) =
∫

T

[∫
Y
f(t, y) dPY |t(y)

]
dPT (t). (2.28)
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As an application, we shall prove the following lemma, which will be used in
Section 2.7.

Lemma 2.5.1 Let (T ,B) and (Y, C) be Euclidean spaces, and let PT,Y0 be a
distribution over the product space (X ,A) = (T ×Y,B×C). Suppose that another
distribution P1 over (X ,A) is such that

dP1(t, y) = a(y)b(t) dP0(t, y),

with a(y) > 0 for all y. Then under P1 the marginal distribution of T and a
version of the conditional distribution of Y given t are given by

dPT1 (t) = b(t)
[∫

a(y) dPY |t
0 (y)

]
dPT0 (t)

and

dP
Y |t
1 (y) =

a(y) dPY |t
0 (y)∫

Y a(y
′) dPY |t

0 (y′)
.

Proof. The first statement of the lemma follows from the equation

P1{T ∈ B} = E1 [IB(T )] = E0 [IB(T )a(Y )b(T )]

=
∫
B

b(T )
[∫

Y
a(y) dPY |t

0 (y)
]
dPT0 (t).

To check the second statement, one need only show that for any integrable f the
expectation E1f(Y, T ) satisfies (2.28), which is immediate. The denominator of
dP

Y |t
1 is positive, since a(y) > 0 for all y.

2.6 Characterization of Sufficiency

We can now generalize the definition of sufficiency given in Section 1.9. If P =
{Pθ, θ ∈ Ω} is any family of distributions defined over a common sample space
(X ,A), a statistic T is sufficient for P (or for θ) if for each A in A there exists a de-
termination of the conditional probability function Pθ(A | t) that is independent
of θ. As an example suppose that X1, . . . , Xn are identically and independently
distributed with continuous distribution function Fθ, θ ∈ Ω. Then it follows from
Example 2.4.1 that the set of order statistics T (X) = (X(1), . . . , X(n)) is sufficient
for θ.

Theorem 2.6.1 If X is Euclidean, and if the statistic T is sufficient for P, then
there exist determinations of the conditional probability distributions Pθ(A | t)
which are independent of θ and such that for each fixed t, Pθ(A | t) is a probability
measure over A.

Proof. This is seen from the proof of Theorem 2.5.1. By the definition of suf-
ficiency one can, for each rational number r, take the functions F (r, t) to be
independent of θ, and the resulting conditional distributions will then also not
depend on θ.



2.6. Characterization of Sufficiency 45

In Chapter 1 the definition of sufficiency was justified by showing that in a
certain sense a sufficient statistic contains all the available information. In view
of Theorem 2.6.1 the same justification applies quite generally when the sample
space is Euclidean. With the help of a random mechanism one can then construct
from a sufficient statistic T a random vector X ′ having the same distribution as
the original sample vector X. Another generalization of the earlier result, not
involving the restriction to a Euclidean sample space, is given in Problem 2.13.

The factorization criterion of sufficiency, derived in Chapter 1, can be extended
to any dominated family of distributions, that is, any family P = {Pθ, θ ∈ Ω}
possessing probability densities pθ with respect to some σ-finite measure µ over
(X ,A). The proof of this statement is based on the existence of a probability
distribution λ =

∑
ciPθi (Theorem 2.2.3 of the Appendix), which is equivalent

to P in the sense that for any A ∈ A

λ(A) = 0 if and only if Pθ = 0 for all θ ∈ Ω. (2.29)

Theorem 2.6.2 Let P = {Pθ, θ ∈ Ω} be a dominated family of probability dis-
tributions over (X ,A), and let λ =

∑
ciPθi satisfy (2.29). Then a statistic T

with range space (T ,B) is sufficient for P if and only if there exist nonnegative
B-measurable functions gθ(t) such that

dPθ(x) = gθ[T (x)] dλ(x) (2.30)

for all θ ∈ Ω.

Proof. Let A0 be the subfield induced by T , and suppose that T is sufficient for
θ. Then for all θ ∈ Ω, A0 ∈ A0, and A ∈ A∫

A0

P (A | T (x)) dPθ(x) = Pθ(A ∩A0);

and since λ =
∑
ciPθi ,∫

A0

P (A | T (x)) dλ(x) = λ(A ∩A0),

so that P (A | T (x)) serves as conditional probability function also for λ. Let
gθ(T (x)) be the Radon–Nikodym derivative dPθ(x)/dλ(x) for (A0, λ). To prove
(2.30) it is necessary to show that gθ(T (x)) is also the derivative of Pθ for (A, λ).
If A0 is put equal to X in the first displayed equation, this follows from the
relation

Pθ(A) =
∫
P (A | T (x)) dPθ(x) =

∫
Eλ [IA(x) | T (x)] dPθ(x)

=
∫
Eλ [IA(x) | T (x)] gθ(T (x)) dλ(x)

=
∫
Eλ [gθ(T (x))IA(x) | T (x)] dλ(x)

=
∫
gθ(T (x))IA(x) dλ(x) =

∫
A

gθ(T (x)) dλ(x).

Here the second equality uses the fact, established at the beginning of the proof,
that P (A | T (x)) is also the conditional probability for λ; the third equality holds
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because the function being integrated is A0-measurable and because dPθ = gθ dλ
for (A0, λ); the fourth is an application of Lemma 2.4.1(ii); and the fifth employs
the defining property of conditional expectation.

Suppose conversely that (2.30) holds. We shall then prove that the conditional
probability function Pλ(A | t) serves as a conditional probability function for
all P ∈ P. Let gθ(T (x)) = dPθ(x)/ dλ(x) on A and for fixed A and θ define a
measure ν over A by the equation dν = IA dPθ. Then over A0, dν(x)/ dPθ(x) =
Eθ[IA(X) | T (x)], and therefore

dν(x)
dλ(x)

= Pθ[A | T (x)]gθ(T (x)) over A0.

On the other hand, dν(x)/dλ(x) = IA(x)gθ(T (x)) over A, and hence

dν(x)
dλ(x)

= Eλ[IA(X)gθ(T (X)) | T (x)]

= Pλ[A | T (x)]gθ(T (x)) over A0.

It follows that Pλ(A | T (x))gθ(T (x)) = Pθ(A | T (x))gθ(T (x)) (A0, λ) and hence
(A0, Pθ). Since gθ(T (x)) 	= 0 (A0, Pθ), this shows that Pθ(A | T (x)) = Pλ(A |
T (x)) (A0, Pθ), and hence that Pλ(A | T (x)) is a determination of Pθ(A | T (x)).

Instead of the above formulation, which explicitly involves the distribution
λ, it is sometimes more convenient to state the result with respect to a given
dominating measure µ.

Corollary 2.6.1 (Factorization theorem) If the distributions Pθ of P have
probability densities pθ = dPθ/dµ with respect to a σ-finite measure µ, then T is
sufficient for P if and only if there exist nonnegative B-measurable functions gθ
on T and a nonnegative A-measurable function h on X such that

pθ(x) = gθ[T (x)]h(x) (A, µ). (2.31)

Proof. Let λ =
∑
ciPθi satisfy (2.29). Then if T is sufficient, (2.31) follows from

(2.30) with h = dλ/dµ. Conversely, if (2.31) holds,

dλ(x) =
∑

cigθi [T (x)]h(x) dµ(x) = k[T (x)]h(x) dµ(x)

and therefore dPθ(x) = g∗
θ (T (x)) dλ(x) where g∗

θ (t) = gθ(t)/k(t) when k(t) > 0
and may be defined arbitrarily when k(t) = 0.

For extensions of the factorizations theorem to undominated families, see
Ghosh, Morimoto, and Yamada (1981) and the literature cited there.

2.7 Exponential Families

An important family of distributions which admits a reduction by means of suf-
ficient statistics is the exponential family, defined by probability densities of the
form

pθ(x) = C(θ) exp

[
k∑
j=1

Qj(θ)Tj(x)

]
h(x) (2.32)
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with respect to a σ-finite measure µ over a Euclidean sample space (X ,A). Par-
ticular cases are the distributions of a sample X = (X1, . . . , Xn) from a binomial,
Poisson, or normal distribution. In the binomial case, for example, the density
(with respect to counting measure) is(

n

x

)
px(1 − p)n−x = (1 − p)n exp

[
x log

(
p

1 − p

)](
n

x

)
.

Example 2.7.1 If Y1, . . . , Yn are independently distributed, each with density
(with respect to Lebesgue measure)

pσ(y) =
y[(f/2)−1] exp

[
−y/

(
2σ2)]

(2σ2)f/2 Γ(f/2)
, y > 0, (2.33)

then the joint distribution of the Y ’s constitutes an exponential family. For σ = 1,
(2.33) is the density of the χ2-distribution with f degrees of freedom; in particular
for f an integer this is the density of

∑f
j=1X

2
j , where the X’s are a sample from

the normal distribution N(0, 1).

Example 2.7.2 Consider n independent trials, each of them resulting in one of
the s outcomes E1, . . . , Es with probabilities p1, . . . , ps respectively. If Xij is 1
when the outcome of the ith trial is Ej and 0 otherwise, the joint distribution of
the X’s is

P{X11 = x11, . . . , Xns} = p
∑
xi1

1 p
∑
xi2

2 · · · p
∑
xis

s ,

where all xij = 0 or 1 and
∑
j xij = 1. this forms an exponential family with

Tj(x) =
∑n
i=1 xij (j = 1, . . . , s − 1). The joint distribution of the T ’s is the

multinomial distribution M(n; p1, . . . , ps) given by

P{T1 = t1, . . . , Ts−1 = ts−1} (2.34)

=
n!

t1! . . . ts−1!(n− t1 − · · · − ts−1)!

×pt11 . . . p
ts−1
s−1 (1 − p1 − · · · − ps−1)n−t1−···−ts−1 .

If X1, . . . , Xn is a sample from a distribution with density (2.32), the joint
distribution of the X’s constitutes an exponential family with the sufficient
statistics

∑n
i=1 Tj(Xi), j = 1, . . . , k. Thus there exists a k-dimensional sufficient

statistic for (X1, . . . , Xn) regardless of the sample size. Suppose conversely that
X1, . . . , Xn is a sample from a distribution with some density pθ(x) and that the
set over which this density is positive is independent of θ. Then under regularity
assumptions which make the concept of dimensionality meaningful, if there exists
a k-dimensional sufficient statistic with k < n, the densities pθ(x) constitute an
exponential family. For proof of this result, see Darmois (1935), Koopman (1936)
and Pitman (1937). Regularity conditions of the result are discussed in Barankin
and Maitra (1963), Brown (1964), Barndorff–Nielsen and Pedersen (1968), and
Hipp (1974).
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Employing a more natural parametrization and absorbing the factor h(x) into
µ, we shall write an exponential family in the form dPθ(x) = pθ(x) dµ(x) with

pθ(x) = C(θ) exp

[
k∑
j=1

θjTj(x)

]
. (2.35)

For suitable choice of the constant C(θ), the right-hand side of (2.35) is a prob-
ability density provided its integral is finite. The set Ω of parameter points
θ = (θ1, . . . , θk) for which this is the case is the natural parameter space of the
exponential family (2.35).

Optimum tests of certain hypotheses concerning any θj are obtained in Chapter
4. We shall now consider some properties of exponential families required for this
purpose.

Lemma 2.7.1 The natural parameter space of an exponential family is convex.

Proof. Let (θ1, . . . , θk) and (θ′
1, . . . , θ

′
k) be two parameter points for which the

integral of (2.35) is finite. Then by Hölder’s inequality,∫
exp

[∑[
αθj + (1 − α)θ′

j

]
Tj(x)

]
dµ(x)

≤
[∫

exp
[∑

θjTj(x)
]
dµ(x)

]α [∫
exp

[∑
θ′
jTj(x)

]
dµ(x)

]1−α
< ∞

for any 0 < α < 1.
If the convex set Ω lies in a linear space of dimension < k, then (2.35) can be

rewritten in a form involving fewer than k components of T . We shall therefore,
without loss of generality, assume Ω to be k-dimensional.

It follows from the factorization theorem that T (x) = (T1(x), . . . , Tk(x)) is
sufficient for P = {Pθ, θ ∈ Ω}.

Lemma 2.7.2 Let X be distributed according to the exponential family

dPTθ,ϑ(x) = C(θ, ϑ) exp

[
r∑
i=1

θiUi(x) +
s∑
j=1

ϑjTj(x)

]
dµ(x).

Then there exist measures λθ and νt over s- and r-dimensional Euclidean space
respectively such that

(i) the distribution of T = (T1, . . . , Ts) is an exponential family of the form

dPTθ,ϑ(t) = C(θ, ϑ) exp

(
s∑
j=1

ϑjtj

)
dλθ(t), (2.36)

(ii) the conditional distribution of U = (U1, . . . , Ur) given T = t is an exponential
family of the form

dP
U|t
θ· (u) = C(θ) exp

(
r∑
i=1

θiui

)
dνt(u), (2.37)

and hence in particular is independent of ϑ.
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Proof. Let (θ0, ϑ0) be a point of the natural parameter space, and let µ∗ =
PXθ0,ϑ0 . Then

dPXθ0,ϑ0(x) =
C(θ, ϑ)
C(θ0, ϑ0)

× exp

[
r∑
i=1

(θi − θ0i )Ui(x) +
s∑
j=1

(ϑj − ϑ0
j )Tj(x)

]
dµ∗(x),

and the result follows from Lemma 2.5.1, with

dλθ(t) = exp
(
−
∑

ϑ0
i ti
)[∫

exp

[
r∑
i=1

(θi − θ0i )ui

]
dP

U|t
θ0,ϑ0(u)

]
dPTθ0,ϑ0(t)

and

dνt(u) = exp
(
−
∑

θ0i ui
)
dP

U|t
θ0,ϑ0(u).

Theorem 2.7.1 Let φ be any function on (X ,A) for which the integral∫
φ(x) exp

[
k∑
j=1

θjTj(x)

]
dµ(x) (2.38)

considered as a function of the complex variables θj = ξj + iηj (j = 1, . . . , k)
exists for all (ξ1, . . . , ξk) ∈ Ω and is finite. Then

(i) the integral is an analytic function of each of the θ’s in the region R of
parameter points for which (ξ1, . . . , ξk) is an interior point of the natural
parameter space Ω;

(ii) the derivatives of all orders with respect to the θ’s of the integral (2.38) can
be computed under the integral sign.

Proof. Let (ξ1, . . . , ξk) be any fixed point in the interior of Ω, and consider one
of the variables in question, say θ1. Breaking up the factor

φ(x) exp
[(
ξ02 + iη0

2
)
T2(x) + · · · +

(
ξ0k + iη0

k

)
Tk(x)

]
into its real and complex part and each of these into its positive and negative
part, and absorbing this factor in each of the four terms thus obtained into the
measure µ, one sees that as a function of θ1 the integral (2.38) can be written as∫

exp [θ1T1(x)] dµ1(x) −
∫

exp [θ1T1(x)] dµ2(x)

+ i

∫
exp [θ1T1(x)] dµ3(x) − i

∫
exp [θ1T1(x)] dµ4(x).

It is therefore sufficient to prove the result for integrals of the form

ψ(θ1) =
∫

exp [θ1T1(x)] dµ(x).

Since (ξ01 , . . . , ξ0k) is in the interior of Ω, there exists δ > 0 such that ψ(θ1) exists
and is finite for all θ1 with |ξ1 − ξ01 | ≤ δ. Consider the difference

ψ(θ1) − ψ(θ01)
θ1 − θ01

=
∫

exp [θ1T1(x)] − exp
[
θ01T1(x)

]
θ1 − θ01

dµ(x).
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The integrand can be written as

exp
[
θ01T1(x)

] [exp
[
(θ1 − θ01)T1(x)

]
− 1

θ1 − θ01

]
.

Applying to the second factor the inequality∣∣∣∣∣∣exp(az) − 1
z

∣∣∣∣∣∣ ≤ exp(δ|a|)
δ

for |z| ≤ δ,

the integrand is seen to be bounded above in absolute value by

1
δ

∣∣∣∣∣ exp
(
θ01T1 + δ|T1|

) ∣∣∣∣∣ ≤ 1
δ

∣∣∣∣∣ exp
[(
θ01 + δ

)
T1
]
+ exp

[(
θ01 − δ

)
T1
] ∣∣∣∣∣

for |θ1−θ01| ≤ δ. Since the right-hand side integrable, it follows from the Lebesgue
dominated-convergence theorem [Theorem 2.2.2(ii)] that for any sequence of
points θ(n)

1 tending to θ01, the difference quotient of ψ tends to∫
T1(x) exp

[
θ01T1(x)

]
dµ(x).

This completes the proof of (i), and proves (ii) for the first derivative. The proof
for the higher derivatives is by induction and is completely analogous.

2.8 Problems

Section 2.1
Problem 2.1 Monotone class. A class F of subsets of a space is a field if it
contains the whole space and is closed under complementation and under finite
unions; a class M is monotone if the union and intersection of every increasing
and decreasing sequence of sets of M is again in M. The smallest monotone class
M0 containing a given field F coincides with the smallest σ-field A containing
F . [One proves first that M0 is a field. To show, for example, that A ∩B ∈ M0

when A and B are in M0, consider, for a fixed set A ∈ F , the class MA of all
B in M0 for which A ∩ B ∈ M0. Then MA is a monotone class containing F ,
and hence MA = M0. Thus A ∩ B ∈ MA for all B. The argument can now
be repeated with a fixed set B ∈ M0 and the class MB of sets A in M0 for
which A ∩B ∈ M0. Since M0 is a field and monotone, it is a σ-field containing
F and hence contains A. But any σ-field is a monotone class so that also M0 is
contained in A.]

Section 2.2
Problem 2.2 Prove Corollary 2.2.1 using Theorems 2.2.1 and 2.2.2.

Problem 2.3 Radon–Nikodym derivatives.
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(i) If λ and µ are σ-finite measures over (X ,A) and µ is absolutely continuous
with respect to λ, then ∫

f dµ =
∫
f
dµ

dλ
dλ

for any µ-integrable function f .
(ii) If λ, µ, and ν are σ-finite measures over (X ,A) such that ν is absolutely
continuous with respect to µ and µ with respect to λ, then

dν

dλ
=
dν

dµ

dµ

dλ
a.e. λ.

(iii) If µ and ν are σ-finite measures,, which are equivalent in the sense that each
is absolutely continuous with respect to the other, then

dν

dµ
=
(
dµ

dν

)−1

a.e. µ, ν.

(iv) If µk, k = 1, 2, . . . , and µ are finite measures over (X ,A) such that∑∞
k=1 µk(A) = µ(A) for all A ∈ A, and if the µk are absolutely continuous

with respect to a σ-finite measure λ, then µ is absolutely continuous with respect
to λ, and

d
n∑
k=1

µk

dλ
=

n∑
k=1

dµk
dλ

, lim
n→∞

d
n∑
k=1

µk

dλ
=
dµ

dλ
a.e. λ.

[(i): The equation in question holds when f is the indicator of a set, hence when
f is simple, and therefore for all integrable f .
(ii): Apply (i) with f = dν/dµ.]

Problem 2.4 If f(x) > 0 for all x ∈ S and µ is σ-finite, then
∫
S
f dµ = 0 implies

µ(S) = 0.
[Let Sn be the subset of S on which f(x) ≥ 1/n Then µ(S) ≤

∑
µ(Sn) and

µ(Sn) ≤ n
∫
Sn
f dµ ≤ n

∫
S
f dµ = 0.]

Section 2.3
Problem 2.5 Let (X ,A) be a measurable space, and A0 a σ-field contained in
A. Suppose that for any function T , the σ-field B is taken as the totality of sets B
such that T−1(B) ∈ A. Then it is not necessarily true that there exists a function
T such that T−1(B) ∈ A0. [An example is furnished by any A0 such that for all
x the set consisting of the single point x is in A0.]

Section 2.4
Problem 2.6 (i) Let P be any family of distributions X = (X1, . . . , Xn) such

that

P{(Xi, Xi+1, . . . , Xn, X1, . . . , Xi−1) ∈ A} = P{(X1, . . . , Xn) ∈ A}
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for all Borel sets A and all i = 1, . . . , n. For any sample point (x1, . . . , xn)
define (y1, . . . , yn) = (xi, xi+1, . . . , xn, x1, . . . , xi−1), where xi = x(1) =
min(x1, . . . , xn). Then the conditional expectation of f(X) given Y = y is

f0(y1, . . . , yn) =
1
n

[f(y1, . . . , yn) + f(y2, . . . , yn, y1)

+ · · · + f(yn, y1, . . . , yn−1)].

(ii) Let G = {g1, . . . , gr} be any group of permutations of the coordinates
x1, . . . , xn of a point x in n-space, and denote by gx the point obtained by
applying g to the coordinates of x. Let P be any family of distributions P
of X = (X1, . . . , Xn) such that

P{gX ∈ A} = P{X ∈ A} for all g ∈ G. (2.39)

For any point x let t = T (x) be any rule that selects a unique point from
the r points gkx, k = 1, . . . , r (for example the smallest first coordinate
if this defines it uniquely, otherwise also the smallest second coordinate,
etc.). Then

E[f(X) | t] =
1
r

r∑
k=1

f(gkt).

(iii) Suppose that in (ii) the distributions P do not satisfy the invariance
condition (2.39) but are given by

dP (x) = h(x) dµ(x),

where µ is invariant in the sense that µ{x : gx ∈ A} = µ(A). Then

E[f(X) | t] =

r∑
k=1

f(gkt)h(gkt)

r∑
k=1

h(gkt)
.

Section 2.5
Problem 2.7 Prove Theorem 2.5.1 for the case of an n-dimensional sample
space. [The condition that the cumulative distribution function is nondecreasing
is replaced by P{x1 < X1 ≤ x′

1, . . . , xn < Xn ≤ x′
n} ≥ 0; the condition that it is

continuous on the right can be stated as limm→∞ F (x1 + 1/m, . . . , xn + 1/m) =
F (x1, . . . , xn).]

Problem 2.8 Let X = Y × T , and suppose that P0, P1 are two probability
distributions given by

dP0(y, t) = f(y)g(t) dµ(y) dν(t),

dP1(y, t) = h(y, t) dµ(y) dν(t),

where h(y, t)/f(y)g(t) < ∞. Then under P1 the probability density of Y with
respect to µ is

pY1 (y) = f(y)E0

[
h(y, T )
f(y)g(T )

∣∣∣∣Y = y

]
.
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[We have

pY1 (y) =
∫

T
h(y, t) dν(t) = f(y)

∫
T

h(y, t)
f(y)g(t)

g(t) dν(t).]

Section 2.6
Problem 2.9 Symmetric distributions.

(i) Let P be any family of distributions of X = (X1, . . . , Xn) which are
symmetric in the sense that

P {(Xi1 , . . . , Xin) ∈ A} = P {(X1, . . . , Xn) ∈ A}
for all Borel sets A and all permutations (i1, . . . , in) of (1, . . . , n). Then the
statistic T of Example 2.4.1 is sufficient for P, and the formula given in the
first part of the example for the conditional expectation E[f(X) | T (x)] is
valid.

(ii) The statistic Y of Problem 2.6 is sufficient.

(iii) Let X1, . . . , Xn be identically and independently distributed according to
a continuous distribution P ∈ P, and suppose that the distributions of P
are symmetric with respect to the origin. Let Vi = |Xi| and Wi = V(i).
Then (W1, . . . ,Wn) is sufficient for P.

Problem 2.10 Sufficiency of likelihood ratios. Let P0, P1 be two distributions
with densities p0, p1. Then T (x) = p1(x)/p0(x) is sufficient for P = {P0, P1}.
[This follows from the factorization criterion by writing p1 = T · p0, p0 = 1 · p0.]

Problem 2.11 Pairwise sufficiency. A statistic T is pairwise sufficient for P if
it is sufficient for every pair of distributions in P.

(i) If P is countable and T is pairwise sufficient for P, then T is sufficient for
P.

(ii) If P is a dominated family and T is pairwise sufficient for P, then T is
sufficient for P.

[(i): Let P = {P0, P1, . . .}, and let A0 be the sufficient subfield induced by T .
Let λ =

∑
ciPi (ci > 0) be equivalent to P. For each j = 1, 2, . . . the probability

measure λj that is proportional to (c0/n)P0 + cjPj is equivalent to {P0, Pj}.
Thus by pairwise sufficiency, the derivative fj = dP0/[(c0/n) dP0 + cj dPj ] is
A0-measurable. Let Sj = {x : fj(x) = 0} and S =

⋃n
j=1 Sj . Then S ∈ A0,

P0(S) = 0, and on X − S the derivative dP0/d
∑n
j=1 cjPj equals (

∑n
j=1 1/fj)−1

which is A0-measurable. It then follows from Problem 2.3 that

dP0

dλ
=

dP0

d
n∑
j=0

cjPj

d
n∑
j=0

cjPj

dλ

is also A0-measurable. (ii): Let λ =
∑∞
j=1 cjPθj be equivalent to P. Then pairwise

sufficiency of T implies for any θ0 that dPθ0/(dPθ0 + dλ) and hence dPθ0/dλ is a
measurable function of T .]
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Problem 2.12 If a statistic T is sufficient for P, then for every function f which
is (A, Pθ)-integrable for all θ ∈ Ω there exists a determination of the conditional
expectation function Eθ[f(X) | t] that is independent of θ. [If X is Euclidean, this
follows from Theorems 2.5.2 and 2.6.1. In general, if f is nonnegative there exists
a nondecreasing sequence of simple nonnegative functions fn tending to f . Since
the conditional expectation of a simple function can be taken to be independent
of θ by Lemma 2.4.1(i), the desired result follows from Lemma 2.4.1(iv).]

Problem 2.13 For a decision problem with a finite number of decisions, the class
of procedures depending on a sufficient statistic T only is essentially complete.
[For Euclidean sample spaces this follows from Theorem 2.5.1 without any restric-
tion on the decision space. For the present case, let a decision procedure be given
by δ(x) = (δ(1)(x), . . . , δ(m)(x)) where δ(i)(x) is the probability with which deci-
sion di is taken when x is observed. If T is sufficient and η(i)(t) = E[δ(i)(X) | t],
the procedures δ and η have identical risk functions.] [More general versions of this
result are discussed, for example, by Elfving (1952), Bahadur (1955), Burkholder
(1961), LeCam (1964), and Roy and Ramamoorthi (1979).]

Section 2.7
Problem 2.14 Let Xi (i = 1, . . . , s) be independently distributed with Poisson
distribution P (λi), and let T0 =

∑
Xj , Ti = Xi, λ =

∑
λj . Then T0 has the

Poisson distribution P (λ), and the conditional distribution of T1, . . . , Ts−1 given
T0 = t0 is the multinomial distribution (2.34) with n = t0 and pi = λi/λ.

Problem 2.15 Life testing. Let X1, . . . , Xn be independently distributed with
exponential density (2θ)−1e−x/2θ for x ≥ 0, and let the ordered X’s be denoted
by Y1 ≤ Y2 ≤ · · · ≤ Yn. It is assumed that Y1 becomes available first, then Y2,
and so on, and that observation is continued until Yr has been observed. This
might arise, for example, in life testing where each X measures the length of life
of, say, an electron tube, and n tubes are being tested simultaneously. Another
application is to the disintegration of radioactive material, where n is the number
of atoms, and observation is continued until r α-particles have been emitted.

(i) The joint distribution of Y1, . . . , Yr is an exponential family with density

1
(2θ)r

n!
(n− r)!

exp

−

r∑
i=1

yi + (n− r)yr

2θ

 , 0 ≤ y1 ≤ · · · ≤ yr.

(ii) The distribution of [
∑r
i=1 Yi+(n−r)Yr]/θ is χ2 with 2r degrees of freedom.

(iii) Let Y1, Y2, . . . denote the time required until the first, second, . . . event
occurs in a Poisson process with parameter 1/2θ′ (see Problem 1.1). Then
Z1 = Y1/θ

′, Z2 = (Y2 − Y1)/θ′, Z3 = (Y3 − Y2)/θ′, . . . are independently
distributed as χ2 with 2 degrees of freedom, and the joint density Y1, . . . , Yr
is an exponential family with density

1
(2θ′)r

exp
(
− yr

2θ′

)
, 0 ≤ y1 ≤ · · · ≤ yr.



2.9. Notes 55

The distribution of Yr/θ′ is again χ2 with 2r degrees of freedom.

(iv) The same model arises in the application to life testing if the number n of
tubes is held constant by replacing each burned-out tube with a new one,
and if Y1 denotes the time at which the first tube burns out, Y2 the time
at which the second tube burns out, and so on, measured from some fixed
time.

[(ii): The random variables Zi = (n − i + 1)(Yi − Yi−1)/θ (i = 1, 2, . . . , r) are
independently distributed as χ2 with 2 degrees of freedom, and [

∑r
i=1 Yi + (n−

r)Yr/θ =
∑r
i=1 Zi.]

Problem 2.16 For any θ which is an interior point of the natural parameter
space, the expectations and covariances of the statistics Tj in the exponential
family (2.35) are given by

E [Tj(X)] = −∂ logC(θ)
∂θj

(j = 1, . . . , k),

E [Ti(X)Tj(X)] − [ETi(X)ETj(X)] = −∂2 logC(θ)
∂θi∂θj

(i, j = 1, . . . , k).

Problem 2.17 Let Ω be the natural parameter space of the exponential family
(2.35), and for any fixed tr+1, . . . , tk (r < k) let Ω′

θ1...θr
be the natural parameter

space of the family of conditional distributions given Tr+1 = tr+1, . . . , Tk = tk.

(i) Then Ω′
θ1,...,θr

contains the projection Ωθ1,...,θr of Ω onto θ1, . . . , θr.

(ii) An example in which Ωθ1,...,θr is a proper subset of Ω′
θ1,...,θr

is the family
of densities

pθ1θ2(x, y) = C(θ1, θ2) exp(θ1x+ θ2y − xy), x, y > 0.

2.9 Notes

The theory of measure and integration in abstract spaces and its application
to probability theory, including in particular conditional probability and expec-
tation, is treated in a number of books, among them Dudley (1989), Williams
(1991) and Billingsley (1995). The material on sufficient statistics and expo-
nential families is complemented by the corresponding sections in TPE2. Much
fuller treatments of exponential families (as well as sufficiency) are provided by
Barndorff–Nielsen (1978) and Brown (1986).




