Inhaltsverzeichnis

1 Regelungstechnische Grundbegriffe und Grundregeln 1
 1.1 Gegenüberstellung von Steuerung und Regelung 1
 1.2 Beschreibung des dynamischen Verhaltens durch Signalflußpläne 6
 1.3 Frequenzgang ... 10
 1.3.1 Ortskurvendarstellung in rechtwinkligen Koordinaten 13
 1.3.2 Frequenzkennlinien, Bode-Diagramm 15
 1.4 Rechenregeln, Umwandlungsregeln, Signalfußplan 22
 1.5 Führungs- und Störungsübertragungsfunktion 26

2 Stabilisierung und Optimierung von Regelkreisen 28
 2.1 Stabilität ... 29
 2.1.1 Nyquist-Kriterium 31
 2.1.2 Frequenzkennlinien 34
 2.2 Stabilitätsprüfung anhand der Übertragungsfunktion 36
 2.3 Optimierung bei offenem Kreis (Bode-Diagramm) 41

3 Standard-Optimierungsverfahren 46
 3.1 Betragsoptimum (BO) 46
 3.1.1 Herleitung für Strecken ohne I-Anteil 47
 3.1.2 Verallgemeinerung und Anwendung des Betragsoptimums . . 50
 3.1.3 Mathematische Herleitung des Betragsoptimums 56
 3.2 Symmetrisches Optimum (SO) 60
 3.2.1 Herleitung für Strecken mit I-Anteil 60
 3.2.2 Verallgemeinerung und Anwendung des Symmetrischen Optimums 65
 3.2.3 Mathematische Herleitung des Symmetrischen Optimums... 72
 3.3 Auswahl des Reglers und Bestimmung der Optimierung 73
 3.4 Optimierungstabelle 80
 3.5 Führungsverhalten bei rampenförmiger Anregung 82

4 Verallgemeinerte Optimierungsverfahren 84
 4.1 Dämpfungsoptimum (DO) 84
Inhaltsverzeichnis

4.1.1 Herleitung der Doppelverhältnisse .. 85
4.1.2 Standardfunktionen des Dämpfungsoptimums 86
4.1.3 Reglerauslegung nach dem Dämpfungsoptimum 88
4.2 Beispiele zum Dämpfungsoptimum .. 92
4.3 Zählerpolynom und äquivalente Sollwertglättung 97
4.4 Erweitertes Dämpfungsoptimum ... 99
4.4.1 Kompensation des Zählerpolynoms 99
4.4.2 Divisionsmethode .. 99
4.4.3 Allgemeine Methode für Strecken mit Zählerpolynomen 100
4.5 Reglerentwurf durch Gütefunktionale ... 104
4.6 Reglerauslegung mit MATLAB .. 109

5 Regelkreisstrukturen .. 112
5.1 Allgemein vermaschter Regelkreis ... 112
5.1.1 Begrenzungsregelung .. 112
5.1.2 Störgrößenaufschaltung ... 113
5.1.3 Hilfsstellgrößen ... 114
5.2 Kaskadenregelung ... 115
5.3 Modellbasierte Regelungen .. 119
5.3.1 Conditional Feedback .. 119
5.3.2 Internal Model Control (IMC) .. 120
5.3.3 Smith–Prädiktor ... 122
5.4 Vorsteuerung .. 123
5.4.1 Übertragungsfunktionen ... 124
5.4.2 Auslegung der Vorsteuerübertragungsfunktion $A(s)$ 124
5.4.3 Beispiel: Nachlaufregelung mit IT₁–Strecke 125
5.4.4 Beispiel: Nachlaufregelung mit zwei PT₁–Strecken und PI–Regler 127
5.5 Zustandsregelung ... 128
5.5.1 Zustandsdarstellung .. 128
5.5.2 Normalformen ... 130
5.5.3 Lösung der Zustandsdifferentialgleichung im Zeitbereich 134
5.5.4 Steuerbarkeit und Beobachtbarkeit .. 134
5.5.5 Entwurf einer Zustandsregelung .. 136
5.5.6 Zustandsbeobachter ... 139
5.5.6.1 Beobachtung mit Differentiation und Parallelmodell 140
5.5.6.2 Luenberger–Beobachter .. 141
5.5.6.3 Zustandsregelung mit Beobachter 143
5.5.6.4 Kalman–Filter .. 145
5.5.7 Zusammenfassung ... 146
5.6 Stellbegrenzungen in Regelkreisen .. 147
5.6.1 Allgemeine Vorbemerkungen ... 147
5.6.2 Regler–Windup bei PI– und PID–Reglern 148
5.6.2.1 Beschreibung des Phänomens .. 148

Dr. P. Hippe, Dr. C. Wurmthaler
5.6.2.2 Maßnahmen zur Vermeidung des Regler–Windup bei PI- und PID–Reglern .. 149
5.6.3 Systematisches Vorgehen zur Beseitigung von Regler– und Strecken–Windup .. 152

6 Abtastsysteme .. 160
6.1 Grundlagen der z–Transformation .. 160
6.1.1 Abtastvorgang ... 161
6.1.2 z–Transformation ... 162
6.1.3 Gesetze und Rechenmethoden der z–Transformation .. 164
6.1.4 Transformationstabelle .. 172
6.2 Übertragungsfunktionen von Abtastsystemen .. 176
6.2.1 Stabilität und Pollagen .. 176
6.2.2 Übergangsverhalten von zeitdiskreten Systemen .. 181
6.2.3 Frequenzkennlinien–Darstellung von Abtastsystemen .. 182
6.2.4 Systeme mit mehreren nichtsynchronen Abtastern ... 187
6.3 Einschleifige Abtastregelkreise .. 188
6.3.1 Aufbau von digitalen Abtastregelkreisen .. 188
6.3.2 Elementare zeitdiskrete Regler ... 191
6.3.3 Quasikontinuierlicher Reglerentwurf ... 193
6.4 Optimierung des Reglers bei Abtastregelkreisen ... 196
6.4.1 Realisierungsverfahren von Abtastreglern .. 196
6.4.2 Parameteroptimierung des Reglers nach einem Gütekriterium 197
6.4.3 Entwurf als Kompensationsregler .. 198
6.5 Entwurf zeitdiskreter Regelkreise auf endliche Einstellzeit 200
6.5.1 Reglerentwurf ohne Stellgrößenvorgabe ... 202
6.5.2 Reglerentwurf mit Stellgrößenvorgabe ... 206
6.5.3 Wahl der Abtastzeit bei Dead–Beat–Reglern ... 208
6.5.4 Beispiel zum Dead–Beat–Regler .. 209

7 Regelung der Gleichstrommaschine ... 212
7.1 Geregelter Gleichstromnebenschlußmaschine im Ankerstellbereich 213
7.1.1 Stromregelkreis .. 213
7.1.1.1 EMK–Kompensation .. 214
7.1.1.2 EMK–Bestimmung .. 215
7.1.1.3 Ausführung der EMK–Aufschaltung ... 217
7.1.1.4 Optimierung des Stromregelkreises ... 218
7.1.1.5 Optimierung des Stromregelkreises mit Meßwertglättung 223
7.1.2 Drehzahlregelkreis .. 226
7.1.2.1 Optimierung des Drehzahlregelkreises mit Meßwertglättung 229
7.1.2.2 Regelkreise mit Stromsollwertbegrenzung ... 230
7.1.2.3 Direkte Drehzahlregelung .. 234
7.1.2.4 Strombegrenzungsregelung .. 236
Inhaltsverzeichnis

7.1.3 Lagerregelung ... 237
7.2 Geregelter Gleichstromnebenschlußmaschine im Feldschwäcbereich 241
7.2.1 Erregersstromregelung 245
7.2.2 Schaltungsvarianten 247
7.2.3 Sammelschienenantrieb 249
7.2.4 Contiflux–Regelung 251
7.2.5 Spannungsabhängige Feldschwäbung 253

8 Fehlereinflüsse und Genauigkeit bei geregelt Systemen 264

8.1 Ausregelbare Fehler ... 264
8.2 Nicht ausregelbare Fehler 268
8.3 Abschätzung der Auswirkung der Fehler 274
8.3.1 Statische Fehler ... 274
8.3.1.1 Fehler des Operationsverstärkers 275
8.3.1.2 Laständerungen .. 277
8.3.1.3 Sollwertgeber ... 278
8.3.1.4 Tachogenerator .. 279
8.3.1.5 Istwerteiler ... 280
8.4 Erreichbare Genauigkeit analog drehzahlgeregelter Antriebe 280
8.5 Fehler in Systemen mit digitaler Erfassung von Position und Drehzahl .. 282
8.5.1 Digitale Positions messung 282
8.5.2 Digitale Drehzahlerfassung 283
8.6 Geber ... 285
8.6.1 Strommessung ... 285
8.6.2 Spannungsmessung .. 288
8.6.3 Gegenüberstellung von Drehzahl- und Positionsgebern 289

Prof. Dr. R. Kennel

8.6.3.1 Drehzahlregelung ... 289
8.6.3.2 Positionserg gelung .. 291
8.7 EMV, störsichere Signalübertragung und Störschutzmaßnahmen 301
8.7.1 Oberschwingungen, EMV und Normen 301
8.7.2 Störsichere analoge Signalübertragung 303
8.7.3 Störschutzmaßnahmen 305

9 Netzgeführte Stromrichter 307

9.1 Prinzipielle Funktion netzgeführter Stellglieder 307
9.2 Vereinfachte Approximation 311
9.3 Untersuchung des dynamischen Verhaltens netzgeführter Stromrichterstelliglieder 316
9.3.1 Analyse des Stromrichterstelliglieds bei einer Zündwinkelverstellung in Richtung abnehmendem Steuerwinkel 317
<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Thema</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.3.2</td>
<td>Analyse des Stromrichterstellglieds bei einer Zündwinkelverstellung in Richtung zunehmendem Steuerwinkel</td>
<td>322</td>
</tr>
<tr>
<td>9.4</td>
<td>Diskussion der Ergebnisse</td>
<td>325</td>
</tr>
<tr>
<td>9.5</td>
<td>Laufzeit näherung für das Großsignalverhalten, Symmetrierung</td>
<td>330</td>
</tr>
<tr>
<td>9.6</td>
<td>Großsignal-Approximationen für netzgeführte Stromrichterstellglieder</td>
<td>335</td>
</tr>
<tr>
<td>9.7</td>
<td>Zusammenfassung</td>
<td>340</td>
</tr>
<tr>
<td>10</td>
<td>Untersuchung von Regelkreisen mit Stromrichtern mit der Abtasttheorie</td>
<td>342</td>
</tr>
<tr>
<td>10.1</td>
<td>Untersuchung des Steuergerätes ohne dynamische Symmetrierung</td>
<td>344</td>
</tr>
<tr>
<td>10.2</td>
<td>Untersuchung des Stromrichters</td>
<td>346</td>
</tr>
<tr>
<td>10.3</td>
<td>Stromrichterstellglied bei lückendem Strom</td>
<td>351</td>
</tr>
<tr>
<td>10.4</td>
<td>Adaptive Stromregelung</td>
<td>356</td>
</tr>
<tr>
<td>10.4.1</td>
<td>Allgemeine Betrachtung</td>
<td>356</td>
</tr>
<tr>
<td>10.4.2</td>
<td>Praktische Realisierung</td>
<td>360</td>
</tr>
<tr>
<td>10.4.3</td>
<td>Prädiktive Stromführung</td>
<td>370</td>
</tr>
<tr>
<td>10.5</td>
<td>Zusammenfassung</td>
<td>372</td>
</tr>
<tr>
<td>11</td>
<td>Beschreibungsfunktion des Stromrichters mit natürlicher Kommutierung</td>
<td>373</td>
</tr>
<tr>
<td>11.1</td>
<td>Allgemeine Einführung</td>
<td>373</td>
</tr>
<tr>
<td>11.2</td>
<td>Diskussion der Ergebnisse</td>
<td>376</td>
</tr>
<tr>
<td>11.3</td>
<td>Untersuchung von Regelkreisen mit der Beschreibungsfunktion</td>
<td>383</td>
</tr>
<tr>
<td>11.4</td>
<td>Grenzen des Verfahrens</td>
<td>388</td>
</tr>
<tr>
<td>12</td>
<td>Vergleich verschiedener Approximationen für netzgeführte Stromrichter</td>
<td>389</td>
</tr>
<tr>
<td>12.1</td>
<td>Ermittlung von $G_i(z,m)$, Sprungfähigkeit</td>
<td>390</td>
</tr>
<tr>
<td>12.2</td>
<td>Berechnung der ersten Ableitung der Steuersatzeingangsspannung</td>
<td>393</td>
</tr>
<tr>
<td>12.3</td>
<td>Überprüfung der Stromrichterstellglied-Approximationen</td>
<td>397</td>
</tr>
<tr>
<td>12.4</td>
<td>Synthese von Regelkreisen mit Stromrichter-Stellgliedern</td>
<td>404</td>
</tr>
<tr>
<td>13</td>
<td>Asynchronmaschine</td>
<td>409</td>
</tr>
<tr>
<td>13.1</td>
<td>Grundlagen</td>
<td>409</td>
</tr>
<tr>
<td>13.1.1</td>
<td>Funktionsprinzip der Drehfeld-Asynchronmaschine</td>
<td>410</td>
</tr>
<tr>
<td>13.1.2</td>
<td>Raumzeigerdarstellung</td>
<td>411</td>
</tr>
<tr>
<td>13.1.2.1</td>
<td>Definition eines Raumzeigers</td>
<td>411</td>
</tr>
<tr>
<td>13.1.2.2</td>
<td>Rücktransformation auf Momentanwerte</td>
<td>415</td>
</tr>
<tr>
<td>13.1.2.3</td>
<td>Koordinatensysteme</td>
<td>415</td>
</tr>
<tr>
<td>13.1.2.4</td>
<td>Differentiation im umlaufenden Koordinatensystem</td>
<td>418</td>
</tr>
<tr>
<td>13.1.2.5</td>
<td>Bestimmung der Raumzeiger aus Motordaten</td>
<td>419</td>
</tr>
</tbody>
</table>
XIV Inhaltsverzeichnis

13.2 Signalflußpläne der Asynchronmaschine 420
13.2.1 Beschreibendes Gleichungssystem 420
13.2.2 Verallgemeinerter Signalflußplan der spannungsgesteuerten Asynchronmaschine 434
13.2.3 Signalflußplan der stromgesteuerten Asynchronmaschine ... 437
13.2.4 Stationärer Betrieb der Asynchronmaschine 439
13.2.5 Umrechnung für Stern- und Dreieckschaltung 441
13.3 Steuerverfahren der Asynchronmaschine 444
13.3.1 Signalflußplan bei Statorflußorientierung 445
13.3.2 Signalflußplan bei Rotorflußorientierung 447
13.3.3 Signalflußplan bei Luftspaltflußorientierung 453
13.4 Regelungsverfahren der Asynchronmaschine 459
13.4.1 Entkopplungsregelung der Asynchronmaschine 459
13.4.2 Entkopplung bei Umrichtern mit eingeprägter Spannung 461
13.4.3 Entkopplung bei Umrichtern mit eingeprägtem Strom 470
13.4.4 Feldorientierte Regelung der Asynchronmaschine 477
13.5 Modellbildung der Asynchronmaschine 485
13.5.1 I_{1}–Modell (Strommodell) 485
13.5.2 $I_{1}\beta_L$–Modelle und $I_{1}\Omega_L$–Modelle 491
13.5.3 $U_{1}I_{1}$–Modell .. 496
13.5.4 $U_{1}I_{1}\Omega_L$–Modell 499
13.5.5 $U_{1}\Omega_L$–Modell .. 504
13.5.6 Zusammenfassung der Modelle 507
13.6 Modellnachführung .. 509
13.6.1 Ansätze zur Parameternachführung 509
13.6.2 Parameteradaptation .. 511
13.7 Asynchronmaschine in normierter Darstellung 517
13.8 Feldschwäcbetrieb der Asynchronmaschine 522
13.9 Einschränkungen bei der Realisierung der Regelung von Drehfeldantrieben ... 524
13.9.1 Abtastender Regler .. 524
13.9.2 Sättigungseffekte .. 526
13.9.3 Realisierbare Entkopplungsstruktur 527
13.9.4 Zusammenfassung .. 529

14 Regelung von Drehfeldmaschinen ohne Drehzahlsensor 530

14.1 Einführung ... 530
14.1.1 Prinzipielle Grundgleichungen 536
14.2 Grundlegendes nichtadaptive Verfahren 539
14.3 Nichtadaptive Verfahren: Statorspannungsgleichungen 543
14.4 Nichtadaptive Verfahren: Flußgleichungen 547
14.5 Nichtadaptive Verfahren: Sollgrößenansatz 549
14.6 Direkte Schätzung der Rotordrehzahl 551
14.7 Adaptive Verfahren .. 556
14.7.1 MRAS-Verfahren ... 561
14.7.2 Problematik bei tiefen Frequenzen 563
14.7.3 MRAS-Verfahren: EMK-Berechnung 567
14.7.4 MRAS-Verfahren: Flußberechnung 567
14.7.5 MRAS-Verfahren, basierend auf Blindleistungsberechnung 569
14.7.6 Verfahren mittels Zustandschätzung 571
14.7.6.1 Verfahren auf Basis eines Luenberger-Beobachters 571
14.7.6.2 Verfahren auf Basis eines Kalman-Filters 581
14.8 Schätzverfahren mit neuronalen Netzen 584
14.9 Auswertung von Harmonischen 587
14.10 Auswertung von hochfrequenten Zusatzsignalen 589
14.11 Bewertende Zusammenfassung 600

15 Stromregelverfahren für Drehfeldmaschinen 603
15.1 Regelstrecke und Stellglied der Statorstromregelung 603
15.2 Indirekte Verfahren der Statorstromregelung 608
15.3 Modulationsverfahren .. 610
15.3.1 Grundfrequenztaktung 610
15.3.2 Nicht synchronisierte Pulsweitenmodulation 612
15.3.3 Synchronisierte Pulsverfahren 615
15.3.4 Wahl der Pulszahlen, erzielbare Ausgangsfrequenzen 626
15.4 Optimierte Pulsverfahren 628
15.4.1 Spannungsraumzeigermodulation 628
15.4.2 On-line optimierte Pulsmustererzeugung 631
15.4.3 Raumzeiger-Hystereseverfahren 637
15.4.4 Prädiktive Stromregelung mit Schalttabelle 647
15.4.5 Dead-Beat-Pulsmustererzeugung 654
15.5 Direkte Regelungen .. 661
15.5.1 Direkte Selbstregelung 661
15.5.2 Indirekte Statorgrößen-Regelung 673
15.5.3 Direct Torque Control 677

16 Synchronmaschine .. 680
16.1 Synchron-Schenkelpolmaschine ohne Dämpferwicklung 681
16.1.1 Beschreibendes Gleichungssystem 681
16.1.2 Synchron-Schenkelpolmaschine in normierter Darstellung 686
16.1.3 Signalflußplan bei Spannungseinprägung 689
16.1.4 Signalflußplan bei Stromeinprägung 694
16.1.5 Ersatzschaltbild der Synchron-Schenkelpolmaschine 696
16.2 Synchron-Schenkelpolmaschine mit Dämpferwicklung 698
16.2.1 Beschreibendes Gleichungssystem und Signalflußplan 698
16.2.2 Ersatzschaltbild der Schenkelpolmaschine mit Dämpferwicklung 701
<table>
<thead>
<tr>
<th>Nummer</th>
<th>Kapitel Titel</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.3</td>
<td>Synchron–Vollpolmaschine</td>
<td>704</td>
</tr>
<tr>
<td>16.3.1</td>
<td>Beschreibendes Gleichungssystem und Signalfußpläne</td>
<td>704</td>
</tr>
<tr>
<td>16.3.2</td>
<td>Ersatzschaltbild der Synchron–Vollpolmaschine</td>
<td>709</td>
</tr>
<tr>
<td>16.3.3</td>
<td>Feldorientierte Darstellung der Synchron–Vollpolmaschine mit Dämpferwicklung</td>
<td>713</td>
</tr>
<tr>
<td>16.3.4</td>
<td>Steuerbedingungen der Vollpolmaschine ohne Dämpferwicklung</td>
<td>721</td>
</tr>
<tr>
<td>16.4</td>
<td>Regelung der Synchronmaschine durch Entkopplung</td>
<td>723</td>
</tr>
<tr>
<td>16.5</td>
<td>Regelung der Synchronmaschine durch Feldorientierung</td>
<td>733</td>
</tr>
<tr>
<td>16.5.1</td>
<td>Modelle zur Flußermittlung</td>
<td>734</td>
</tr>
<tr>
<td>16.5.2</td>
<td>Spannungsmodell ($U_1 I_1$–Modell)</td>
<td>734</td>
</tr>
<tr>
<td>16.5.2.1</td>
<td>Spannungsmodell als Wechselgrößenmodell</td>
<td>735</td>
</tr>
<tr>
<td>16.5.2.2</td>
<td>Polares Spannungsmodell</td>
<td>736</td>
</tr>
<tr>
<td>16.5.2.3</td>
<td>Spannungsmodell als Gleichgrößenmodell</td>
<td>738</td>
</tr>
<tr>
<td>16.5.2.4</td>
<td>Strommodell der Schenkelpolmaschine</td>
<td>740</td>
</tr>
<tr>
<td>16.5.3</td>
<td>Regelung der Synchronmaschine</td>
<td>742</td>
</tr>
<tr>
<td>16.5.3.1</td>
<td>Berechnung des Erregerstroms mit dem Strommodell</td>
<td>743</td>
</tr>
<tr>
<td>16.5.4</td>
<td>Ablösung verschiedener Modelle</td>
<td>750</td>
</tr>
<tr>
<td>16.5.5</td>
<td>Flußregelung</td>
<td>756</td>
</tr>
<tr>
<td>16.5.6</td>
<td>Flußführung im Feldschwäcbereich</td>
<td>756</td>
</tr>
<tr>
<td>16.5.7</td>
<td>Steuerung des $\cos \varphi$ der fremderregten Synchronmaschine</td>
<td>758</td>
</tr>
<tr>
<td>16.6</td>
<td>Permanentmagnetregierte Synchronmaschine (PM–Maschine)</td>
<td>762</td>
</tr>
<tr>
<td>16.6.1</td>
<td>Signalflußplan der PM–Maschine</td>
<td>762</td>
</tr>
<tr>
<td>16.6.2</td>
<td>Regelung der PM–Maschine ohne Reluktanzeinflüsse</td>
<td>768</td>
</tr>
<tr>
<td>16.6.3</td>
<td>Rechteckförmige Stromeinprägung ohne Reluktanzeinflüße</td>
<td>771</td>
</tr>
<tr>
<td>16.6.4</td>
<td>Vergleich der sinus– und rechteckförmig gespeisten PM–Maschine</td>
<td>775</td>
</tr>
<tr>
<td>16.6.5</td>
<td>Feldschwäcbereich der PM–Maschine</td>
<td>780</td>
</tr>
<tr>
<td>16.6.6</td>
<td>PM–Maschine mit Reluktanzeinflüssen</td>
<td>787</td>
</tr>
<tr>
<td>16.7</td>
<td>Steuerverfahren für Ankerstell– und Feldschwäcbetrieb</td>
<td>789</td>
</tr>
</tbody>
</table>

17. **Geschaltete Reluktanzmaschine** 793

17.1 Überlappende Bestromung von Statorwicklungen 797
17.2 Leistungselectronische Stellglieder 798
17.3 Drehmoment–Welligkeit 800
17.4 Geberloser Betrieb 801

18. **Drehzahlregelung bei elastischer Verbindung zur Arbeitsmaschine** 802

18.1 Regelung der Arbeitsmaschinendrehzahl 804
18.1.1 Streckenübertragungsfunktion $G_{S_1}(s)$ 804
18.1.2 Analyse der Übertragungsfunktion $G_{S_1}(s)$ 806
18.1.3 Einfluß der elastischen Kopplung auf den Drehzahlregelkreis 807
18.2 Regelung der Antriebsmaschinendrehzahl 810
18.2.1 Streckenübertragungsfunktion $G_{S_2}(s)$ 810
18.2.2 Analyse der Übertragungsfunktion $G_{S_2}(s)$ 810
18.2.3 Einfluß der elastischen Kopplung auf den Drehzahlregelkreis 812
18.2.4 Simulative Untersuchung der Arbeitsmaschinendrehzahl 815
18.2.5 Bewertung der konventionellen Kaskadenregelung 819
18.3 Zustandsregelung des Zweimassen systems 820
18.3.1 Zustandsdarstellung ... 820
18.3.2 Zustandsregelung ohne I-Anteil 822
18.3.3 Auslegung einer Zustandsregelung nach dem Dämpfungsoptimum 825
18.3.4 Zustandsregelung mit I-Anteil 828
18.4 Verallgemeinerung: Mehrmassensysteme 832

19 Schwingungsdämpfung .. 839
19.1 Allgemeine Problemstellung ... 839
19.2 Local Absorption of Vibrations ... 846
Dr. D. Filipović
19.2.1 Introduction ... 846
19.2.2 Resonant Absorbers: Linear Active Resonator (LAR) 847
19.2.2.1 Design of the LAR ... 848
19.2.2.2 Single-mass Multi-frequency Resonator 854
19.2.2.3 Comments ... 858
19.2.3 Absorbers with Local Feedback in Multi-mass Systems 860
19.2.3.1 Analysis of the Primary System 862
19.2.3.2 Combined System with the Absorber 865
19.2.3.3 Related Problems ... 871
19.2.3.4 Verification of Results ... 872
19.2.3.5 Comments ... 878
19.2.4 Bandpass Absorber (BPA) ... 880
19.2.4.1 Concept of the BPA ... 880
19.2.4.2 A Case Study: Paper Mill Vibrations 885
19.2.4.3 Simulation Results of the Paper Mill Model 888
19.2.4.4 Comments ... 889
19.2.5 Conclusion ... 892

20 Objektorientierte Modellierung von Antriebssystemen 894
Dr. M. Otter
20.1 Modulare Signalflußpläne ... 895
20.2 Objektdiagramme ... 902
20.3 Vollständiges Beispiel ... 906
20.4 Modelica — Kontinuierliche Systeme .. 911
20.5 Komponenten-Schnittstellen ... 922
20.6 Transformationsalgorithmen .. 929
20.7 Lineare Deskriptorsysteme ... 939
20.7.1 Manuelle Transformation in die Zustandsform 941
Inhaltsverzeichnis

20.7.2 Direkte Behandlung als Deskriptorsystem 942
20.7.3 Numerische Transformation in die Zustandsform 949
20.7.4 Sonderfälle bei der Transformation in die Zustandsform 956
20.8 Singuläre Deskriptorsysteme 958
20.8.1 Index einer DAE 961
20.8.2 Einführendes Beispiel 962
20.8.3 Strukturell inkonsistente Deskriptorsysteme 965
20.8.4 Pantelides-Algorithmus 967
20.8.5 Dummy-Derivative-Methode 970
20.9 Modelica — Hybride Systeme 973
20.10 Strukturvariable Systeme 987
20.10.1 Ideale elektrische Schaltelemente 987
20.10.2 Coulomb-Reibung 994
20.10.3 Reibungsbehaftete Komponenten 1004

21 Regelung kontinuierlicher Fertigungsanlagen 1010

21.1 Einführung 1010
21.2 Modellierung des Systems 1011
21.2.1 Technologisches System 1011
21.2.1.1 Stoffbahn 1012
21.2.1.2 Linearisierung 1017
21.2.1.3 Verhalten der Mechanik 1019
21.2.2 Elektrische Antriebe 1020
21.2.3 Linearer Signalflußplan des Gesamtsystems 1020
21.3 Systemanalyse 1021
21.3.1 Regelbarkeit der Bahnkräfte 1022
21.3.2 Stillstand der Maschine 1023
21.3.3 Dynamik des ungeregelten Teilsystems 1023
21.4 Drehzahlregelung mit PI-Reglern in Kaskadenstruktur 1026
21.4.1 Nicht schwingfähiges ungeregeltes System 1027
21.4.2 Schwingfähiges ungeregeltes System 1028
21.4.2.1 Regelung ohne Entkopplung 1028
21.4.2.2 Regelung mit Entkopplung 1029
21.5 Bahnkraftregelung mit PI-Reglern 1031
21.6 Registerfehler bei Rotationsdruckmaschinen 1034
21.6.1 Einführung 1034
21.6.2 Ableitung des Registerfehlers 1035
21.6.3 Linearisierung des Registerfehlers 1037
21.6.4 Zusammenhang der Registerfehler aufeinanderfolgender Druckwerke 1038
21.6.5 Linearisierter Signalflußplan 1038
21.6.6 Dynamisches Verhalten des Registerfehlers 1038
21.6.6.1 Druckmaschine mit Drehzahlregelung 1039
Inhaltsverzeichnis

21.6.6.2 Druckmaschine mit Winkelregelung .. 1042
21.6.6.3 Druckmaschine mit Registerfehlerregelung 1042
21.7 Zustandsregelung des Gesamtsystems .. 1043
21.8 Dezentrale Regelung ... 1045
21.8.1 Regelung des isolierten Teilsystems .. 1045
21.8.2 Dezentrale Entkopplung ... 1049
21.8.2.1 Grundlagen des Verfahrens ... 1049
21.8.2.2 Mathematische Beschreibung ... 1050
21.8.2.3 Modaltransformation des Teilsystems 1051
21.8.2.4 Berechnung der Rückführungskoeffizienten 1051
21.8.2.5 Algorithmus ... 1052
21.8.2.6 Beispiel ... 1053
21.9 Beobachter .. 1055
21.9.1 Zentrale Beobachter .. 1055
21.9.2 Dezentrale Beobachter .. 1055
21.9.2.1 Allgemeines .. 1055
21.9.2.2 Approximation durch Störmodule 1058
21.9.2.3 Beispiel: Dezentraler Beobachter für zwei Teilsysteme 1060
21.9.2.4 Parameteränderungen ... 1061
21.9.2.5 Informationsaustausch zwischen den Teilbeobachtern 1064
21.9.2.6 Zustandsregelung mit dezentralen Beobachtern 1065
21.9.2.7 Beinflussung von dezentralen Reglern und Beobachtern 1067
21.10 Zusammenfassung .. 1067

Variablenübersicht ... 1069

Literaturverzeichnis ... 1086

Grundlagen .. 1086
Stellbegrenzungen in Regelkreisen .. 1089
z-Transformation .. 1089
Antriebstechnik und benachbarte Gebiete ... 1090
Leistungshalbleiter ... 1092
Leistungselektronik: Ansteuerung, Beschaltung, Kühlung 1095
Leistungselektronik: Simulation, CAE .. 1096
Gleichstromsteller, DC–DC–Wandler .. 1099
Netzgeführte Stromrichter: Schaltungstechnik, Auslegung 1100
Netzgeführte Stromrichter: Regelung .. 1101
Direktumrichter ... 1105
Untersynchrone Kaskade (USK) ... 1107
Stromrichtermotor .. 1108
Stromzwischenkreis–Umrichter (I–Umrichter) 1110
Spannungszwischenkreis–Umrichter (U–Umrichter) 1112
Regelung von Asynchron- und Synchronmaschine 1114
Direkte Selbstregelung von Drehfeldmaschinen 1121
Gebberlose Asynchronmaschinen–Regelung ... 1122
Reluktanzmaschine .. 1135
Geschaltete Reluktanzmaschine: Auslegung und Regelung 1138
Geschaltete Reluktanzmaschine: Optimierter Betrieb 1141
Geschaltete Reluktanzmaschine: Geberloser Betrieb 1142
Geschaltete Reluktanzmaschine: Synchron–Reluktanzmotor 1145
Systemintegration elektrischer Antriebe .. 1148
Schwingungsdämpfung .. 1149
Objektorientierte Modellierung, Deskriptorsysteme 1151
Kontinuierliche Fertigungsanlagen .. 1156

Stichwortverzeichnis ... 1159