
Preface to the Second Edition

Let me begin by thanking the readers of the first edition for their many helpful

comments and suggestions. The second edition represents a major change from

the first edition. Indeed, one might say that it is a totally new book, with the

exception of the general range of topics covered.

The text has been completely rewritten. I hope that an additional 12 years and

roughly 20 books worth of experience has enabled me to improve the quality of

my exposition. Also, the exercise sets have been completely rewritten.

The second edition contains two new chapters: a chapter on convexity,

separation and positive solutions to linear systems (Chapter 15) and a chapter on

the QR decomposition, singular values and pseudoinverses (Chapter 17). The

treatments of tensor products and the umbral calculus have been greatly

expanded and I have included discussions of determinants (in the chapter on

tensor products), the complexification of a real vector space, Schur's lemma and

Ger gorin disks.š

Steven Roman Irvine, California February 2005



Preface to the First Edition

This book is a thorough introduction to linear algebra, for the graduate or

advanced undergraduate student. Prerequisites are limited to a knowledge of the

basic properties of matrices and determinants. However, since we cover the

basics of vector spaces and linear transformations rather rapidly, a prior course

in linear algebra (even at the sophomore level), along with a certain measure of

“mathematical maturity,” is highly desirable.

Chapter 0 contains a summary of certain topics in modern algebra that are

required for the sequel. This chapter should be skimmed quickly and then used

primarily as a reference. Chapters 1–3 contain a discussion of the basic

properties of vector spaces and linear transformations.

Chapter 4 is devoted to a discussion of modules, emphasizing a comparison

between the properties of modules and those of vector spaces. Chapter 5

provides more on modules. The main goals of this chapter are to prove that any

two bases of a free module have the same cardinality and to introduce

noetherian modules. However, the instructor may simply skim over this chapter,

omitting all proofs. Chapter 6 is devoted to the theory of modules over a

principal ideal domain, establishing the cyclic decomposition theorem for

finitely generated modules. This theorem is the key to the structure theorems for

finite-dimensional linear operators, discussed in Chapters 7 and 8.

Chapter 9 is devoted to real and complex inner product spaces. The emphasis

here is on the finite-dimensional case, in order to arrive as quickly as possible at

the finite-dimensional spectral theorem for normal operators, in Chapter 10.

However, we have endeavored to state as many results as is convenient for

vector spaces of arbitrary dimension.

The second part of the book consists of a collection of independent topics, with

the one exception that Chapter 13 requires Chapter 12. Chapter 11 is on metric

vector spaces, where we describe the structure of symplectic and orthogonal

geometries over various base fields. Chapter 12 contains enough material on

metric spaces to allow a unified treatment of topological issues for the basic
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Hilbert space theory of Chapter 13. The rather lengthy proof that every metric

space can be embedded in its completion may be omitted.

Chapter 14 contains a brief introduction to tensor products. In order to motivate

the universal property of tensor products, without getting too involved in

categorical terminology, we first treat both free vector spaces and the familiar

direct sum, in a universal way. Chapter 15 [Chapter 16 in the second edition] is

on affine geometry, emphasizing algebraic, rather than geometric, concepts.

The final chapter provides an introduction to a relatively new subject, called the

umbral calculus. This is an algebraic theory used to study certain types of

polynomial functions that play an important role in applied mathematics. We

give only a brief introduction to the subject emphasizing the algebraic

aspects, rather than the applications. This is the first time that this subject has

appeared in a true textbook.

One final comment. Unless otherwise mentioned, omission of a proof in the text

is a tacit suggestion that the reader attempt to supply one.

Steven Roman Irvine, California



Chapter 2

Linear Transformations

Linear Transformations

Loosely speaking, a linear transformation is a function from one vector space to

another that  the vector space operations. Let us be more precise.preserves

Definition Let  and  be vector spaces over a field . A function 

is a  iflinear transformation

for all scalars  and vectors , . A linear transformation 

is called a  on . The set of all linear transformations from linear operator

to  is denoted by  and the set of all linear operators on  is denoted

by . 

We should mention that some authors use the term linear operator for any linear

transformation from  to .

Definition The following terms are also employed:

1)  for linear transformationhomomorphism

2)  for linear operatorendomorphism

3)  (or ) for injective linear transformationmonomorphism embedding

4)  for surjective linear transformationepimorphism

5)  for bijective linear transformation.isomorphism

6)  for bijective linear operator. automorphism

Example 2.1

1) The derivative  is a linear operator on the vector space  of all

infinitely differentiable functions on .
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2) The integral operator  defined by

is a linear operator on .

3) Let  be an  matrix over . The function  defined by

, where all vectors are written as column vectors, is a linear

transformation from  to . This function is just multiplication by .

4) The coordinate map  of an -dimensional vector space is a

linear transformation from  to . 

The set  is a vector space in its own right and  has the structure of

an algebra, as defined in Chapter 0.

Theorem 2.1

1) The set  is a vector space under ordinary addition of functions

and scalar multiplication of functions by elements of .

2) If  and  then the composition  is in .

3) If  is bijective then .

4) The vector space  is an algebra, where multiplication is composition

of functions. The identity map  is the multiplicative identity and

the zero map  is the additive identity.

Proof. We prove only part 3). Let  be a bijective linear

transformation. Then  is a well-defined function and since any two

vectors  and  in  have the form  and , we have

which shows that  is linear. 

One of the easiest ways to define a linear transformation is to give its values on

a basis. The following theorem says that we may assign these values arbitrarily

and obtain a unique linear transformation by linear extension to the entire

domain.

Theorem 2.2  Let  and  be vector spaces and let  be a

basis for . Then we can define a linear transformation  by

specifying the values of   for all  and extending thearbitrarily

domain of  to  using linearity, that is,
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This process  defines a linear transformation, that is, ifuniquely

 satisfy  for all  then .

Proof. The crucial point is that the extension by linearity is well-defined, since

each vector in  has a unique representation as a linear combination of a finite

number of vectors in . We leave the details to the reader. 

Note that if  and if  is a subspace of , then the restriction  of

 to  is a linear transformation from  to .

The Kernel and Image of a Linear Transformation

There are two very important vector spaces associated with a linear

transformation  from  to .

Definition Let . The subspace

ker

is called the  of  and the subspacekernel

im

is called the  of . The dimension of  is called the  of  and isimage nullityker

denoted by . The dimension of  is called the  of  and isnull im rank

denoted by . rk

It is routine to show that  is a subspace of  and  is a subspace ofker im

. Moreover, we have the following.

Theorem 2.3  Let . Then

1)  is surjective if and only if im

2)  is injective if and only if ker

Proof. The first statement is merely a restatement of the definition of

surjectivity. To see the validity of the second statement, observe that

ker

Hence, if  then , which shows that  isker

injective. Conversely, if  is injective and  then  and soker

. This shows that . ker

Isomorphisms

Definition A bijective linear transformation  is called an

isomorphism from  to . When an isomorphism from  to  exists, we say

that  and  are  and write . isomorphic

Example 2.2 Let . For any ordered basis  of , the coordinatedim

map  that sends each vector  to its coordinate matrix
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 is an isomorphism. Hence, any -dimensional vector space over  is

isomorphic to . 

Isomorphic vector spaces share many properties, as the next theorem shows. If

 and  we write

Theorem 2.4  Let  be an isomorphism. Let . Then

1)  spans  if and only if  spans .

2)  is linearly independent in  if and only if  is linearly independent in

.

3)  is a basis for  if and only if  is a basis for . 

An isomorphism can be characterized as a linear transformation  that

maps a basis for  to a basis for .

Theorem 2.5  A linear transformation  is an isomorphism if and

only if there is a basis  of  for which  is a basis of . In this case, 

maps any basis of  to a basis of . 

The following theorem says that, up to isomorphism, there is only one vector

space of any given dimension.

Theorem 2.6  Let  and  be vector spaces over . Then  if and only

if . dim dim

In Example 2.2, we saw that any -dimensional vector space is isomorphic to

. Now suppose that  is a set of cardinality  and let  be the vector

space of all functions from  to  with finite support. We leave it to the reader

to show that the functions  defined for all , by

if

if

form a basis for , called the . Hence, .standard basis dim

It follows that for any cardinal number , there is a vector space of dimension .

Also, any vector space of dimension  is isomorphic to .

Theorem 2.7  If  is a natural number then any -dimensional vector space

over  is isomorphic to . If  is any cardinal number and if  is a set of

cardinality  then any -dimensional vector space over  is isomorphic to the

vector space  of all functions from  to  with finite support. 
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The Rank Plus Nullity Theorem

Let . Since any subspace of  has a complement, we can write

ker ker

where  is a complement of  in . It follows thatker ker

dim dim ker dim ker

Now, the restriction of  to ker

ker

is injective, since

ker ker ker

Also, . For the reverse inclusion, if  then sinceim im im

 for  and , we haveker ker

im

Thus . It follows thatim im

ker im

From this, we deduce the following theorem.

Theorem 2.8  Let .

1) Any complement of  is isomorphic to ker im

2) ( )The rank plus nullity theorem

dim ker dim dimim

or, in other notation,

rk null dim

Theorem 2.8 has an important corollary.

Corollary 2.9 Let , where . Then  isdim dim

injective if and only if it is surjective. 

Note that this result fails if the vector spaces are not finite-dimensional.

Linear Transformations from  to 

Recall that for any  matrix  over  the multiplication map
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is a linear transformation. In fact, any linear transformation  has

this form, that is,  is just multiplication by a matrix, for we have

and so  where

Theorem 2.10

1) If  is an  matrix over  then .

2) If  then  where

The matrix  is called the  of . matrix

Example 2.3 Consider the linear transformation  defined by

Then we have, in column form

and so the standard matrix of  is

If  then since the image of  is the column space of , we have

dim ker dimrk

This gives the following useful result.

Theorem 2.11  Let  be an  matrix over .

1)  is injective if and only if n.rk

2)  is surjective if and only if m. rk

Change of Basis Matrices

Suppose that  and  are ordered bases for a

vector space . It is natural to ask how the coordinate matrices  and  are

related. The map that takes  to  is  and is called the change

of basis operator change of coordinates operator (or ). Since  is an

operator on , it has the form  where
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We denote  by  and call it the  from  to ., change of basis matrix

Theorem 2.12  Let  and  be ordered bases for a vector space

. Then the change of basis operator  is an automorphism of ,

whose standard matrix is

,

Hence

and . ,

Consider the equation

or equivalently,

Then given any two of  (an invertible  matrix)  (an ordered basis for

) and  (an order basis for ), the third component is uniquely determined

by this equation. This is clear if  and  are given or if  and  are given. If 

and  are given then there is a unique  for which  and so there is a

unique  for which .

Theorem 2.13 If we are given any two of the following:

1) An invertible  matrix .

2) An ordered basis  for .

3) An ordered basis  for .

then the third is uniquely determined by the equation

The Matrix of a Linear Transformation

Let  be a linear transformation, where  anddim

dim  and let  be an ordered basis for  and  an

ordered basis for . Then the map

is a  of  as a linear transformation from  to , in the senserepresentation
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that knowing  (along with  and , of course) is equivalent to knowing . Of

course, this representation depends on the choice of ordered bases  and .

Since  is a linear transformation from  to , it is just multiplication by an

 matrix , that is

Indeed, since , we get the columns of  as follows:

Theorem 2.14  Let  and let  and  be ordered

bases for  and , respectively. Then  can be represented with respect to 

and  as matrix multiplication, that is

,

where

,

is called the     and . When  andmatrix of with respect to the bases

, we denote  by  and so,

Example 2.4 Let  be the derivative operator, defined on the vector

space of all polynomials of degree at most . Let . Then

,

and so

Hence, for example, if  then

and so . 

The following result shows that we may work equally well with linear

transformations or with the matrices that represent them (with respect to fixed
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ordered bases  and ). This applies not only to addition and scalar

multiplication, but also to matrix multiplication.

Theorem 2.15  Let  and  be vector spaces over , with ordered bases

 and , respectively.

1) The map  defined by

,

is an isomorphism and so .

2) If  and  and if ,  and  are ordered bases for

,  and , respectively then

, , ,

Thus, the matrix of the product (composition)  is the product of the

matrices of  and . In fact, this is the primary motivation for the definition

of matrix multiplication.

Proof. To see that  is linear, observe that for all 

and since  is a standard basis vector, we conclude that

and so  is linear. If , we define  by the condition ,

whence  and  is surjective. Since ,dim dim

the map  is an isomorphism. To prove part 2), we have

,

Change of Bases for Linear Transformations

Since the matrix  that represents  depends on the ordered bases  and , it,

is natural to wonder how to choose these bases in order to make this matrix as

simple as possible. For instance, can we always choose the bases so that  is

represented by a diagonal matrix?

As we will see in Chapter 7, the answer to this question is no. In that chapter,

we will take up the general question of how best to represent a linear operator

by a matrix. For now, let us take the first step and describe the relationship

between the matrices  and  of  with respect to two different pairs

 and  of ordered bases. Multiplication by  sends  to
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. This can be reproduced by first switching from  to , then applying

 and finally switching from  to , that is,

, , ,

Theorem 2.16  Let ,  and let  and  be pairs of ordered

bases of  and , respectively. Then

(2.1)

When  is a linear operator on , it is generally more convenient to

represent  by matrices of the form , where the ordered bases used to

represent vectors in the domain and image are the same. When , Theorem

2.16 takes the following important form.

Corollary  Let  and let  and  be ordered bases for . Then the2.17

matrix of  with respect to  can be expressed in terms of the matrix of  with

respect to  as follows

(2.2)

Equivalence of Matrices

Since the change of basis matrices are precisely the invertible matrices, (2.1) has

the form

where  and  are invertible matrices. This motivates the following definition.

Definition Two matrices  and  are  if there exist invertibleequivalent

matrices  and  for which

We remarked in Chapter 0 that  is equivalent to  if and only if  can be

obtained from  by a series of elementary row and column operations.

Performing the row operations is equivalent to multiplying the matrix  on the

left by  and performing the column operations is equivalent to multiplying 

on the right by .

In terms of (2.1), we see that performing row operations (premultiplying by )

is equivalent to changing the basis used to represent vectors in the image and

performing column operations (postmultiplying by ) is equivalent to

changing the basis used to represent vectors in the domain.
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According to Theorem 2.16, if  and  are matrices that represent  with

respect to possibly different ordered bases then  and  are equivalent. The

converse of this also holds.

Theorem 2.18  Let  and  be vector spaces with  anddim

dim . Then two  matrices  and  are equivalent if and only if

they represent the same linear transformation , but possibly with

respect to different ordered bases. In this case,  and  represent exactly the

same set of linear transformations in .

Proof. If  and  represent , that is, if

, , and 

for ordered bases  and  then Theorem 2.16 shows that  and  are

equivalent. Now suppose that  and  are equivalent, say

where  and  are invertible. Suppose also that  represents a linear

transformation  for some ordered bases  and , that is,

Theorem 2.13 implies that there is a unique ordered basis  for  for which

 and a unique ordered basis  for  for which . Hence

Hence,  also represents . By symmetry, we see that  and  represent the

same set of linear transformations. This completes the proof. 

We remarked in Example 0.3 that every matrix is equivalent to exactly one

matrix of the block form

block

Hence, the set of these matrices is a set of canonical forms for equivalence.

Moreover, the rank is a complete invariant for equivalence. In other words, two

matrices are equivalent if and only if they have the same rank.

Similarity of Matrices

When a linear operator  is represented by a matrix of the form ,

equation (2.2) has the form

where  is an invertible matrix. This motivates the following definition.
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Definition Two matrices  and  are  if there exists an invertiblesimilar

matrix  for which

The equivalence classes associated with similarity are called similarity

classes.

The analog of Theorem 2.18 for square matrices is the following.

Theorem 2.19  Let  be a vector space of dimension . Then two 

matrices  and  are similar if and only if they represent the same linear

operator , but possibly with respect to different ordered bases. In this

case,  and  represent exactly the same set of linear operators in .

Proof. If  and  represent , that is, if

 and 

for ordered bases  and  then Corollary 2.17 shows that  and  are similar.

Now suppose that  and  are similar, say

Suppose also that  represents a linear operator  for some ordered

basis , that is,

Theorem 2.13 implies that there is a unique ordered basis  for  for which

. Hence

Hence,  also represents . By symmetry, we see that  and  represent the

same set of linear operators. This completes the proof. 

We will devote much effort in Chapter 7 to finding a canonical form for

similarity.

Similarity of Operators

We can also define similarity of operators.

Definition Two linear operators  are  if there exists ansimilar

automorphism  for which

The equivalence classes associated with similarity are called similarity

classes.
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The analog of Theorem 2.19 in this case is the following.

Theorem 2.20  Let  be a vector space of dimension . Then two linear

operators  and  on  are similar if and only if there is a matrix  that

represents both operators (but with respect to possibly different ordered bases).

In this case,  and  are represented by exactly the same set of matrices in .

Proof. If  and  are represented by , that is, if

for ordered bases  and  then

Let  be the automorphism of  defined by , where

 and . Then

and so

from which it follows that  and  are similar. Conversely, suppose that  and 

are similar, say

Suppose also that  is represented by the matrix , that is,

for some ordered basis . Then

If we set  then  is an ordered basis for  and

Hence

It follows that

and so  also represents . By symmetry, we see that  and  are represented

by the same set of matrices. This completes the proof. 
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Invariant Subspaces and Reducing Pairs

The restriction of a linear operator  to a subspace  of is not

necessarily a linear operator on . This prompts the following definition.

Definition Let . A subspace  of  is said to be   orinvariant under

-  if , that is, if  for all . Put another way, invariant

is invariant under  if the restriction  is a linear operator on . 

If

then the fact that  is -invariant does not imply that the complement  is also

-invariant. (The reader may wish to supply a simple example with .)

Definition Let . If  and if both  and  are -invariant,

we say that the pair   . reduces

A reducing pair can be used to decompose a linear operator into a direct sum as

follows.

Definition Let . If  reduces  we write

and call  the  of  and . Thus, the expressiondirect sum

means that there exist subspaces  and  of  for which  reduces  and

  and 

The concept of the direct sum of linear operators will play a key role in the

study of the structure of a linear operator.

Topological Vector Spaces

This section is for readers with some familiarity with point-set topology. The

standard topology open rectangles on  is the topology for which the set of 

's are open intervals in  

is a basis (in the sense of topology), that is, a subset of  is open if and only if

it is a union of sets in . The standard topology is the topology induced by the

Euclidean metric on .



Linear Transformations 69

The standard topology on  has the property that the addition function

and the scalar multiplication function

are continuous. As such,  is a . Also, any lineartopological vector space

functional  is a continuous map.

More generally, any real vector space  endowed with a topology  is called a

topological vector space if the operations of addition  and

scalar multiplication  are continuous under .

Let  be a real vector space of dimension  and fix an ordered basis

 for . Consider the coordinate map

and its inverse

We claim that there is precisely one topology  on  for which 

becomes a topological vector space and for which all linear functionals are

continuous. This is called the  on . In fact, the naturalnatural topology

topology is the topology for which  (and therefore also ) is a

homeomorphism, for any basis . (Recall that a  is a bijectivehomeomorphism

map that is continuous and has a continuous inverse.)

Once this has been established, it will follow that the open sets in  are

precisely the images of the open sets in  under the map . A basis for the

natural topology is given by

's are open intervals in 

's are open intervals in 

First, we show that if  is a topological vector space under a topology  then 

is continuous. Since  where  is defined by

it is sufficient to show that these maps are continuous. (The sum of continuous

maps is continuous.) Let  be an open set in . Then

is open in . We need to show that the set
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is open in , so let . Thus, . It follows that

, which is open, and so there is an open interval  and

an open set  of  for which

Then the open set , where the factor  is in

the th position, has the property that . Thus

and so  is open. Hence, , and therefore also , is continuous.

Next we show that if every linear functional on  is continuous under a

topology  on  then the coordinate map  is continuous. If  denote by

 the th coordinate of . The map  defined by  is a

linear functional and so is continuous by assumption. Hence, for any open

interval  the set

is open. Now, if  are open intervals in  then

is open. Thus,  is continuous.

Thus, if a topology  has the property that  is a topological vector space and

every linear functional is continuous, then  and  are

homeomorphisms. This means that , if it exists, must be unique.

It remains to prove that the topology  on  that makes  a homeomorphism

has the property that  is a topological vector space under  and that any linear

functional  on  continuous.

As to addition, the maps  and  are

homeomorphisms and the map  is continuous and so the map

, being equal to , is also continuous.

As to scalar multiplication, the maps  and

 are homeomorphisms and the map

 is continuous and so the map , being equal

to , is also continuous.

Now let  be a linear functional. Since  is continuous if and only if  is

continuous, we can confine attention to . In this case, if  is the
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standard basis for for any  and , then  we

have

Now, if  then  and so , which implies that 

is continuous.

According to the Riesz representation theorem and the Cauchy–Schwarz

inequality, we have

Hence,  implies  and so by linearity,  implies

 and so  is continuous.

Theorem 2.21  Let  be a real vector space of dimension . There is a unique

topology on , called the  for which  is a topological vectornatural topology

space and for which all linear functionals on  are continuous. This topology is

determined by the fact that the coordinate map  is a

homeomorphism.

Linear Operators on 

A linear operator  on a real vector space  can be extended to a linear operator

 on the complexification  by defining

Here are the basic properties of this  of .complexification

Theorem 2.22 If  then

1) , 

2) 

3) 

4) . 

Let us recall that for any ordered basis  for  and any vector  we have

cpx

Now, if  is a basis for , then the th column of  is

cpx cpx

which is the th column of the coordinate matrix of  with respect to the basis

cpx . Thus we have the following theorem.
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Theorem 2.23 Let  where  is a real vector space. The matrix of 

with respect to the basis  is equal to the matrix of  with respect to thecpx

basis

cpx

Hence, if a real matrix  represents a linear operator  on  then  also

represents the complexification  of  on . 

Exercises

1. Let  have rank . Prove that there are matrices  and

, both of rank , for which . Prove that  has rank  if

and only if it has the form  where  and  are row matrices.

2. Prove Corollary 2.9 and find an example to show that the corollary does not

hold without the finiteness condition.

3. Let . Prove that  is an isomorphism if and only if it carries a

basis for  to a basis for .

4. If  and  we define the external direct sum

 by

Show that  is a linear transformation.

5. Let . Prove that . Thus, internal and external

direct sums are equivalent up to isomorphism.

6. Let  and consider the external direct sum . Define a

map  by . Show that  is linear. What is the

kernel of ? When is  an isomorphism?

7. Let  be a subset of . A subspace  of  is  if  is --invariant

invariant for every . Also,  is  if the only -invariant-irreducible

subspaces of  are  and . Prove the following form of Schur's lemma.

Suppose that  and  and  is -irreducible and 

is -irreducible. Let  satisfy , that is, for any

 there is a  such that . Prove that  or  is an

isomorphism.

8. Let  where . If  show thatdim rk rk

im ker .

9. Let ,  and . Show that

 minrk rk rk

10. Let  and . Show that

null null null

11. Let  where  is invertible. Show that

rk rk rk
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12. Let . Show that

rk rk rk

13. Let  be a subspace of . Show that there is a  for which

ker . Show also that there exists a  for which .im

14. Suppose that .

 a) Show that  for some . if and only if im im

 b) Show that  for some . if and only if ker ker

15. Let . Define linear operators  on  by  for

. These are referred to as . Show thatprojection operators

 1) 

 2) , where  is the identity map on .

 3)  for  where  is the zero map.

 4) im im

16. Let  and suppose that  satisfies . Show thatdim

rk .dim

17. Let  be an  matrix over . What is the relationship between the

linear transformation  and the system of equations ?

Use your knowledge of linear transformations to state and prove various

results concerning the system , especially when .

18. Let  have basis . Suppose that for each  we

define  by

if

if

Prove that the  are invertible and form a basis for .

19. Let . If  is a -invariant subspace of  must there be a subspace

 of  for which  reduces ?

20. Find an example of a vector space  and a proper subspace  of  for

which .

21. Let . If ,  prove that  implies that  and dim

are invertible and that  for some polynomial .

22. Let  where . If  for all  show thatdim

, for some , where  is the identity map.

23. Let . Let  be a field containing . Show that if  and 

are similar over , that is, if  where  then  and

 are also similar over , that is, there exists  for which

. : consider the equation  as aHint

homogeneous system of linear equations with coefficients in . Does it

have a solution? Where?

24. Let  be a continuous function with the property that

Prove that  is a linear functional on .
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25. Prove that any linear functional  is a continuous map.

26. Prove that any subspace  of  is a closed set or, equivalently, that

 is open, that is, for any  there is an open ball 

centered at  with radius  for which .

27. Prove that any linear transformation  is continuous under the

natural topologies of  and .

28. Prove that any surjective linear transformation  from  to  (both finite-

dimensional topological vector spaces under the natural topology) is an

open map, that is,  maps open sets to open sets.

29. Prove that any subspace  of a finite-dimensional vector space  is a

closed set or, equivalently, that  is open, that is, for any  there is

an open ball  centered at  with radius  for which

.

30. Let  be a subspace of  with .dim

 a) Show that the subspace topology on  inherited from  is the natural

topology.

 b) Show that the natural topology on  is the topology for which the

natural projection map  continuous and open.

31. If  is a real vector space then  is a complex vector space. Thinking of

 as a vector space  over , show that  is isomorphic to the

external direct product .

34. (When is a complex linear map a complexification?) Let  be a real vector

space with complexification  and let . Prove that  is a

complexification, that is,  has the form  for some  if and only

if  commutes with the conjugate map  defined by

.

35. Let  be a complex vector space.

 a) Consider replacing the scalar multiplication on  by the operation

where  and . Show that the resulting set with the addition

defined for the vector space  and with this scalar multiplication is a

complex vector space, which we denote by .

 b) Show, without using dimension arguments, that .

36. a) Let  be a linear operator on the real vector space  with the property

that . Define a scalar multiplication on  by complex numbers

as follows

for  and . Prove that under the addition of  and this

scalar multiplication  is a complex vector space, which we denote by

.

 b) What is the relationship between and ? Hint: consider

 and .


