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Accuracy of Estimators, Confidence Intervals
and Tests

To determine the accuracy of the estimates that we made in Chapter 1, we
demonstrate how to calculate confidence intervals and perform tests. The
specific concerns of each particular experiment are described herein. We then
introduce the methodology, first describing classical asymptotic procedures
and two asymptotic tests, the Wald test and the likelihood ratio test, and
then we present procedures and tests based on a resampling method, the
bootstrap. As before, we conclude the chapter by applying these methods to
the examples.

2.1 Examples

Let us assume that in Example 1.1.1 we are interested in the maximum yield,
θ1. We have calculated one estimate of θ1, θ̂1 = 69.95; however, if we do an-
other experiment under the same experimental conditions, the observed values
of Y and the estimates of the parameters will be different. Thus, knowing one
estimate is not entirely satisfactory; we need to quantify its accuracy.

In Example 1.1.2, we calculated an estimate of the calibration curve. Sup-
pose we now want to estimate the dose of hormone D contained in a prepa-
ration that has the expected response µ = 2000 c.p.m. To do this, we must
use Equation (1.6), replacing the parameters with their estimates. We find
X̂ = −1.1033 and D̂ = exp X̂ log 10 = 0.3318 ng/.1 ml, but we now need to
calculate how much confidence we can place in this estimate.

Let us consider Example 1.1.3, in which we estimated two ELISA response
curves. Our concern in this experiment was to estimate the relative potency of
the two different sera. In order to do this, however, we must verify whether the
condition of parallelism, as expressed in Equation (1.7), is true. If it does exist
for all values of x, then the parameters satisfy that θMay

1 = θJune
1 , θMay

2 = θJune
2 ,

θMay
3 = θJune

3 . In this case, β = θMay
4 −θJune

4 is the horizontal distance between
the two curves at the inflection point. To determine parallelism we will first
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test whether these relations between the parameters are true or, more exactly,
if they do not contradict the data. If the test does not reject the hypothesis of
parallelism, we will be able to estimate β and test if it is significantly different
from zero.

In Example 1.1.4 we were interested in comparing parameters Pw and Ps.
Because water permeability in cells is higher than propane-diol permeability,
water flows out of the cells more rapidly than the propane-diol flows in, result-
ing in high cell shrinkage. Thus we are interested in the speed of intracellular
propane-diol penetration; the cryoprotectant must permeate the ovocytes in a
short time. To this end, we will compare the values of Vs at times T1 = 1 mn,
T2 = 5 mn, and so on.

Using Example 1.1.5, we will compare different methods for calculating
confidence intervals for the parameters.

In sum, what we want to do in all of these examples is to determine if we
estimated the function of the parameters denoted λ(θ) accurately. In the first
example, λ = θ1, and in the second example, λ = exp(X log 10), where X is
defined by

X =
1
θ4

{
log

[
exp

1
θ5

log
θ2 − θ1

µ − θ1
− 1

]
− θ3

}
.

In the third example, if the hypothesis of parallelism is not rejected, we are
interested in λ = β or λ = exp −β. In the fourth example we are interested in
the pairs (Pw, Ps) for each curve, in λ = Vs(T1), and, in λ = Vs(T2).

2.2 Problem Formulation

The nonlinear regression model was defined in Section 1.2. Let θ̂ be the least
squares estimator of θ when we have homogeneous variances, and let it be the
weighted least squares estimator of θ when we have heterogeneous1 variances
(see Section 1.3).

Let λ be a function of the parameters and λ̂ an estimator of λ: λ̂ = λ(θ̂).
In this chapter, we will describe how to calculate a confidence interval for λ,
and how to do a test.

The function λ must satisfy some regularity assumptions. It must be a continuous
function of θ with continuous partial derivatives with respect to θ.

2.3 Solutions

2.3.1 Classical Asymptotic Results

θ̂ is a function of the Yij , and when the number of observations tends to
infinity, its distribution is known: θ̂−θ tends to 0, and the limiting distribution
1 See Chapter 3 for a complete treatment when the variance of errors is not con-

stant.
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of V
−1/2

θ̂
(θ̂ − θ) is a standard p-dimensional normal (Gaussian) distribution

N (0, Ip) with expectation 0 and variance Ip, where Ip is the p × p identity
matrix and V

θ̂
is the estimated asymptotic covariance matrix of θ̂. Thus, for

sufficiently large n, the distribution of θ̂ may be approximated by the normal
distribution N (θ, V

θ̂
).

We need a result for λ̂ = λ(θ̂). The limiting distribution (when n tends to
infinity) of

T̂ =
λ̂ − λ

Ŝ

will be a centered normal distribution, N (0, 1), where Ŝ is an estimate of the
standard error of λ̂.

Notations and Formulas: fi is for f(xi, θ). The p vector of derivatives of f with
respect to θ calculated in xi is denoted by ∂fi/∂θ. The components of ∂fi/∂θ are
[(∂f/∂θa)(xi, θ)], a = 1, . . . p.

Let Γθ be the p × p matrix defined as follows:

Γθ =
1
σ2

1
n

k∑
i=1

ni
∂fi

∂θ

(
∂fi

∂θ

)T

,

where the exponent T means that the vector is transposed. The elements (a, b) of Γθ

are

Γθ,ab =
1
σ2

1
n

k∑
i=1

ni
∂fi

∂θa

∂fi

∂θb
.

Let ∆θ be the p × p matrix

1
n

k∑
i=1

ni

σ2
i

∂fi

∂θ

(
∂fi

∂θ

)T

.

Let f̂i = f(xi, θ̂), ∂f̂i/∂θ be the vector with components ∂f/∂θa(xi, θ̂), and Γ
θ̂

and ∆
θ̂

be the matrices Γθ and ∆θ, where the unknown parameters are replaced by
their estimators:

Γ
θ̂

=
1
σ̂2

1
n

k∑
i=1

ni
∂f̂i

∂θ

(
∂f̂i

∂θ

)T

, ∆
θ̂

=
1
n

k∑
i=1

ni

σ̂2
i

∂f̂i

∂θ

(
∂f̂i

∂θ

)T

,

and σ̂2 = C(θ̂)/n, σ̂2
i = s2

i .
V

θ̂
is the estimate of Vθ, the p × p asymptotic covariance matrix of θ̂:

In the case Var(εij) = σ2, V
θ̂

=
1
n

Γ −1

θ̂
,

In the case Var(εij) = σ2
i , V

θ̂
=

1
n

∆−1

θ̂
.

Because θ̂−θ is small, we get the limiting distribution of λ̂ by approximating λ(θ̂)−λ(θ)
by a linear function of θ̂ − θ:



32 2 Accuracy of Estimators, Confidence Intervals and Tests

(
∂λ

∂θ

)T

(θ̂ − θ) =
p∑

a=1

∂λ

∂θa
(θ̂a − θa).

Thus (λ̂ − λ)/S
θ̂

is distributed, when n tends to infinity, as an N (0, 1) (a Gaussian
centered variate with variance 1), where

S2
θ =

(
∂λ

∂θ

)T

Vθ
∂λ

∂θ
=

p∑
a=1

p∑
b=1

∂λ

∂θa

∂λ

∂θb
Vθ,ab (2.1)

and Ŝ = S
θ̂

is the asymptotic estimate of the standard error.

2.3.2 Asymptotic Confidence Intervals for λ

If the distribution of T̂ were known, say F (u) = Pr(T̂ ≤ u), we would calculate
the α/2 and 1 − α/2 percentiles2 of T̂ , say uα, u1−α/2. The interval

Î =
[
λ̂ − u1−α/2Ŝ ; λ̂ − uα/2Ŝ

]
would be a confidence interval for λ, with level 1−α. In this case, the coverage
probability of Î, the probability that Î covers λ, would be 1 − α.

However, as we have seen in the preceding paragraph, we can only ap-
proximate, when n is sufficiently large, the distribution of T̂ . Thus we use
this approximation to calculate confidence intervals with coverage probability
close to 1 − α.

Let N be a variate distributed as an N (0, 1). Let να be the α percentile of
N . From the result of Section 2.3.1, we can deduce a confidence interval for
λ:

ÎN =
[
λ̂ − ν1−α/2Ŝ; λ̂ + ν1−α/2Ŝ

]
. (2.2)

This interval is symmetric around λ̂ for να = −ν1−α.
The probability that T̂ is less than να tends to α when n tends to infinity;

the probability for λ to lie in ÎN tends to 1 − α when n tends to infinity. We
say that ÎN has asymptotic level 1 − α.

Remarks

1. By analogy to the Gaussian linear regression case, in the nonlinear regres-
sion model with homogeneous variance, we define an alternative confidence
interval for λ. In Equation (2.2), we replace να with

√
n/(n − p)tα, where

tα is the α percentile of a Student variate with n − p degrees of freedom:

ÎT =
[
λ̂ −

√
n

n − p
t1−α/2Ŝ; λ̂ +

√
n

n − p
t1−α/2Ŝ

]
. (2.3)

2 The α percentile of a variate with distribution function F is the value of u, say
uα, such that F (uα) = α and 0 < α < 1.
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ÎT has the same asymptotic level as ÎN , but ÎT is wider than ÎN and its
coverage probability will be greater. Some studies [HJM89] have shown
that ÎT has a coverage probability closer to 1 − α than ÎN .

2. The intervals ÎN and ÎT are symmetric around λ̂. In some applications,
a part of the symmetric confidence interval might not coincide with the
set of variations of the parameter λ. For example, consider λ = exp θ3 in
the pasture regrowth example. If the estimate of the standard error of λ̂,
say Ŝ, is bigger than λ̂/ν1−α/2, then the lower bound of ÎN is negative
even though λ is strictly positive. In that case, it is easy to see that it
is more appropriate to calculate a confidence interval for θ3 and then
to transform this interval taking the exponential of its limits to find a
confidence interval for λ. More generally, let Ŝ3 be the estimate of the
standard error of θ̂3, and let g be a strictly increasing function of θ3. If θ3
lies in [

θ̂3 − ν1−α/2Ŝ3; θ̂3 + ν1−α/2Ŝ3

]
,

then λ = g(θ3) lies in[
g(θ̂3 − ν1−α/2Ŝ3); g(θ̂3 + ν1−α/2Ŝ3)

]
.

2.3.3 Asymptotic Tests of λ = λ0 against λ �= λ0

Let λ0 be a fixed value of λ and let the hypothesis of interest be H: λ = λ0,
against the alternative A: λ �= λ0.

Wald Test When H is true the limiting distribution of (λ̂ − λ0)/Ŝ is an
N (0, 1). Thus, the limiting distribution of the test statistic

SW =
(λ̂ − λ0)2

Ŝ2

is a χ2 with one degree of freedom. Hypothesis H will be rejected for large
values of SW, say SW > C, where C is chosen such that Pr(Z1 ≤ C) = 1 − α,
where Z1 is distributed as a χ2 with one degree of freedom.

This is the Wald test. When H is true, the probability for SW to be greater
than C (in other words, the probability that hypothesis H is rejected when
it should be accepted) tends to α when n tends to infinity. We say that this
test has an asymptotic error of the first kind, equal to α. Assume now that
H is false. Then the power of the test defined as the probability for SW to
be greater than C (in other words, the probability to reject the hypothesis H
when H is false) tends to 1 when n tends to infinity. We say that this test is
consistent.
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Remark As in Section 2.3.2, homogeneous variances can be considered sepa-
rately; hypothesis H will be rejected if

n − p

n
SW > C,

where C is chosen such that Pr(F1,n−p ≤ C) = 1 − α, where F1,n−p is dis-
tributed as a Fisher variable with one and n − p degrees of freedom.

Likelihood Ratio Test Another idea is to estimate the parameters under the
constraint λ = λ0, say θ̂H; then to estimate them without the constraint, say
θ̂A; and then to compare the estimation criteria (1.10) C(θ̂H) and C(θ̂A) in
the case of homogeneous variances. If H is true, the difference between C(θ̂H)
and C(θ̂A) will be small. Let

SL = n log C(θ̂H) − n log C(θ̂A)

be the test statistic. When n tends to infinity, it can be shown that the limiting
distribution of SL is a χ2 with one degree of freedom. Hypothesis H will be
rejected when SL > C, where C is chosen such that Pr(Z1 ≤ C) = 1 − α.

This test based on SL is called a likelihood ratio test. It has the same
asymptotic properties as the Wald test. Although the Wald test is easier to
calculate, some theoretical arguments favor the likelihood ratio test.

2.3.4 Asymptotic Tests of Λθ = L0 against Λθ �= L0

Let us return to Example 1.1.5 and assume that we want to test whether the
parameters θ2, θ3, and θ4 are identical. The hypothesis of interest is H: θ2 =
θ3 = θ4, against the alternative that at least two of these parameters are
different. H can be written as Λθ = 0, where Λ is the following 2 × 4 matrix:

Λ =
(

0 1 −1 0
0 1 0 −1

)
. (2.4)

The problems just defined can be solved by returning to the general case,
with θ of dimension p. We aim to test the hypothesis H: Λθ = L0 against
A: Λθ �= L0, where Λ is a q × p matrix of rank q, q < p, and L0 is a vector
of dimension q. The model defined by hypothesis H is a model nested in the
more general one defined by hypothesis A.

The Wald Test When H is true, the limiting distribution of

S ′ = (ΛV
θ̂
ΛT )−1/2(Λθ̂ − L0)

is a q-dimensional Gaussian variable with mean 0 and covariance matrix equal
to the q × q identity matrix. In these cases, the limiting distribution of the
test statistic SW =

∑q
a=1 S ′2

a is a χ2 with q degrees of freedom. The Wald test
is defined by the rejection of H when SW > C, where Pr(Zq ≤ C) = 1 − α
and Zq is distributed as a χ2 with q degrees of freedom.
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Remark In the case of homogeneous variances, the test is defined by the re-
jection of H when

n − p

n

SW

q
> C, (2.5)

where C is chosen such that Pr(Fq,n−p ≤ C) = 1 − α, where Fq,n−p is dis-
tributed as a Fisher with q and n − p degrees of freedom.

The Likelihood Ratio Test Let θ̂H be the estimation of θ under the constraint
Λθ = L0; then, in the case of homogeneous variances, the limiting distribution
of the test statistic SL = n log C(θ̂H) − n log C(θ̂A) is a χ2 with q degrees of
freedom. This result provides the likelihood ratio test.

Curve Comparison Let us return to Example 1.1.3, where we needed to com-
pare two curves. The hypothesis of interest is H: θMay

1 = θJune
1 , θMay

2 = θJune
2 ,

θMay
3 = θJune

3 against the alternative that at least one of these equalities is
false. We create a data set by joining the data observed in May and June. We
define the vector of parameters by joining θMay and θJune: Let

θ =
(

θMay

θJune

)

be the 2p vector of parameters for the two curves. Then hypothesis H can be
written as earlier Λθ = 0, where Λ is the following 3 × 2p matrix:

Λ =


1 0 0 0 −1 0 0 0

0 1 0 0 0 −1 0 0
0 0 1 0 0 0 −1 0


 . (2.6)

As before, we define a test using the statistic SW or SL.

2.3.5 Bootstrap Estimations

Resampling methods like the jackknife and the bootstrap are especially useful
for estimating the accuracy of an estimator. We observe Y1, Y2, . . . Yn; we
choose a parametric nonlinear regression model with parameters θ, and we
find an estimation procedure to estimate a function of θ, say λ(θ). We get
λ̂ = λ(θ̂), but we are interested in calculating the accuracy of λ̂ or, more
generally, in knowing its distribution (or some characteristics of it). If we
were able to repeat the experiment under exactly the same conditions, we
would observe Y 1

1 , Y 1
2 , . . . Y 1

n , and in the same way as for λ̂ we would calculate
λ̂1. We could repeat it again and calculate λ̂2 with Y 2

1 , Y 2
2 , . . . Y 2

n . λ̂1, λ̂2, . . .

would be a sample of random variables distributed as λ̂. This sample would
approximate the distribution of λ̂. In short, resampling methods are a way to
mimic the repetition of the experiment.

Bootstrap estimations are based on estimates λ̂� = λ(θ̂�) calculated from
artificial bootstrap samples (xi, Y

�
ij), j = 1, . . . , ni, i = 1, . . . k, where
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Y �
ij = f(xi, θ̂) + ε�

ij .

The errors ε�
ij are simulated in the following way: Let ε̂ij = Yij − f(xi, θ̂)

be the residuals, and let ε̃ij = ε̂ij − ε̂•, be the centered residuals, where ε̂•
is the sample mean, and ε̂• =

∑
i,j ε̂ij/n. The set of ε�

ij , for j = 1, . . . ni, and
i = 1, . . . k is a random sample from the empirical distribution function based
on the ε̃ij (n ε̃ij are drawn with replacement, each with probability 1/n).
There are nn such different samples.

θ̂� will be the value of θ that minimizes

C�(θ) =
k∑

i=1

ni∑
j=1

(Y �
ij − f(xi, θ))2.

The bootstrap estimate of λ is λ̂� = λ(θ̂�).
Let B be the number of bootstrap simulations. (λ̂�,b = λ(θ̂�,b), b =

1, . . . , B) is a B sample of bootstrap estimates of λ. The choice of B will
be discussed at the end of this section. The important result is that the dis-
tribution of λ̂�, estimated by the empirical3 distribution function of the (λ̂�,b,
b = 1, . . . B), approximates the distribution of λ̂. Let

T̂ � =
λ̂� − λ̂

S
θ̂�

.

Roughly speaking, the difference between the distribution functions of T̂ and
T̂ � tends to 0 when the number of observations n is large; thus, we can use
the quantiles of T̂ � instead of those of T̂ to construct confidence intervals or
tests.

Let us emphasize that the bootstrap distribution for approximating the distribution
of T̂ is theoretically justified when n is large and is an alternative to the centered normal
distribution presented in Section 2.3.1. In real data sets, the number of observations is
fixed and may be small. No theoretical result is known about the superiority of one of
these approximations over the others.

Bootstrap Confidence Interval for λ

Let (T̂ �,b, b = 1, . . . B) be a B sample of T̂ �; T̂ � is calculated in the same way
as T̂ , replacing Yij with Y �

ij . Let bα be the α percentile of the T̂ �,b (the way of
calculating bα is detailed in Section 2.4.1). It can be shown that Pr(T̂ ≤ bα)
tends to α when n tends to infinity. This gives a bootstrap confidence interval
for λ:

ÎB =
[
λ̂ − b1−α/2Ŝ; λ̂ − bα/2Ŝ

]
. (2.7)

For large n and B, the coverage probability of ÎB is close to 1 − α.
3 Obviously, B must be large enough that the empirical distribution function is a

good approximation of the distribution of λ̂�. If B = nn, and if we draw all of
the possible samples, we get the exact distribution of λ̂�.
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Bootstrap Estimation of the Accuracy of λ̂

The variance, and even the bias, of λ̂ may be infinite or undefined. Never-
theless, their estimates (using the asymptotic results of Section 2.3.2 or the
bootstrap) measure the localization and dispersion of the distribution of λ̂.

Variance The bootstrap estimation of the variance is calculated using the em-
pirical variance of the B sample (λ̂�,b, b = 1, . . . , B):

Ŝ�2 =
B∑

b=1

1
B − 1

(
λ̂�,b − λ̂�,•

)2
, (2.8)

where λ̂�,• is the sample mean λ̂�,• =
∑B

b=1 λ̂�,b/B.

Bias As we noted in Section 2.3.2, the expectation of λ̂, E(λ̂), is close to λ

when we have large values of n. In other words, the bias of λ̂, BIAS = E(λ̂)−λ,
is close to 0. We can use the bootstrap sample to estimate this bias:

B̂IAS
�

= λ̂�,• − λ̂. (2.9)

Mean Square Error We can estimate the mean square error (MSE) in a similar
way: MSE = E(λ̂−λ)2 = S2+BIAS2, where S2 = E(λ̂−E(λ̂))2 is the variance
of λ̂; it is estimated by

M̂SE
�

= Ŝ�2 + B̂IAS
�2

.

Median Because it is always defined, the median error, the median of λ̂ − λ,
is of special interest. Its bootstrap estimate, M̂ED

�
, is the median of the B

values |λ̂�,b − λ̂|.

Remarks

1. We have seen that the number of different bootstrap samples equals nn.
Obviously, we never choose for B a value that rapidly becomes unusable
(88 = 16, 777, 216 !). In practice, however, a moderate number usually
suffices: If B is around 50, we can estimate the accuracy characteristic,
and if B is around 200, we can calculate a confidence interval, for example.

2. Other resampling methods, like the jackknife, are available especially to
estimate the accuracy characteristics (see [Wu86] and [Bun90] for details).
These methods are less reliable than the bootstrap, however.

3. The bootstrap method in the case of heterogeneous variances is discussed
in Section 3.4.3.
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2.4 Applications

2.4.1 Pasture Regrowth: Calculation of a Confidence Interval for
the Maximum Yield

Model The regression function is

f(x, θ) = θ1 − θ2 exp (− exp(θ3 + θ4 log x)) ,

and the variances are homogeneous: Var(εi) = σ2.

Results

Parameters Estimated Values Asymptotic Covariance Matrix
θ1 69.95 3.09
θ2 61.68 3.87 6.66
θ3 −9.209 0.76 1.25 0.37
θ4 2.378 −0.22 −0.35 −0.09 0.027
σ2 0.9306

The parameter of interest is λ(θ) = θ1.

Calculation of Confidence Intervals with Asymptotic Level 95%, Using Results
of Section 2.3.2 , (d.f. is for degree of freedom):

λ̂ Ŝ ν0.975 ÎN t0.975 (5 d.f.) ÎT
69.95 1.76 1.96 [66.5 , 73.4] 2.57 [ 63.9 , 76.0]

d.f. is for degree of freedom

Calculation of Confidence Intervals with Asymptotic Level 95%, Using the
Bootstrap Method Table 2.1 gives the estimated values of f , f̂i, and the cen-
tered residuals ε̃i. For two bootstrap simulations, the table gives the bootstrap
errors ε�

i , the bootstrap observations Y �
i , the bootstrap estimate of θ1, and

the corresponding asymptotic variance S
θ̂� .

B, the number of bootstrap simulations, equals 199. The histogram of the
T̂ �,b, b = 1, . . . B, is shown in Figure 2.1.

Calculation of the Percentiles of (T̂ �,b, b = 1, . . . B) We calculate the 0.025
and 0.975 percentiles of the T̂ �,b as follows: Let T̂ �,(b) be the ordered values
of T̂ �,b so that T̂ �,(1) ≤ T̂ �,(2) ≤ . . . ≤ T̂ �,(199); bα is T̂ �,(qα), where qα is the
smallest integer such that qα/B is greater than or equal to α. When B = 199,
we find b0.025 = T̂ �,(5) and b0.975 = T̂ �,(195):

λ̂ Ŝ b0.025 b0.975 ÎB

69.95 1.76 −4.19 3.73 [63.4, 77.3]

We will see in Section 2.6 that in practice we use the function quantile
of S-Plus.
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Table 2.1. Results for two bootstrap simulations

f̂i ε̃i ε�,1
i Y �,1

i ε�,2
i Y �,2

i

9.411 −0.481 −0.481 8.93 −0.734 8.677
11.47 −0.669 −0.067 11.4 0.025 11.49
16.30 2.284 −0.734 15.57 −0.5 15.80
23.17 −0.843 0.025 23.20 −0.5 22.67
40.08 −0.734 −0.669 39.41 −0.481 39.60
56.18 −0.067 2.284 58.46 −0.669 55.51
60.74 0.986 0.025 60.77 −0.843 59.9
64.59 0.025 −0.734 63.86 −0.734 63.86
67.58 −0.5 2.284 69.86 2.284 69.86

θ̂1 = 69.95 θ̂�,1
1 = 71.65 θ̂�,2

1 = 74.92
Ŝ = 1.76 S

θ̂�,1 = 1.91 S
θ̂�,2 = 1.59

��� �� � �

�

��

��

��

��

��

Figure 2.1. Pasture regrowth example: Histogram of (T̂ �,b, b = 1, . . . B)

Bootstrap Estimate of the Accuracy Characteristics:

B̂IAS
�

Ŝ� M̂SE
�

M̂ED
�

0.378 (0.5% of θ̂1) 2.30 5.42 69.78

2.4.2 Cortisol Assay: Estimation of the Accuracy of the Estimated
Dose D̂

Model The regression function is

f(x, θ) = θ1 +
θ2 − θ1

(1 + exp(θ3 + θ4x))θ5
,

and the variances are heterogeneous: Var(εi) = σ2
i .
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Results
Estimates Asymptotic Covariance Matrix

θ1 133.30 0.727
θ2 2759.8 0.264 801
θ3 3.0057 −0.0137 −2.34 0.0338
θ4 3.1497 −0.00723 −2.33 0.0241 0.01845
θ5 0.64309 0.00341 0.568 −0.00714 −0.00516 0.00152

The parameter of interest is D = λ(θ) = 10f−1(µ,θ); see Equation (1.6),
with µ = 2000.
Calculation of Confidence Intervals with Asymptotic Level 95%, Using Results
of Section 2.3.2

D̂ Ŝ ν0.975 ÎN
0.0856 0.00175 1.96 [0.0822 , 0.0891]

We will discuss other methods for calculating the accuracy of D̂ in Chap-
ter 5.

2.4.3 ELISA Test: Comparison of Curves

We want to test the parallelism of the response curves in order to estimate
the difference β = θMay

4 − θJune
4 . We can do this by testing hypothesis H:

Λθ = 0 against the alternative A: Λθ �= 0, where Λ is the matrix defined by
Equation (2.6),
Model The regression function is

f(x, θ) = θ1 +
θ2 − θ1

1 + exp θ3 (x − θ4)
,

and the variances are homogeneous: Var(εi) = σ2.
Results

Estimated Values
θMay
1 θMay

2 θMay
3 θMay

4 θJune
1 θJune

2 θJune
3 θJune

4
0.04279 1.936 2.568 3.467 0.0581 1.909 2.836 3.251

Asymptotic Covariance Matrix (×104)
4.51

−1.01 1.81
15.2 −8.22 95.7

−2.09 −0.502 −4.10 2.43
0 0 0 0 2.51
0 0 0 0 −0.647 1.92
0 0 0 0 10.5 −8.74 106
0 0 0 0 −1.05 −0.727 −0.988 1.83

σ̂2 = 0.0005602.
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Wald Test of H: Λθ = 0 against A: Λθ �= 0 . See Section2.3.3.
The value of the Wald test is SW = 4.53. This number must be compared

to 7.8, which is the 0.95 quantile of a χ2 with three degrees of freedom. The
hypothesis of parallelism is not rejected.

Because the variance of errors is constant, we can compare

n − p

n

SW

q
=

32 − 8
32

7.8
3

= 1.133

to 3, which is the 0.95 quantile of a Fisher with 3 and 24 degrees of freedom.

Likelihood ratio tests See Section2.3.3.
The two first columns of Table 2.2 show the estimated parameters under

A and under the constraints defined by H and the corresponding values of the
sum of squares C.

Table 2.2. ELISA test example: Estimated parameters under hypothesis A, the
parallelism is not verified; hypothesis H, the curves are parallel; and the hypothesis
that β = 0

Under A Under H Under β = 0
θMay
1 0.0428 0.0501 0.0504

θMay
2 1.936 1.924 1.926

θMay
3 2.568 2.688 2.635

θMay
4 3.467 3.470 3.356

θJune
1 0.058 0.0501 0.0504

θJune
2 1.909 1.924 1.926

θJune
3 2.836 2.688 2.635

θJune
4 3.251 3.247 3.356
C(θ) 0.0179 0.0206 0.183

The test statistic SL = 32 ∗ (log(0.0206) − log(0.0179)) equals 4.5. Thus,
hypothesis H is not rejected.

The estimated value of β = θMay
4 − θJune

4 is β̂ = 0.223. We can carry out a
likelihood ratio test by comparing C(θ̂H) with C(θ̂β=0), which is the sum of
squares when the parameters are estimated under the constraint β = 0; see
the third column of Table 2.2. SL = 32 ∗ (log(0.183) − log(0.0206)) = 69.9.
This number must be compared to 3.8, the 0.95 quantile of a χ2 with one
degree of freedom. The hypothesis β = 0 is rejected.

Conclusion of the Test In this experiment, we conclude that the potency ρ of
the serum taken in June relative to the serum taken in May is estimated by
ρ̂ = 10−β̂ = 0.59 and that ρ is significantly different from 1.

Calculation of a Confidence Interval for ρ The parameter of interest is ρ =
λ(θ) = 10θJune

4 −θMay
4 .
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Calculation of Confidence Intervals with Asymptotic Level 95%, Using Results
of Section 2.3.2 (d.f. is for degree of freedom):

ρ̂ Ŝ ν0.975 ÎN t0.975 (27 d.f.) ÎT
0.59 0.0192 1.96 [0.561 , 0.636] 2.05 [ 0.555 , 0.642]

ÎT is not much different from ÎN because n − p is large, n/(n − p) is close to
1, and the difference between να and tα is small.

Calculation of Confidence Intervals with Asymptotic Level 95%, Using the
Bootstrap Method The number of bootstrap simulations is B = 199. The
histogram of the T̂ �,b, b = 1, . . . B, is shown in Figure 2.2.

�� �� �� � � � �

�

��

��

��

��

Figure 2.2. ELISA test example: Histogram of (T̂ �,b, b = 1, . . . B)

The results follow:

ρ̂ Ŝ b0.025 b0.975 ÎB

0.59 0.0192 −2.61 2.17 [0.557 , 0.649]

In this example, the bootstrap shows that ÎB is longer than ÎN but is nearly
equal to ÎT . Moreover, the bootstrap estimation of the standard error of ρ̂
is Ŝ� = 0.0199. The differences between the methods are not very important
from a practical point of view.

2.4.4 Ovocytes: Calculation of Confidence Regions

Although this experiment tested several cryoprotectants in different experi-
mental conditions (with or without treatment, at several temperatures) and
yielded 15 curves to be estimated and compared, we present here the results
for only two curves. We compute two types of confidence regions: Confidence
ellipsoids and likelihood contours.
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Confidence Ellipsoids Let θ be the pair (Pw, Ps). When the number of obser-
vations tends to infinity, the limiting distribution of

S ′(θ) = V
−1/2

θ̂
(θ̂ − θ)

is a standard two dimensional normal distribution N (0, I2), or the limiting
distribution of

SW(θ) = S ′2
1 + S ′2

2

is a χ2 with two degrees of freedom. Let rα(2) be the α percentile of a χ2 with
two degrees of freedom, and let RW be the set of θ such that SW(θ) ≤ r1−α(2).
RW is an ellipse that covers θ with probability close to 1 − α.

Likelihood Contours Constructing confidence ellipses is based on the limiting
distribution of θ̂ − θ. Another way to calculate confidence regions for θ is to
consider the limiting distribution of the statistic

SL(θ) = n log C(θ) − n log C(θ̂).

SL(θ) is a χ2 with two degrees of freedom. Let RL be the set of θ such that
SL(θ) ≤ r1−α(2). RL is a region of the plane that covers θ with probability
close to 1 − α.

Figure 2.3 illustrates the confidence ellipses and the likelihood contours
with level 95% for the parameters (Pw, Ps) in Example 1.1.4. In this example,
the likelihood contours are close to the ellipses, but we will see that this is
not always the case. In fact, the discrepancy between these regions is related
to the discrepancy between the distribution of θ̂ − θ and its approximation by
a centered Gaussian variable.

Remarks When p, the dimension of θ, is greater than 2, the confidence ellip-
soids for θ are defined by the set of θ such that SW(θ) ≤ r1−α(p), where rα(p)
is the α percentile of a χ2 with p degrees of freedom. Usually the sections of
the regions are drawn in two dimensions, and they give conditional informa-
tion. Consider the case p = 3. The sections of the confidence regions in the
plane (θ1, θ2) are the sets of (θ1, θ2) such that SW(θ1, θ2, θ̂3) ≤ r1−α(3).

2.4.5 Isomerization: An Awkward Example

Model The regression function is

f(x, θ) =
θ1θ3(P − I/1.632)

1 + θ2H + θ3P + θ4I
,

and the variances are homogeneous: Var(εi) = σ2.
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Con�dence ellipses
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Figure 2.3. Ovocytes example: 95% confidence ellipses and likelihood contours
for the parameters (Pw, Ps)

Table 2.3. Isomerization example: Estimated parameters and standard errors,
normal confidence intervals

Estimates Standard Errors (Ŝ) 95% Confidence Interval ÎN
θ1 35.9193 7.49 [ 21.20 50.60]
θ2 0.0708583 0.163 [−0.249 0.391]
θ3 0.0377385 0.0913 [−0.141 0.217]
θ4 0.167166 0.379 [−0.577 0.911]
σ2 0.13477

Calculation of Confidence Intervals Using the Percentiles of a Gaussian Dis-
tribution for Each Parameter The estimated values of the parameters and
their standard errors and of the confidence intervals calculated using Equa-
tion (2.2) are given in Table 2.3.

The standard errors are so large for parameters θ2, θ3, and θ4 that the value
0 is inside the confidence intervals. Obviously, the hypothesis θ2 = θ3 = θ4 = 0
is meaningless. Figure 2.4 illustrates the discrepancy between the distribution
of θ̂ − θ and its approximation by the distribution N (0, Vθ). In this figure,
the sections of the confidence ellipsoids and likelihood contours in the plane
(θ1, θ2) clearly differ significantly in their appearance. Thus, we cannot use
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the percentiles of a Gaussian distribution to calculate the confidence intervals.
Instead, let us try the bootstrap method.

Con�dence ellipses
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Likelihood contours
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Figure 2.4. Isomerization example: The confidence ellipses and likelihood contours
for the parameters (θ1, θ2) are drawn at levels 90%, 95%, and 99%

Calculation of Confidence Intervals Using the Bootstrap Method B = 199
bootstrap simulations have been done to calculate another approximation of
the distribution of θ̂. Let

T̂a =
θ̂a − θa

Ŝa

,

where θa is the component a of θ and Ŝa is the estimation of the standard
error of θ̂a. For each parameter, the bootstrap estimation of the distribution
of T̂a is shown in Figure 2.5. Note that the bootstrap distributions are very
far from the Gaussian distribution, except for the first parameter.

Bootstrap Estimations of Standard Error and Bias for Each Parameter Esti-
mator The results are Table 2.4.

The bootstrap estimations of the standard errors, Ŝ�
a (see Equation (2.8)),

are of the same magnitude as Ŝa. The bootstrap yields a high value of the
bias (see Equation (2.9)) for θ1, but the bias is small for the other parameters.
The 0.025 and 0.975 percentiles of the T̂ �,b

a (T̂ ∗
a is the bootstrap version of T̂a)

are calculated as in Section 2.4.1. They show the asymmetry of the estima-
tors’ distribution. By comparison, the 0.025 percentile of a Gaussian N (0, 1)
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Figure 2.5. Isomerization example: Histogram of (T̂ �,b, b = 1, . . . B) for each
parameter; the line is the probability density of an N (0, 1)

Table 2.4. Isomerization example: Bootstrap estimation of standard errors and
bias for the parameters θ; 2.5% and 97.5% percentiles of the bootstrap distribution
of T̂ ; bootstrap confidence intervals for the θ

Ŝ� B̂IAS
�

(% of bias) b0.025 b0.975 ÎB

θ1 9.83 5.47 (15) −1.38 1.69 [23.2 46.2 ]
θ2 0.133 0.002 (3) −15.2 0.137 [0.048 2.56]
θ3 0.080 0.002 (6) −16.4 0.151 [0.024 1.54]
θ4 0.322 0.008 (5) −15.4 0.144 [0.112 6.05]

distribution is ν0.975 = 1.96. The last column gives the bootstrap confidence
intervals (see Equation 2.7). For the three last parameters the lower bound
of the intervals is positive; this condition is more realistic than the negative
bounds obtained with ÎN . The confidence intervals are not symmetric around
the estimated values θ̂a.

Calculation of Confidence Intervals Using a New Parameterization of the
Function f An alternative to the bootstrap is to find another parameteri-
zation of the function f(x, θ) that reduces the discrepancy between the dis-
tribution of T̂ and the approximation of T̂ by a Gaussian distribution.

Model A new parameterization, suggested by several authors (see [BW88], for
example) is defined by considering a new set of parameters, say (β1, β2, β3, β4).
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These are obtained by eliminating the product θ1θ3 in Equation (1.9). The
model function is now defined by

f(x, β) =
P − I/1.632

β1 + β2H + β3P + β4I
, (2.10)

and Var(εi) = σ2.

Table 2.5. Isomerization example with the new parameterization: Estimated pa-
rameters and standard errors; normal confidence intervals

Estimates Standard Errors (Ŝ) 95% Confidence Interval ÎN
β1 0.73738 1.66 [−2.51 3.98]
β2 0.052274 0.00418 [0.0441 0.0605]
β3 0.027841 0.00581 [0.0164 0.0392]
β4 0.12331 0.0161 [0.0917 0.155]
σ2 0.13477

Parameter and Standard Error Estimations The results are given in Table 2.5.
The estimated accuracy of the parameters is reasonable, and the discrepancy
between confidence ellipses and likelihood contours for the pair (β1, β2) is not
as big as for the pair (θ1, θ2); see Figure 2.6.

Let us assume that we are interested in calculating confidence intervals for
the parameters θ. We want to calculate confidence intervals for each θa using
the confidence regions calculated for β. In our example, the relations between
θ and β are easy to write:

θ1 = 1/β3,

θ2 = β2/β1,

θ3 = β3/β1,

θ4 = β4/β1.

If β3 lies in the interval [0.0164, 0.0392], then θ1 lies in [25.5, 60.8]; however,
we see that the same reasoning cannot be applied to θ2, because 0 lies in
the confidence interval for β1. Thus, in this example, the calculation of a
confidence interval for the parameters θa, a = 1, . . . p, is only possible for θ1.
Only the bootstrap method allows us to calculate confidence intervals for each
parameter.

2.4.6 Pasture Regrowth: Calculation of a Confidence Interval for
λ = exp θ3

Let us return to our pasture regrowth example to illustrate how to calculate
a confidence interval that respects the constraint that parameter λ must be
positive.
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Figure 2.6. Isomerization example: The confidence ellipses and likelihood contours
for the parameters (β1, β2) are drawn at levels 90%, 95%, and 99%

Model The regression function is

f(x, θ) = θ1 − θ2 exp (− exp(θ3 + θ4 log x)) ,

and the variances are homogeneous: Var(εi) = σ2.

Results

Parameters Estimated Values Asymptotic Covariance Matrix
θ1 69.95 3.09
θ2 61.68 3.87 6.66
θ3 −9.209 0.76 1.25 0.37
θ4 2.378 −0.22 −0.35 −0.09 0.027
σ2 0.9306

The parameter of interest is λ(θ) = exp θ3.

Calculation of Confidence Intervals with Asymptotic Level 95%, Using Results
of Section 2.3.2

λ̂ Ŝ ν0.975 ÎN
0.0001001 0.0000609 1.96 [−.0000194, .000219]

It is immediately apparent that this confidence interval is unusable be-
cause λ cannot be negative. The result would have been the same if we had
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estimated λ by replacing the model function (1.1) with the following one:
f(x, θ1, θ2, λ, θ4) = θ1 − θ2 exp(−λxθ4).

Another way to calculate a confidence interval for λ is to transform the
confidence interval calculated for θ3. If θ3 lies in [−10.4 −8.01], then λ = exp θ3
lies in [0.0000303 , 0.000331]. By construction, this confidence interval is
adapted to the set of variation of λ.

2.5 Conclusion

We have proposed several methods to estimate confidence intervals based
on approximating the distribution of λ̂ by either the Gaussian distribution
or the bootstrap distribution. In some cases (see Example 2.4.1), it is more
convenient to consider a monotone transformation of the parameter of interest
in place of the parameter itself, because the distribution of its estimator is
better approximated by a Gaussian distribution. In other cases, the bootstrap
method is more appropriate (see Example 2.4.5). The examples treated in this
chapter show that there is no rule to decide in advance which is the correct
method. Nevertheless, in each case, the final choice was based on the adequacy
of the result and the nature of the parameter of interest.

2.6 Using nls2

This section reproduces the commands and files used in this chapter to analyze
the examples using nls2. It is assumed that the commands introduced in
Section 1.6 have already been executed.

Pasture Regrowth Example: Confidence Interval for the Maximum
Yield

The results of estimation have been stored in the structure pasture.nl1 (see
Section 1.6, page 19). Now we want to calculate a confidence interval for the
maximum yield, the parameter θ1.

Confidence Interval for λ = θ1 with Asymptotic Level 95%

We use the function confidence. This function calculates the confidence in-
terval ÎN defined by Equation (2.2), page 32, and the confidence interval ÎT
defined by Equation (2.3), page 32. By default, the asymptotic level is 95%.

> pasture.conf.par <- confidence(pasture.nl1)

We display the values of λ̂, Ŝ, ν0.975, ÎN , t0.975 (five degrees of freedom),
and ÎT :
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> cat("Estimated value of lambda:", pasture.conf.par$psi[1],"\n" )
> cat("Estimated value of S:",pasture.conf.par$std.error[1],"\n" )
> cat("nu_(0.975):", qnorm(0.975),"\n" )
> cat("Estimated value of In:",

pasture.conf.par$normal.conf.int[1,],"\n" )
> cat("t_(0.975, 5):", qt(0.975,5),"\n" )
> cat("Estimated value of It:",

pasture.conf.par$student.conf.int[1,],"\n" )

Confidence Interval for λ = θ1 Using Bootstrap with Asymptotic Level 95%

To calculate the confidence interval ÎB defined by Equation (2.7), page 36,
we use the function bootstrap. Several methods of bootstrap simulation are
possible. Here, we choose residuals, which means that pseudoerrors are ran-
domly generated among the centered residuals.

To initialize the iterative process of bootstrap, nls2 must be called with
the option renls2. We also set the option control so that intermediary results
are not printed. Finally, we call the function delnls2 to destroy any internal
structures:

> pasture.nl1 <- nls2(pasture, "pasture.mod1",
list(theta.start= c(70, 60, 0, 1), max.iters=100),
control=list(freq=0),
renls2=T)

> pasture.boot <- bootstrap(pasture.nl1,
method="residuals",
n.loops=199)

> delnls2()

We calculate the values of T̂ �,b, b = 1, . . . 199 (see Section 2.3.5) and
illustrate their distribution function by plotting them in a histogram (see
Figure 2.1, page 39):

> P1.B <- pasture.boot$pStar[,1]
> SE.P1.B <- sqrt(pasture.boot$var.pStar[,1])
> T.B <- (P1.B-pasture.nl1$theta[1])/SE.P1.B
> hist(T.B,nclass=12,

title="Pasture regrowth example",
sub="Histogram of bootstrap estimations for T")

We calculate the 0.0025 and 0.975 percentiles of the T̂ �,b, b0.025 and b0.975
(see Section 2.4.1) using the function quantile of S-Plus, and we display the
values of λ̂, Ŝ, b0.025, b0.975, and ÎB :

> # Print the results:
> cat("Estimated value of lambda:", pasture.nl1$theta[1],"\n")
> cat("Estimated value of S:",coef(pasture.nl1)$std.error[1],"\n")
> qu <- quantile(T.B,probs=c(0.975,0.025))
> cat("b_(0.025):", qu[2],"\n" )
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> cat("b_(0.975):", qu[1],"\n" )
> cat("Estimated value of Ib:",

pasture.nl1$theta[1]+qu[2]*coef(pasture.nl1)$std.error[1],
pasture.nl1$theta[1]+qu[1]*coef(pasture.nl1)$std.error[1],"\n")

Finally, we calculate the accuracy characteristics of the bootstrap estima-
tion: the bias (B̂IAS

�
; Equation (2.9)), the variance (Ŝ�; Equation (2.8)), the

mean square error (M̂SE
�
), and the median (M̂ED

�
):

> cat("BIAS:" , (mean(P1.B)-pasture.nl1$theta[1]),"\n" )
> cat("S:" ,sqrt(var(P1.B)),"\n" )
> cat("MSE:" ,

var(P1.B)+(mean(P1.B)-pasture.nl1$theta[1])ˆ2 ,"\n" )
> cat("MED:" ,median(P1.B) ,"\n" )

Note: The bootstrap method generates different numbers on each execu-
tion. Thus, results of these commands may vary slightly from those displayed
in Section 2.4.1, page 38.

Cortisol Assay Example: Confidence Interval for D

We calculated an estimate of the calibration curve (see Section 1.6, page 21)
in structure corti.nl1, and now we want to calculate a confidence interval
for the estimation of the dose of hormone D contained in a preparation that
has the expected response µ = 2000 c.p.m.

Confidence Interval for D

We describe the function D in a file called corti.D. The expected response µ
is introduced by the key word pbispsi:

psi D;
ppsi n,d,a,b,g;
pbispsi mu;
aux X1, X2, X;
subroutine;
begin
X1 = log((d-n)/(mu-n));
X2 = exp(X1/g);
X = (log(X2-1)-a)/b;
D = 10**X;
end

To calculate a confidence interval for D, we apply the confidence function.
Then we display the results of interest, D̂, Ŝ, ν0.975, and ÎN :

> loadnls2(psi="")
> corti.conf.D <- confidence(corti.nl1,file="corti.D",pbispsi=2000)
> # Print the results:
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> cat("Estimated value of D:", corti.conf.D$psi,"\n" )
> cat("Estimated value of S:",corti.conf.D$std.error,"\n" )
> cat("nu_(0.975):", qnorm(0.975),"\n" )
> cat("Estimated value of In:",corti.conf.D$normal.conf.int,"\n" )

(The results are given in Section 2.4.2, page 39.)

ELISA Test Example: Comparison of Curves

The results of estimation have been stored in the structure elisa.nl1 (see
Section 1.6, page 22). Now we want to test the parallelism of the May and
June curves.

Wald Test with Asymptotic Level 95%

To test the parallelism of the response curves with a Wald test (see Sec-
tion 2.3.3), we use the function wald.

First we describe the functions to be tested in a file called elisa.wald:

psi d1,d2,d3;
ppsi p1_c1, p2_c1, p3_c1, p1_c2, p2_c2, p3_c2;
subroutine;
begin
d1=p1_c1-p1_c2;
d2=p2_c1-p2_c2;
d3=p3_c1-p3_c2;
end

We apply the function wald and display the value of the statistic SW and
the 0.95 quantile of a χ2 with three degrees of freedom from which it should
be compared:

> elisa.wald <- wald(elisa.nl1,file="elisa.wald")
> # Print the results:
> cat("SW:",elisa.wald$statistic,"\n" )
> cat("X2(3):", qchisq(0.95, 3),"\n" )

Because the variances are homogeneous, we calculate the test statistic
defined in Equation (2.5), page 35:

> SF <- (elisa.wald$statistic*(32-8))/(32*3)
> cat("SF:", SF,"\n" )
> cat("F(3,24):", qf(0.95, 3,24), "\n" )



2.6 Using nls2 53

Likelihood Ratio Tests

To test the parallelism of the curves by likelihood ratio tests (see Section 2.3.3),
we have to estimate the parameters under hypothesis A (the parallelism of the
curves is not verified), under hypothesis H (the curves are parallel), and under
the last hypothesis (the curves are identical).

Estimation under hypothesis A has already been calculated: A is the hy-
pothesis under which structure elisa.nl1 has been built.

Estimation under hypothesis H is done by setting equality constraints on
all of the parameters except for the last one. Equality constraints are given
with the option eqp.theta:

> elisa.nlH <- nls2(elisa,
list(file="elisa.mod1", eqp.theta=c(1,2,3,4,1,2,3,5)),
rep(c(2,0,1,0),2))

Estimation under the last hypothesis is done by setting equality constraints
on all of the parameters:

> elisa.nlb <- nls2(elisa,
list(file="elisa.mod1", eqp.theta=c(1,2,3,4,1,2,3,4)),
rep(c(2,0,1,0),2))

We display the estimated values of the parameters and the sums of squares
for the three hypothesis:

> cat("Estimated values of the parameters for the 3 hypothesis:\n")
> print(elisa.nl1$theta)
> print(elisa.nlH$theta)
> print(elisa.nlb$theta)
> cat("Estimated sums of squares for the 3 hypothesis:\n",

elisa.nl1$rss, "\n", elisa.nlH$rss,"\n",
elisa.nlb$rss,"\n")

Now, we calculate the test statistic SL and display the 0.95 quantile of a
χ2 with one degree of freedom from which they should be compared.

We also print the estimated value of β = (θMay
4 − θJune

4 ):

> cat("Sl:",
32*(log(elisa.nlH$rss) - log(elisa.nl1$rss)),
32*(log(elisa.nlb$rss) - log(elisa.nlH$rss)),"\n" )

> cat("X2(0.95,1):", qchisq(0.95,1),"\n" )
> cat("Estimated value of beta:",

elisa.nlH$theta["p4_c1"] - elisa.nlH$theta["p4_c2"],"\n" )

Confidence Interval for ρ with Asymptotic Level 95%

Now we want to calculate a confidence interval for a function of the parame-
ters: ρ = λ(θ) = 10(θJune

4 −θMay
4 ).

We describe ρ in a file called elisa.ro:
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psi ro;
ppsi p4_c1, p4_c2;
subroutine;
begin
ro=10**(p4_c2-p4_c1);
end

The function confidence is applied to the structure elisa.nlH, which
contains the results of estimation under hypothesis H (the curves are parallel).
We display the values of ρ̂ , the standard error (Ŝ), ν0.975 , ÎN , t0.975 (27
degrees of freedom), and ÎT :

> elisa.ro <- confidence(elisa.nlH, file="elisa.ro")
> # Print the results:
> cat("Estimated value of rho:", elisa.ro$psi,"\n" )
> cat("Estimated value of S:",elisa.ro$std.error,"\n" )
> cat("nu_(0.975):", qnorm(0.975),"\n" )
> cat("Estimated value of In:",elisa.ro$normal.conf.int,"\n" )
> cat("t_(0.975, 27):", qt(0.975,27),"\n" )
> cat("Estimated value of It:",elisa.ro$student.conf.int,"\n" )

Confidence Interval for ρ Using Bootstrap with Asymptotic Level 95%

To calculate confidence intervals for ρ with bootstrap simulations (see Sec-
tion 2.3.5, page 35) we apply the function bootstrap.

To initialize the iterative bootstrap process, nls2 is first called with the
option renls2, and, finally, the function delnls2 cleans the internal struc-
tures:

> elisa.nlH <- nls2(elisa,
list(file="elisa.mod1", eqp.theta=c(1,2,3,4,1,2,3,5)),
rep(c(2,0,1,0),2),
control=list(freq=0),
renls2=T)

> elisa.boot.ro <- bootstrap(elisa.nlH,method="residuals",
file="elisa.ro", n.loops=199)

> delnls2()

We display the values of ρ̂, Ŝ, b0.025, b0.975, and ÎB :

> cat("Estimated value of rho:",elisa.ro$psi,"\n" )
> cat("Estimated value of S:", elisa.ro$std.error,"\n" )
> qu <- quantile((elisa.boot.ro$tStar,probs=c(0.975,0.025))
> cat("b_(0.025):", qu[2],"\n" )
> cat("b_(0.975):", qu[1],"\n" )
> cat("Estimated value of Ib:", elisa.boot.ro$conf.int ,"\n" )
> cat("Bootstrap standard error:", sqrt(var(elisa.boot.ro$psiStar))

To illustrate the distribution function of T̂ �, we plot a histogram of their
values (see Figure 2.2, page 42):
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> hist(elisa.boot.ro$tStar, nclass=9,
title="ELISA example",
sub="Histogram of bootstrap estimations for T")

Note: The bootstrap method generates different numbers on each execu-
tion. Thus, results of these commands may vary slightly from those displayed
in Section 2.4.3, page 40.

Ovocytes Example

Confidence Ellipsoids and Likelihood Contours for the Parameters (Pw, Ps)

The results of estimation by nls2 have been stored in the structure ovo.nl1
(see Section 1.6, page 25). We want to compare the parameters Pw and Ps by
calculating confidence ellipsoids and likelihood contours in the space of these
parameters.

The functions ellips and iso are used. ellips returns what is necessary
to plot confidence ellipsoids, and iso returns what is necessary to define confi-
dence regions in a two-dimensional space of parameters. The plots themselves
are drawn by the graphical functions of S-Plus:

> ovo.ell1 <- ellips(ovo.nl1, axis=c("Pw_c1","Ps_c1"))
> ovo.ell2 <- ellips(ovo.nl1, axis=c("Pw_c2","Ps_c2"))
> ovo.iso1 <- iso(ovo.nl1, axis=c("Pw_c1","Ps_c1"))
> ovo.iso2 <- iso(ovo.nl1, axis=c("Pw_c2","Ps_c2"))
> # Graphical functions of Splus
> par(mfrow=c(1,2))
> plot(x=c(.06,.13),y=c(0.0008,.0017),type="n",xlab="Pw",ylab="Ps")
> contour(ovo.ell1,levels=qchisq(0.95,2),add=T,labex=0)
> contour(ovo.ell2,levels=qchisq(0.95,2),add=T,labex=0)
> text(0.1,0.0015,"mature ovocytes")
> text(0.08,0.001,"immature ovocytes")
> title("Confidence ellipses")
> plot(x=c(.06,.13),y=c(0.0008,.0017),type="n",xlab="Pw",ylab="Ps")
> contour(ovo.iso1,levels=qchisq(0.95,2),add=T,labex=0)
> contour(ovo.iso2,levels=qchisq(0.95,2),add=T,labex=0)
> text(0.095,0.0015,"mature ovocytes")
> text(0.08,0.001,"immature ovocytes")
> title("Likelihood contours")

(See Figure 2.3, page 44.)

Isomerization Example

We have calculated one estimate of the parameters (see Section 1.6, page
26) in the structure isomer.nl1, and now we want to calculate confidence
intervals for each parameter.
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Confidence Intervals for Each Parameter with Asymptotic Level 95%

We use the function confidence to calculate the confidence interval ÎN de-
fined by Equation (2.2), page 32, for each parameter:

> isomer.conf.par <- confidence(isomer.nl1)

We display the estimated values of the parameters, their standard errors
(Ŝ), and the confidence interval ÎN :

> print(matrix(c(isomer.conf.par$psi,
isomer.conf.par$std.error,
isomer.conf.par$normal.conf.int[,"lower"],
isomer.conf.par$normal.conf.int[,"upper"]),

ncol=4,
dimnames=list(names(isomer.conf.par$psi),
c("parameters","std","lower bound","upper bound" ))))

(Results are shown Table 2.3, page 44.)

Confidence Regions for Parameters

We use the functions ellips and iso and the graphical functions of S-Plus
to plot confidence ellipsoids and likelihood contours in the space of the pa-
rameters (θ1, θ2):

> isomer.ell <- ellips(isomer.nl1, axis=c(1,2))
> isomer.cont <- iso(isomer.nl1, axis=c(1,2),

bounds=matrix(c(25,50,0.03,0.11),nrow=2))
> # Graphical functions of Splus
> par(mfrow=c(1,2))
> contour(isomer.ell,levels=qchisq(c(0.90,0.95,0.99),4),labex=0)
> points(x=isomer.nl1$theta[1], y=isomer.nl1$theta[2])
> title("Confidence ellipses")
> contour(isomer.cont,levels=qchisq(c(0.90,0.95,0.99),4),labex=0)
> title("Likelihood contours")
> points(x=isomer.nl1$theta[1], y=isomer.nl1$theta[2])

(See Figure 2.4, page 45.)

Calculation of Confidence Intervals Using Bootstrap

Confidence intervals using the bootstrap method (see Section 2.3.5, page 35)
are calculated using the function bootstrap.

Here, to reduce the execution time, which may be long because the model
must be calculated several times at each loop, we choose to evaluate by the
C program rather than by syntaxical trees (see the Ovocytes Example, Sec-
tion 1.6, page 24).

To generate the program that calculates the model, we type the operating
system command:
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$ analDer isomer.mod1

We then load the program into our S-Plus session:

> loadnls2("isomer.mod1.c")

To initialize the iterative bootstrap process, nls2 is first called with the
option renls2, and, finally, the function delnls2 cleans the internal struc-
tures:

> isomer.nl1 <- nls2(isomer,"isomer.mod1", c(36,.07,.04,.2),
control=list(freq=0), renls2=T)

> isomer.boot <- bootstrap(isomer.nl1,
method="residuals", n.loops=199)

> delnls2()

Histograms of (T̂ �,b, b = 1, . . . 199) for Each Parameter

Histograms of T̂ � for each parameter illustrate the boostrap estimation of
their distribution. Only the results corresponding to correct estimations, i.e.,
when isomer.boot$code=0, are taken into account:

> pStar_ isomer.boot$pStar[isomer.boot$code==0,]
> var.pStar_ isomer.boot$var.pStar[isomer.boot$code==0,]
> theta<-matrix(rep(isomer.nl1$theta,isomer.boot$n.loops),

ncol=4, byrow=T)
> TT <-(pStar - theta)/ sqrt(var.pStar)
> par(mfrow=c(2,2))
> for (a in 1:4)
> {
> hist(TT[,a],probability=T,main="Isomerization example",

sub=paste("Histogram of bootstrap estimations for T",a),xlab="")
> qx<-seq(from=min(TT[,a]),to=max(TT[,a]),length=75)
> lines(qx,dnorm(qx))
> }

(See Figure 2.5, page 46.)

Bootstrap Estimations of Standard Error and Bias for Each Parameter
Estimator

We calculate the accuracy characteristics of the bootstrap estimation and
display the values of the standard error (Ŝ�), the bias (B̂IAS

�
), the percentage

of bias, the 0.0025 and 0.975 percentiles (b0.025 and b0.975), and the confidence
interval ÎB :

> SE.boot <- sqrt(diag(var(pStar)))
> bias.boot <- apply(pStar,2,mean)-isomer.nl1$theta
> Pbias.boot <- 100*bias.boot/isomer.nl1$theta
> b0.025.boot <- apply(TT,2,quantile,probs=0.025)
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> b0.975.boot <- apply(TT,2,quantile,probs=0.975)
> binf.boot <- isomer.nl1$theta -

b0.975.boot*coef(isomer.nl1)$std.error
> bsup.boot <- isomer.nl1$theta -

b0.025.boot*coef(isomer.nl1)$std.error
> # Print the results:
> print(matrix(c(SE.boot, bias.boot,Pbias.boot,

b0.025.boot,b0.975.boot,
binf.boot, bsup.boot), ncol=7,

dimnames=list(names(isomer.nl1$theta),
c("S","BIAS","% of BIAS","b0.025","b0.975",

"lower bound","upper bound" ))))

Note: The bootstrap method generates different numbers on each execu-
tion. Thus, results of these commands may vary slightly from those displayed
in Section 2.4, page 46.

Confidence Intervals Using a New Parameterization of the Function f

A new parameterization of the regression function f is considered. The model
of Equation (2.10), page 47, is defined in a file called isomer.mod2:

resp r;
varind H,P,I;
aux a1, a2;
parresp b1,b2,b3,b4;
subroutine;
begin
a1= P - I/1.632;
a2= b1 + b2*H + b3*P + b4*I;
r=a1/a2;
end

Before calling nls2 to estimate the parameters, we have to call the func-
tion loadnls2. If we do not do this, the program isomer.mod1.c, previously
loaded into the S-Plus session, will still be current. loadnls2 is called without
any argument to reset the default action; the default is to calculate the model
by syntaxical trees:

> loadnls2(psi="")
> isomer.nl2<-nls2(isomer,"isomer.mod2",rep(1,4))

Confidence intervals are calculated using the function confidence.
We display the estimated values of the parameters, their standard errors

(Ŝ), and the 95% confidence interval ÎN :

> isomer.conf.par2 <- confidence(isomer.nl2)
> print(matrix(c(isomer.conf.par2$psi,

isomer.conf.par2$std.error,
isomer.conf.par2$normal.conf.int[,"lower"],
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isomer.conf.par2$normal.conf.int[,"upper"]),
ncol=4,
dimnames=list(names(isomer.conf.par2$psi),

c("parameters","S",
"lower bound","upper bound" ))))

(Results are given in Table 2.5, page 47.)

Confidence Regions with the New Parameterization

We plot confidence ellipses and likelihood contours in the space of the param-
eters (β1, β2) using the functions ellips and iso and graphical functions of
S-Plus:

> isomer.ell2 <- ellips(isomer.nl2, axis=c(1,2))
> isomer.iso2 <- iso(isomer.nl2, axis=c(1,2))
> # Graphical functions of Splus
> par(mfrow=c(1,2))
> plot(x=c(-5,7),y=c(0.03,.07),type="n",xlab="b1",ylab="b2")
> contour(isomer.ell2,levels=qchisq(c(0.90,0.95,0.99),4),

add=T,labex=0)
> points(x=isomer.nl2$theta[1], y=isomer.nl2$theta[2])
> title("Confidence ellipses")
> plot(x=c(-5,7),y=c(0.03,.07),type="n",xlab="b1",ylab="b2")
> contour(isomer.iso2,levels=qchisq(c(0.90,0.95,0.99),4),

add=T,labex=0)
> title("Likelihood contours")

(See Figure 2.6, page 48.)

Pasture Regrowth Example: Confidence Interval for λ = exp θ3

Let us return to the pasture regrowth example to calculate a confidence in-
terval for λ = exp θ3.

We define the function λ in a file called pasture.lambda:

psi lambda;
ppsi p3;
subroutine;
begin
lambda = exp(p3);
end

A confidence interval for λ is calculated using the confidence function.
We display the values of λ̂ , Ŝ, ν0.975, and ÎN :

> loadnls2(psi="")
> pasture.conf.expP3 <- confidence(pasture.nl1,

file="pasture.lambda")
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> # Print the results:
> cat("Estimated value of lambda:", pasture.conf.expP3$psi,"\n" )
> cat("Estimated value of S:",pasture.conf.expP3$std.error,"\n" )
> cat("nu_(0.975):", qnorm(0.975),"\n" )
> cat("Estimated value of In for exp(p3):",

pasture.conf.expP3$normal.conf.int,"\n" )
> cat("Estimated value of In for p3:",

pasture.conf.par$normal.conf.int[3,],"\n" )
> cat("Exponential transformation of the preceding interval:",

exp(pasture.conf.par$normal.conf.int[3,]),"\n" )

(Results for this example are given in Section 2.4.6, page 47.)


