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F. H. Stillinger

Because of the large amount of water present on our planet, especially in liquid form, this
substance has become centrally important for many aspects of science and technology. This
importance is connected partly to the peculiar behavior of pure water, partly to its qualifica-
tions as a liquid solvent, and partly to its role as a fluid medium for support of life.

The most prominent peculiarities exhibited by pure water are the reduction in volume upon
melting at 0 ◦C (by 8.3%), followed by further shrinkage to a density maximum as the liquid
is heated to 4 ◦C. These attributes are also shared by D2O (m.p. 3.8 ◦C, density max. at 11.2 ◦C)
and by T2O (m.p. 4.5 ◦C, density max. at 13.4 ◦C). Although rare, these observations are not
unique with water; the elements Si, Ge, and Bi also shrink upon melting, while In2Te3 appears
to have a liquid-phase density maximum.

Additional water anomalies are (a) large number of ice polymorphs (including those that
form at high pressure); (b) tendency toward reduced viscosity when liquid water below 30 ◦C
is compressed; and (c) minimum in isothermal compressibility [−(∂ lnV/∂p)T ] for the liquid
at 46 ◦C.

Observable properties of water in pure form and as a solvent stem from the structure of
the individual water molecules and from the way that intermolecular forces between those
molecules cause aggregation into liquid and solid.

The isolated H2O molecule is shaped like a wide-open V, with the oxygen nucleus at the
central bend and hydrogen nuclei forming “arms” of length 0.96Å. The HOH angle is 104.5◦.
These dimensions can vary slightly as the molecule vibrates and interacts with neighbors in a
crystal or the liquid, but the overall shape remains.

The dominant effect in water molecule interactions is the formation of hydrogen bonds.
When two water molecules form a hydrogen bond, one (the hydrogen donor) points one of its
OH groups toward the back side of the oxygen atom of the second (the hydrogen acceptor).
This arrangement is illustrated in Fig. 1. The oxygen–oxygen lengths of these bonds normally
lie in the range 2.7–3.0Å, so that the donated hydrogen resides only about one third of the
way between oxygens, and so still “belongs” to the donor.
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Fig. 1: Hydrogen bond (dashed line) linking two water molecules.

The maximum hydrogen bond strength is achieved when the molecules are arranged as
shown in Fig. 1. This strength is about 4.2× 10−13 ergs (6.0kcal/mole of bonds), and ex-
ceeds thermal energy kBT by a factor of 10 at room temperature. The existence of these
relatively strong hydrogen bonds between water molecules explains the relatively high melt-
ing and boiling temperatures for water, compared to other substances of comparable molecular
weight (e. g., Ne, CH4, NH3, O2, CO).

In a large aggregate of water molecules, optimum hydrogen bonding is achieved if each
water molecule hydrogen-bonds to four others. Toward two of these four it donates its hy-
drogens, while it accepts hydrogens from the other two. This fourfold bonding is present in
ordinary ice, causing formation of hydrogen bond hexagons. Without disturbing hydrogen
bond strengths substantially, four-coordinated water networks can also form, which addition-
ally incorporate squares, pentagons, and heptagons of hydrogen bonds. These patterns also
exist in high-pressure ice polymorphs and in hydrate crystals.

Evidently the capacity for water molecules to form a diverse collection of three-dimen-
sional networks of hydrogen bonds, while maintaining fourfold bonding at each molecule,
has structural relevance for the liquid. Currently available evidence, both experimental and
theoretical, indicates that liquid water consists of a structurally random network of hydrogen
bonds uniformly filling the volume occupied by the liquid. That random network incorporates
strained and broken hydrogen bonds, with greater frequency the higher the temperature. Fur-
thermore, the network is labile, with bonds breaking in one place and reforming nearby, so
that normal liquid flow and molecular diffusion are possible.

An isolated water molecule has dipole moment 1.86 debye (D), with hydrogens acting as
though each bore one third of a protonic charge, and the oxygen as though it bore minus two
thirds. Neighboring molecules in the liquid tend to have their dipoles somewhat aligned, so
as to act in concert under the polarizing influence of an electrical field. The net result of this
alignment, and of molecular polarizability, is a large static dielectric constant (88.0 at 0 ◦C, but
declining to 55.3 at 100 ◦C).

The ease with which water dissolves many ionic crystals, such as the alkali halides, stems
partly from its high static dielectric constant. However, it is also connected with the relatively
small size of the water molecules, which permits them to approach ions closely, solvate them
strongly, and thus overcome the largely electrostatic binding of the ionic crystals.
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The solvating power of water for ions facilitates the dissociation of water molecules them-
selves into H+ and OH− ions. In the liquid at room temperature, roughly one molecule in
55 million will have dissociated. The H+ and OH− formed in this way can readily be incor-
porated into the liquid’ s random hydrogen bond network, and they tend to form shortened
hydrogen bonds in their vicinity. Both H+ and OH− have high apparent mobilities in water,
due to the possibility of moving a succession of hydrogens along a chain of hydrogen bonds
so as to cause a net transfer of ionic charge along that chain.

Nonionic substances with high solubility in water tend to have molecules with which water
can hydrogen-bond. Usually this requires that molecules of those “hydrophilic” substances
contain oxygen or nitrogen atoms.

Hydrocarbons (such as methane, hexane, acetylene, benzene) form an important group of
“hydrophobic” molecular substances that are sparingly soluble in water. They cannot form
hydrogen bonds with water strong enough to compete with those already present in that liq-
uid itself. Consequently the random water network is obliged to restructure around the rare
dissolved hydrocarbons so as to form a “cage” of hydrogen bonds of the required size. The
corresponding geometric constraints on the water network cause entropies of solution for hy-
drocarbons in water to be negative.

Biologically important molecules (e. g. lipids, enzymes, RNA, hemes) often contain both
hydrophilic and hydrophobic chemical groups. Consequently the biologically active confor-
mations of these molecules, to the extent it is possible, place the hydrophilic groups on the
outside to be in contact with water while the hydrophobic groups cluster within to avoid water
contact. Since conformation is crucial to operation in most cases, it is obvious that specific
solvation properties of water have profound effects in biology and doubtless have exerted a
powerful influence on the course of chemical evolution from the first rudimentary “protolife”
to present complex biochemistry.

See also: Hydrogen Bond; Ice.
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Waves
D. R. Tilley

Introduction

A simple wave is a single-frequency disturbance traveling at some speed v; the disturbance
might be elastic strain, as in an acoustic wave; a combination of electric and magnetic fields,
as in light; or some other quantity. All traveling waves transport energy. Single-frequency
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waves are of basic importance, but it is sometimes necessary to consider more general distur-
bances. Because of the pervasiveness and importance of the concepts, general undergraduate
texts [1, 2] contain major sections on waves, and a number of texts specifically on the topic
have been written [3–6].

This review starts with waves that are both linear and nondispersive. That is, amplitudes
can be added (linearity) and velocity is independent of frequency (nondispersive propagation).
One section discusses the implications of linearity alone, another treats dispersive propagation
in linear media, and the last section introduces nonlinearity.

Nondispersive Media

The displacement u for a wave moving in the x direction in a nondispersive medium satisfies
the wave equation

1
v2

∂2u
∂t2 =

∂2u
∂x2 . (1)

This applies to electromagnetic waves in vacuum [7, 8], in which case v = c and u is an electric
or magnetic field vector in the y–z plane (transverse wave). It also applies to long-wavelength
acoustic waves, which may be longitudinal (u along x) or transverse. For acoustic waves,
v2 =C/ρ, where ρ is the density and C is an appropriate elastic modulus. The general solution
of (1) is

u(x, t) = f (x− vt)+g(x+ vt) , (2)

where f and g are arbitrary (twice-differentiable) functions. The expression f (x− vt) rep-
resents a disturbance f (x) traveling to the right with speed v; we can see this by sketching
f (x− vt) at successive instants. The disturbance g(x + vt) travels to the left with speed v.
With single-frequency time dependence, the two terms take the form

u(x, t) = u0 exp(±ikx− iωt) . (3)

Here the convention is that the real part of the right-hand side gives the physical displacement
u, and the complex amplitude u0 may include a constant phase factor. The parameters k and ω

are the angular wave number and angular frequency, respectively; also used are wave number
K = k/2π and frequency f = ω/2π. Equation (3) represents a traveling sinusoidal wave.
Displacement u(x, t) repeats after distance λ such that kλ = 2π; thus wavelength λ = 2π/k =
1/K. Similarly, periodic time T = 2π/ω = 1/ f . From (2) and (3),

v = ω/k = f λ . (4)

It was mentioned that with the appropriate v, Eq. (1) describes either a wave in which u
is the longitudinal displacement or a wave in which u is the transverse displacement. Not
all waves are either simply longitudinal or simply transverse. In a surface wave on water
and in the Rayleigh surface wave on an elastic solid, for instance, the displacement is part
longitudinal, part transverse [9]. When light propagates through an anisotropic crystal, vector
DDD is transverse, because ∇∇∇DDD = 0 implies kkk ·DDD = 0, but EEE, which is not parallel to DDD, is part
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longitudinal, part transverse [7]. In transverse, or partially transverse, waves, the displacement
can take any direction in the plane normal to the propagation direction. One must then discuss
the polarization of the wave, that is, the orientation of the displacement in that plane.

The time-averaged energy density 〈E〉 in an acoustic wave is a sum of kinetic and potential
(strain) contributions, and the rate of transport of energy, or intensity I = v〈E〉, of (3) is found
to be [6] I = 1

2 Z|u0|2ω2 where Z = ρv = (ρC)1/2 is the impedance. If a traveling wave (3)
in a medium of impedance Z1 meets an abrupt interface with a medium of impedance Z2,
the transmitted and reflected amplitudes are [6] Tu0 and Ru0, with T = 2Z1/(Z1 + Z2) and
R = (Z1 − Z2)/(Z1 + Z2). Similar expressions hold for electromagnetic waves. If Z1 = Z2,
there is impedance matching at the interface, and T = 1, R = 0. Frequently, as in optical
systems, it is desirable to maximize transmission and minimize reflection at the interface
between two different media. The simplest way to achieve this form of impedance matching
is by the deposition of a thin blooming layer at the interface. In optics, a blooming layer on a
lens of refractive index (n1n2)1/2 and thickness λ/4, where n1 and n2 are the refractive indices
of the lens and of the medium in contact and λ is the optical wavelength in the layer, gives
zero reflection.mm

Superposition

The wave equation (1) is linear in u, so that the sum of two solutions is itself a solution, as in
(2); there is a superposition principle. Superposition holds in many media besides the nondis-
persive media of the previous section. We now discuss the consequences of superposition for
waves of a single frequency ω, and the discussion includes dispersive media.

The simplest superposition is of two sinusoids of opposite velocities and equal amplitudes:

u(x, t) = Asin(kx−ωt)+Asin(kx+ωt) = 2Asinkxcosωt . (5)

This is a standing wave, namely, the fixed spatial form sinkx oscillating with variable ampli-
tude 2Acosωt. At points kxn = nπ, the nodes, u is always zero, while at kxa = (n + 1

2 )π, the
antinodes, u oscillates over a maximum range. The energy density at a point on a standing
wave oscillates between kinetic and potential, but there is no transport of energy, as is clear
from the nature of the superposition in (5). Standing waves are excited in a medium of fixed
length (more generally, volume), and boundary conditions determine where a node or antin-
ode lies relative to the end points. Thus if transverse waves are excited on a string stretched
between fixed points L apart, the end points must be nodes. The modes of vibration then have
successively 1,2,3, . . . ,N, . . . antinodes, wavelengths 2L/N, and discrete frequencies Nπv/L,
as is seen from (4) in the form ω = 2πv/λ. Often, standing waves have low N, but in typical
lasers N ∼ 105. This leads to some complications [6].

A second application of superposition is to interference, in which waves traveling by differ-
ent paths produce interference fringes. Consider Young’s slits experiment (Fig. 1), by which
the wave picture of light was finally established. The waves from slits S1 and S2 are focused
by lens L on screen F. If S1 and S2 radiate unending sine waves, with the same phase at each
slit, the amplitude at F is

u = u021/2(1+ cosδ)1/2 sinωt , (6)
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Fig. 1: Young’s slits experiment.

where u0 is the amplitude at S1 and δ = 2πd sinθ/λ [6]. Intensity I is proportional to 〈u2〉, the
time average, and so

I = 2I0(1+ cosδ) = 2I0[1+ cos(2πd sinθ/λ)] . (7)

What appear on F are fringes equally spaced in sinθ. In making the foregoing calculation
we assume that the only effect of the different path lengths from S1 and S2 is to produce
a phase difference, and that amplitude differences due to inverse-square-law diminution are
negligible. This is called the Fraunhofer condition. Some beautiful examples of Young’s
fringes and other interference effects are found in Ref. [10]. We now return to the assumption
that S1 and S2 radiate unending sine waves. They do not if G is an ordinary source, which
emits short (∼ 10−9 s) wave trains of random relative phase. The purpose of S0 is to produce
spatial coherence between S1 and S2. Waves may travel through S1 and S2 from any part of S0.
If the final phase difference for paths from the top of S0 is essentially the same as that for paths
from the bottom, there is spatial coherence. Thus S0 must be narrow. The simple calculation
above gives the interference for a single wave train at S0. The observed interference pattern is
the sum of many single-train patterns, and is still given by (7).

Spatial coherence, as described, is a correspondence in phase between different points in
space. For some experiments, such as the Michelson interferometer [7], the requirement is
for temporal coherence, that is, a definite phase relation between values of displacement u
at different time but at one particular point. Thorough treatments of coherence are given
elsewhere [7, 11].

Diffraction, for example by a single slit, a pinhole, or a grating, is handled similarly to
Young’s slits [6, 7]. Thus if slits S1 and S2 in Fig. 1 are replaced by a central slit of width d,
a calculation similar to that for Young’s slits shows that the Fraunhofer diffraction pattern is
I ∝ sin2 p/p2 with p = πd sinθ. If we define an aperture function for the diffracting obstacle
as equal to unity for transmitting regions and to zero for opaque regions, then for the single
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Fig. 2: Dispersion curve (—) of Eq. (13), with group (– –) and phase (–·–)
velocities. Inset shows spring-mass system under consideration.

slit (as for other configurations) the intensity is the squared modulus of a Fourier transform of
the aperture function [7, 12]. Of particular interest is the diffraction grating, which consists of
N parallel slits D apart. The diffraction pattern is a series of lines at positions sinθ = mλ/D
(m = integer). Since the spacing depends on λ, the grating can be used to resolve lines of
different wavelength, and is therefore a fundamental spectroscopic tool.

Diffraction sets a limit to the resolution of optical instruments. For instance, if a telescope
of aperture d is used at wavelength λ, the angular spread of the image to the first minimum
of the diffraction pattern is of the order of θd = λ/d. Consequently, objects with an angular
separation much less than θd are not resolved.

Dispersive Media: Group Velocity

Group Velocity As mentioned, the wave equation (1) has the special property that all sinusoids
travel at the same speed v independent of ω. In general, v does depend on ω, and in this case of
dispersive propagation u obeys some equation other than (1). Thus in the mass-spring system
of Fig. 2, which is a model for longitudinal acoustic waves in a crystal, the displacement un of
the nth mass satisfies

m
d2un

dt2 = C(un−1−2un +un+1) , (8)

where C is the spring constant. Again, Schrödinger’s equation for a free particle of mass m is

ih̄
∂ψ

∂t
=− h̄2

2m
∂2ψ

∂x2 , (9)
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where ψ is the probability amplitude. For light in a refracting medium, it is normally said
that (1) holds with a frequency-dependent velocity, but this statement is only true for single-
frequency light, in which case (1) may be replaced by the ordinary differential equation

−ω2

v2 u =
d2u
dx2 (10)

and (3) is the general solution.
The basic result for dispersive media concerns a wave packet

u(x, t) =
Z

f (ω) ei(kx−ωt) dω . (11)

With an appropriate f (ω), this represents a fairly localized disturbance. Each sinusoid travels
at its own phase velocity vp = ω/k; consequently the relative phases change with time and the
packet changes shape as it travels. For short times the change of shape is negligible, and the
peak travels at the group velocity

vg = dω/dk . (12)

The peak corresponds to in-phase superposition, so that the phase is stationary for variations
of k and ω, d(kx−ωt) = 0 or x dk− t dω = 0, which gives (12). This argument, based on
Ref. [13], is due to Professor R. B. Dingle; the elementary proof uses the superposition of two
sinusoids [6]. The distinction between group and phase velocity can be seen in an excellent
film [14] of the motion of wave packets along a water trough.

A dispersive medium is characterized by the dispersion relation ω = ω(k) from which vp
and vg can be derived. For the mass and spring system of Fig. 2, substitution of (3) in (8)
yields

ω = 2
(

C
ma

)1/2

sin
(

ka
2

)
. (13)

Graphs of this dispersion relation, and of the dependence of vg and vp on k, are shown in Fig. 2.
For the Schrödinger equation, (9), substitution of (3) yields ω = h̄k2/2m. The group velocity
is h̄k/m, equal to the classical particle velocity once h̄k is identified as the momentum [6].
Other examples of dispersion relations can be found from many branches of physics [3–6].

In isotropic media it is normally stated that vg is equal to the velocities vE and vI for trans-
port of energy and information; the statement is justified by the observation that a localized
disturbance moves with velocity vg. A neat elementary proof that vE = vg for waves in a bulk
medium with small dissipation was given Rayleigh in the Appendix to Vol. 1 of his famous
book [15]. For optics, a careful discussion needs to take account of the fact that optical dis-
persion has its origin in the series of resonant absorptions that characterize the medium, and
for frequencies very close to a strong absorption vE cannot be clearly defined. General proofs
that vE = vg when vE is defined in a bulk dispersive optical medium have been given [16, 17].
It has been shown analytically [18] that vE = vg for an optical wave (surface polariton) local-
ized on the surface of a dispersive medium, and numerical investigation [19] gives the same
result for waves traveling along an optically dispersive fiber. However, a proof applicable to
all propagation geometries has not yet been given.
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It is a famous principle of the theory of relativity that information cannot travel faster
than the velocity of light, c. With vI taken equal to vg, this means that vg ≤ c, and it is
important to realize that this places no restriction on the value of the phase velocity vp. What
the phase velocity describes is the passage of crests and troughs at the single frequency ω,
and in order for information to be conveyed this passage must be modulated in some way;
the modulation travels at the group velocity. An example is given by a simple waveguide, in
which the dispersion is ω2 = ω2

c +c2k2 with ωc constant; the same relation holds propagation
in an ionized plasma. It follows from the dispersion equation that vgvp = c2 with vg < c and
vp > c.

Nonlinear Wave Equations: Solitons

The previous sections dealt with linear systems, and it was seen that in a dispersive linear
medium, a general wave form changes shape as it travels. In a nonlinear system, by contrast,
solutions can be found that maintain shape. For example, the Korteweg–de Vries (KdV)
equation

∂u
∂t

+αu
∂u
∂x

+
∂3u
∂x3 = 0 (14)

(α is a constant), used to describe shallow-water waves, has the solitary wave solution

u(x, t) = 3α
−1v sech 2[v1/2(x− vt)/2] (15)

traveling at speed v with amplitude proportional to v. This can be verified by substitution
or derived if we seek solutions that depend only on x− vt [20–23]. A striking property of
some solitary waves is that if two collide, each emerges from the collision unaltered in shape;
solitary waves of this kind, such as (15), are called solitons. This property, hardly expected
in a nonlinear system, emerges from computer experiments, and can be seen in some explicit
“two-soliton” solutions that have been found.

Because of their stability, solitons have been used as models of elementary particles. More
generally, they are expected to occur in a wide variety of nonlinear physical systems including
optical communication fibers.

See also: Acoustics; Diffraction; Dispersion Theory; Electromagnetic Radiation;
Gratings, Diffraction; Interferometers and Interferometry; Maxwell’s Equations;
Nonlinear Wave Propagation; Optics, Geometrical; Optics, Nonlinear; Polarized
Light; Reflection; Schrödinger Equation; Surface Waves on Liquids.

&References
[1] H. C. Ohanian, Physics. Norton, New York and London, 1985. (E)
[2] D. Halliday and R. Resnick, Fundamentals of Physics, 6th ed. Wiley, New York, 2002. (E)
[3] F. S. Crawford, Waves (Berkeley Physics Course, Vol. 3). McGraw–Hill, New York, 1965. (E)
[4] A. P. French, Vibrations and Waves (M.I.T. Introductory Physics Series). Van Nostrand Reinhold,

London, 1982. (E)



2900 Weak Interactions

[5] I. G. Main, Vibrations and Waves in Physics, 3rd ed. Cambridge University Press, London and
New York, 1993. (E)

[6] D. R. Tilley, Waves. Macmillan, London, 1974. (E)
[7] S. G. Lipson and H. Lipson, Optical Physics, 3rd ed. Cambridge University Press, London and

New York, 1995. (A)
[8] J. D. Jackson, Classical Electrodynamics, 3rd ed. Wiley, New York, 1998.
[9] M. G. Cottam and D. R. Tilley, Introduction to Surface and Superlattice Excitations, 2nd ed.

Institute of Physics Publishing, London, 2004. (A)
[10] M. Cagnet, M. Francon, and J. C. Thrierr, Atlas of Optical Phenomena. Springer-Verlag, Berlin

and New York, 1962. M. Cagnet, M. Francon, and S. Mallick, Supplement to Atlas of Optical
Phenomena. Springer-Verlag, Berlin and New York, 1971.

[11] R. Loudon, The Quantum Theory of Light, 3rd ed. Oxford University Press, London and New
York, 2000. (A)

[12] D. C. Champeney, Fourier Transforms and Their Physical Applications. Academic Press, New
York, 1973. (A)

[13] H. and B. S. Jeffreys, Mathematical Physics. Cambridge University Press, London and New York,
1972.

[14] E. David and G. Bekow, Gruppen und Phasengeschwindigkeit. Film C614 of the Institut fur den
Wissenschaftlichen Film, Göttingen.

[15] J. W. S. Rayleigh, The Theory of Sound, 2 vols. Dover,’New York, 1945.
[16] L. Brillouin, Wave Propagation and Group Velocity. Academic Press, New York, 1960. (A)
[17] R. Loudon, J. Phys. A 3, 233 (1970).
[18] J. Nkoma, R. Loudon, and D. R. Tilley, J. Phys. C 7, 3647 (1974).
[19] H. Khosravi, R. Loudon, and D. R. Tilley, J. Opt. Soc. Am. (to be published).
[20] A. C. Scott, F. Y. F. Chu, and D. W. McLaughlin, Proc. IEEE 61, 1443 (1973).
[21] R. K. Bullough, “Solitons”, in Interaction of Radiation with Condensed Matter (Proc. Winter

College, Trieste, 1976), vol. 1, p. 382. IAEA, Vienna, 1977.
[22] G. L. Lamb, Elements of Soliton Theory. Wiley, New York, 1980.
[23] R. K. Dodd et al., Solitons and Nonlinear Wave Equations. Academic, New York, 1984.

Weak Interactions
V. L. Fitch

More than 80 years of painstaking experimental work and theoretical development culminated
in the early 1970s with a highly successful theory, called the standard model, which shows that
the weak and electromagnetic interactions are separate manifestations of one common elec-
troweak force. The joining of the weak and electromagnetic phenomena into one interaction
constitutes the first unification of different forces since Maxwell showed electricity and mag-
netism to be different manifestations of the same phenomenon.

The weak interactions refer to a class of forces which are 1014 times weaker than the strong
forces which hold the nucleus together. The neutrino, a spin- 1

2 particle without electrical
charge, best exemplifies the weak interactions because it reacts with other matter only through
the weak forces. Whereas a neutron, a strongly interacting particle, will travel on the average
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through 10cm of iron before scattering, the neutrino will travel through 1016 cm. Recalling
that the earth is largely iron with a diameter of 1.2×104 km, we see that the probability of the
neutrino scattering in going through the earth is only one part in 106. The earth is essentially
transparent to neutrinos! Indeed, at low energies the sun is nearly transparent. These are not
irrelevant observations since the thermonuclear processes in stars lead to copious production
of neutrinos. The mass of the neutrino has never been measured but the existing experimental
limits indicate that it is tiny if not zero.

Despite the considerable weakness of the interactions we have been able to learn much
about them because of two fortuitous circumstances. First, nuclear reactors and accelerators
are such intense sources of neutrinos that the tiny probability of a single neutrino scattering in a
detector of reasonable size is compensated by enormous fluxes. Second, the weak interactions
manifest themselves in a large variety of rather common decay processes, many of which have
been studied exhaustively. Due to these weak effects many radioactive nuclei decay with the
emission of an electron and neutrino (the emitted electrons are called beta rays – the process
is called nuclear beta decay). During the decay process, a constituent neutron transforms to
a proton which remains as a part of the new nucleus, an isobar of the original. And because
of the abundance of neutrons in nuclear reactors it has been possible to study the decay of the
free neutron to electron, proton, and antineutrino (why antineutrino instead of neutrino will
become apparent later)

n → p+ e−+ ν̄ . (1)

The mean life for this decay is 15min. In addition, since a reactor core has the most intense
concentration of neutrons, their decay provides a rich source of antineutrinos.

A well-known example of nuclear beta decay is 60Co→ 60Ni + e−+ν. The mean life is
144 days. The cobalt is produced as the result of fission of uranium nuclei. Another example
is a naturally occurring beta emitter, 40K. Its mean life is 4.5× 109 years. This isotope of
potassium constitutes about 0.01% of the total potassium in the earth and is a source of part
of the natural radioactive background. The completely stable isotopes of potassium, 39K and
41K, have relative abundances of 93 and 7%. When the earth was formed, one expects that
40K was formed with a relative abundance between that of its two neighbors. The fact that,
because of its decay, it now constitutes only one part in ten thousand of the total potassium on
the earth enables us to calculate the age of the earth, a measure of the time that has elapsed
since the materials of the earth were formed.

In some nuclei the relative energies of the pertinent nuclear levels permit one of the orbiting
electrons to be captured by one of the constituent protons which becomes a neutron and the
electron becomes a neutrino:

e−+p → ν+n . (2)

This process is called K capture because it is the K-shell electrons which are usually involved.
One should note the similarity between this reaction and neutron decay. The two processes
can be related exactly when the energies of all the particles are taken into account.

Despite the complications associated with the decaying particles being submerged inside
nuclei, the study of nuclear beta decay has been extraordinarily fruitful. The energy of the
electrons and neutrinos is typically 1

2 to 10MeV. Their momenta are sufficiently small that
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the two leptons generally do not carry off any orbital angular momentum. Such decays are
called “allowed” transitions. However, the combined spins of the two spin- 1

2 leptons may total
either 0 or 1 unit of angular momentum. Correspondingly, the nuclear spin may change by
0 or 1 unit in the decay. Those beta-decay processes where the leptons come off with their
spins antiparallel, 0 angular momentum, are known as Fermi (F) transitions. When one unit
of angular momentum is carried off by the leptons, the spin of the nucleus can change by 0
or 1 unit; the process is called a Gamow–Teller (GT) transition. The decay of 35S to 35Cl
is an example of an F transition, while the decay of 60Co (spin 5) to 60Ni (spin 4) is a pure
GT transition. Neutron decay is a mixed GT and F transition. In this case, the spin of the
nucleon may or may not flip when changing from neutron to proton and the lepton spins may
be parallel or antiparallel.

The energy spectrum of the electrons emitted in so-called allowed beta decays is dominated
by statistical considerations (phase space with rather obvious corrections for Coulomb effects
– the electron being attracted by the positive nucleus from which it is escaping). For those beta
decays where the spin of the nucleus changes by 2 units, the leptons must also carry off orbital
angular momentum and the process is suppressed. These are referred to as first forbidden
transitions. The example of 40K mentioned above is a case of a third forbidden transition
(spin change is 4). This accounts for the extraordinarily long mean life. In the simplest nuclei
the study of beta decay has illuminated the weak interactions. In more complicated nuclei the
beta-decay process has been used as a probe of nuclear structure.

A most important characteristic of the beta-decay process is that the leptons are emitted
with the polarization equal to −v/c, where v/c is their speed relative to that of light. Since
neutrinos have a very tiny or zero rest mass their velocity is equal to or nearly equal to c and
they are correspondingly highly polarized along their line of flight. The spin of a lepton in
relation to its flight direction is as a left-handed screw. Leptons are said to have left helicity.
Correspondingly, antileptons are right-handed; they have right or positive helicity. The net
polarization of the electron (or neutrino) emitted in beta decay is a manifestation of parity
nonconservation in the weak interactions.

From reactions (1) and (2) we see that not only neutrinos but also electrons (or positrons),
protons, and neutrons engage in weak interactions. A distinction is made between those
weakly interacting particles which also interact strongly and those which do not. The elec-
tron and neutrino are the leptons. The neutron, proton, π, and K mesons are examples from
a large class of strongly interacting particles called hadrons. In a sense the electron and its
neutrino are two charge states of the same object as are the neutron and proton. Other kinds
of charged leptons exist: the muon has a mass 207 times that of the electron and the tau, 3490
times, or 1.9 times the mass of the proton. Each variety of charged lepton is associated with
a neutrino distinct from all the other neutrinos. The electron and mu neutrinos have been di-
rectly detected whereas the existence of the tau neutrino is still only inferred. Modern particle
accelerators produce large numbers of π and K mesons both of which decay quickly to muons
and neutrinos. Taus are made in electron–positron colliding-beam machines.

All evidence supports the view that the number of leptons minus the number of antileptons
is a conserved quantity (conservation of leptons). Arbitrarily, the electron has been called a
particle, the positron an antiparticle. The conservation of leptons in reaction (1) forces that
neutrino to be an antiparticle.
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Fig. 1: The relative intensity of electrons (positrons) emitted from a source of
polarized µ− (µ+) mesons as a function of the angle from the direction of
polarization.

Parity nonconservation is most dramatic in the decay of the muon to an electron plus two
neutrinos,

µ
−→ e−+ ν̄e +νµ . (3)

Polarized muons with negative charge decaying at rest emit more electrons in the hemisphere
opposite to the direction of the spin than in the reverse direction. The inverse is true for positive
muons. In Fig. 1, the length of the vector indicates the number of electrons (positrons) from
polarized µ+ (µ−) decay as a function of angle. The figure shows that the decay process is not
invariant to a reflection about the line, a characteristic of parity nonconservation. It also shows
that the process is not invariant under charge conjugation – the operation that transforms world
to antiworld, in this case, µ− to µ+.

When it was first discovered that parity nonconservation occurred, leading to asymmetric
decays, it was thought the process could be used to establish an absolute direction in space in
violation of Mach’s principle. However, it is noted from Fig. 1 that the combination of parity
reversal, P, and charge conjugation, C, restores the fundamental symmetry. The fact that
one cannot, with perfect CP symmetry, distinguish a distant galaxy from a distant antigalaxy
would prevent one from establishing a preferred direction in space.

An important example of a weak interaction is the decay of the K meson (kaon) to two
or three π mesons (pions). Indeed, the observation that the kaon, which has zero spin, could
decay to three pions in a state of zero relative angular momenta and also decay to two pions
was the first evidence that parity was not conserved in the weak interactions (the pion has odd
intrinsic parity). Detailed studies show that not only is parity not conserved in this decay
but also the combined operations of charge conjugation and parity, CP, is not an exactly
conserved quantity. The effect is small (the CP-nonconserving effect is about 2× 10−3 of
the CP-conserving process) but it has been exhaustively studied and the detailed parameters
are extremely well known.
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Modern field theory depends on the validity of a very general theorem which says that all
interactions must be invariant under the combined operations of charge conjugation, parity,
and time reversal, CPT . Accordingly, a violation of C and P invariance requires a compensat-
ing violation of time-reversal invariance. In fact, detailed experimental studies of the neutral
kaon decay strongly support the CPT theorem. This means that, to a small but finite degree,
fundamental interactions are different depending on the direction of time. The absence of
complete CP symmetry also reopens the question of the complete validity of Mach’s princi-
ple.

As noted above, nuclear reactors are sources of antineutrinos and, because of their abun-
dance, the reaction

νe +p → e+ +n (4)

has been extensively studied. Indeed, the production of positrons using reaction (4) provided
the first direct evidence for the existence of neutrinos.

It was thought for many years that the exchange of electrical charge in reaction (4) between
the leptons was a unique characteristic of weak forces. However, it is now known that the
reaction proceeds without charge exchange about 25% of the time. Similar reactions occur for
the mu-like neutrinos, viz.,

νµ +n → µ
−+p (5)

or

ν̄µ +p → µ
+ +n (6)

and without charge exchange, e. g.,

νµ +p → νµ +p . (7)

The theoretical understanding of the weak interactions was guided from the earliest days
by the work of Fermi. The Fermi theory was drawn in close analogy with electrodynamics.
As a charged particle interacts with the electromagnetic (photon) vector field, so a weakly in-
teracting particle, e. g., a neutron, interacts with a lepton field. The theory enjoyed enormous
success. The only change since the original work of Fermi was the addition of axial-vector
interactions with a strength nearly equal to the original vector interaction assumed by Fermi.
This addition produced the effects of parity nonconservation. The modified Fermi theory was
very successful in accounting for low-energy weak interaction phenomena but predicted dis-
turbing behavior at high energies – for example, a neutrino–nucleon cross section growing
with energy without limit. To avoid these problems it was proposed that the weak interac-
tions were mediated by massive bosons. These bosons could either be charged and account
for the charge changing reactions through “charged currents” or neutral in analogy with the
interaction of “neutral” currents in electrodynamics. The standard model evolved out of these
observations.

Despite their similarity, these two forces are grossly different with respect to their range.
The electromagnetic interaction is long range (the electrical potential depends on distance as
1/r), whereas the weak interaction is short range, indeed, much shorter even than the strong
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interactions. The electrical force between charged particles is due to the exchange of photons
which have zero rest mass. A shortened range can be arranged by requiring that the exchanged
particle have a nonzero mass. From the simplest point of view, the exchange of a particle of
rest mass m leads to an interaction potential energy

U(r) = (e2/r) exp(−rmc/h̄) , (8)

where r is the range, h̄ is Planck’s constant, and c is the velocity of light. As m → 0 it
reduces to the Coulomb potential. By an increase in the mass of the exchanged particle the
range of the interaction can be reduced to any arbitrary value. For example, if m equals the
mass of the pion, the range is characteristic of nuclear forces, 1.4× 10−13 cm. In applying
these ideas to the weak interactions, to produce an effect with a given magnitude, one may
vary the weak charge ew or the range, i. e., the mass of the exchanged particle. For the same
effect the “weak charge” could be very large if the characteristic range of the force is small.
Therefore, unlike the electrical charge, it is necessary to specify not only the magnitude of
the “weak” charge but also the volume in which it is effective. The weak charge squared is
measured to be e2

w = 0.88×10−37 eVcm (for comparison, the electromagnetic charge squared
is e2 = 1.44× 10−7 eVcm.) Over a typical nuclear volume this leads to a weak interaction
potential of about 1eV. However, experiments show the weak forces to be confined to very
much smaller distances than nuclear dimensions and the question is – just how short is the
range? Because the fundamental structure of the weak and electromagnetic interaction is
similar, aside from the range of the force, a natural possibility is that the basic strength of the
weak and electromagnetic charge is the same. This necessitates that the characteristic range
of the weak force be set in the region of 3×10−16 cm corresponding to a mass of 70–80GeV
for the exchanged particle.

The standard model leads to the prediction of a charged vector boson, the W±, which
accounts for those weak interactions in which the lepton charge is changing, and the Z0 which
is involved in the neutral interactions. The theory predicts that the masses of these vector
bosons are related through the Weinberg mixing angle, θW, viz.,

mW = 137.3GeV/sinθW and mZ = mW /cosθW .

The angle, θW, has been measured in a wide variety of the neutral current processes and is
found to be sinθW = 0.230±0.005.

With the advent of particle accelerators which have sufficient energy, both of these particles
are observed with mW = 81±1.4GeV and mZ = 91.10± .05GeV. These measured values are
in striking agreement with those predicted from the standard model.

Since hadrons are composed of quarks, the weak interactions involving hadrons are now
described in terms of these more fundamental entities. A neutron is composed of two d quarks
and one u quark, whereas the proton is made of two u quarks and one d quark. The beta decay
of the neutron then involves, in this picture, a transformation of a d- to a u-type quark, viz.,

d → u+ e−+ν . (9)

Because they are composed of a limited number of primitive quarks, striking symmetries
appear among the hadrons and since weak interactions occur between quarks as well as lep-
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tons, similar symmetries in the interactions appear. A table of quarks and leptons displays a
remarkable correspondence:

Lepton Charge Quark Charge

νe 0 u 2
3

e −1 d − 1
3

νµ 0 c 2
3

µ− −1 s − 1
3

ντ 0 t 2
3

τ− −1 b − 1
3

As seen from the table, for each lepton there appears a corresponding quark with its electrical
charge displaced by + 2

3 . This striking symmetry between the leptons and quarks suggests that
the strong as well as the weak and electromagnetic interactions be included in the unification
process. The symmetry also suggests that should new leptons be discovered the chances are
high that corresponding quarks exist.

A question of most fundamental importance is whether the table above is complete or
whether there exist still heavier charged leptons with their associated neutrinos. Studies of the
Z0 decay reveal that, most likely, there exist no more than the three generations of leptons as
listed in the table. This conclusion comes from the following considerations. Since it couples
to neutral currents, the Z0 can decay to neutrino–antineutrino pairs. In fact, pure neutrino
decay contributes significantly to the decay rate and therefore to the width of the Z0 resonance
which is observed in electron–positron colliders. The conclusion from the data is that there
are 3.1± 0.2 generations of neutrinos. Such conclusions should hold except in the unlikely
event that any new neutrino would be so massive that the Z0 could not decay into them.

The old Fermi theory, modified with axial-vector contributions, required that the neutrino
mass be strictly zero. The standard model imposes no such constraint and there is great interest
in the question of neutrino masses. It is now known that the electron neutrino has a mass less
than 10eV, the mu neutrino less than 0.25eV, and the tau neutrino less than 35MeV. Pursuing
the parallelism between quarks and leptons noted in the table, since the weak interactions
allow transitions between the different flavored quarks could it not be that transitions also
occur between the different generations of neutrinos especially since they can have finite and
different masses? Such transitions would lead to oscillations between the different generations
of neutrinos.

There is now good evidence that oscillations do occur. For a long time it has been known
that the number of neutrinos from the sun is less than half of what is expected on the basis of
solar models, suggestive but not definitive evidence for oscillations. An experiment has been
conducted in a deep mine in Sudbury, Ontario, Canada, using deuterium as a solar neutrino
target. The rate of deuterium breakup is measured with and without the emission of an elec-
tron. Only the electron type neutrinos could lead to the emission of electrons in the breakup
process whereas any flavor of neutrino would lead to the breakup without electron emission.
From a comparison of the relative occurences of these two breakup reactions the evidence is
compelling that more than one flavor of neutrino is passing through the detector.
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Recent experiments at the Super-Kamiokande underground detector in Japan have mea-
sured the flux of high energy (multi-GeV) neutrinos produced when cosmic rays interact in the
atmosphere of the earth. The number of neutrinos, nearly all νµ , passing downward through
the detector is compared with the number passing upwards. Those passing upwards, of course,
have had to pass the extra distance through the diameter of the earth. The numbers are not
the same, the flux of those passing upwards is about half that of those passing downward.
Auxillary information suggests that the νµ neutrinos are oscillating into ντ . Detailed analy-
sis of the data shows that the difference in the mass of the νµ and ντ , squared, lies between
1.3×10−3 eV2 and 3.0×10−3 eV2. The mixing is close to maximum.

The weak interaction between the quarks is quantified through a mass mixing matrix which
arises because the mass eigenstates are not the same as the weak eigenstates. All of the mixing
is expressed through a 3× 3 unitary matrix operating on the charge- 1

3 quark states (d, s, and
b), viz., d′

s′

b′

 =

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 d
s
b


This matrix is identified with the names of Cabibbo, Kobayashi, and Maskawa, the CKM
matrix. When it was first proposed only three flavors of quarks were known, the u, d, and s. In
a remarkably prescient paper, Kobayashi and Maskawa pointed out that if, in fact, six quarks
existed there was room in the matrix for a phase angle that would characterize CP violation.
Now that six quarks have been experimentally identified and measured, c, b, and t in addition
to the original u, d, and s, CP violation has as natural home.

Much experimental effort has been directed toward evaluating the various elements in the
matrix. These are determined from the weak decay rates of the various quarks which are, in
turn, extracted from the decay of the relevant mesons, and in some instances, from neutrino
scattering. The details are beyond the scope of this review but may be found in the references
below.

The decay of the neutral B meson is of special significance. It was predicted that it would
show a large CP violation. Indeed, this has been the case. It has now been observed in the
system of neutral B mesons at the electron–positron colliders at Stanford and KEK in Japan.

A full discussion of the this new and exciting development is contained in the last reference
below.

See also: Beta Decay; Currents in Particle Theory; Electron; Elementary Particles in
Physics; Grand Unified Theories; Leptons; Mesons; Neutrino; Parity; Positron;
Quarks; Weak Neutral Currents.
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Weak Neutral Currents
A. K. Mann

Introduction

Weak neutral currents were first observed and their strength determined quantitatively in
1973 [1]. The interaction between any two weak neutral currents gives rise to much sought-
after and initially elusive reactions characterized in present thinking by the exchange between
the currents of a virtual, massive, electrically neutral vector boson, the Z0. It had long been
known that the exchange of a virtual, massless, electrically neutral vector boson, the pho-
ton, between electromagnetic currents – which are “neutral” in this terminology – described
electromagnetic reactions. However, prior to 1973, only the reactions arising from the interac-
tions of two weak charged currents, mediated by the exchange of virtual, massive, electrically
charged vector bosons, the W±, had been observed. Feynman diagrams schematically illus-
trating these processes are shown in Fig. 1.

Somewhat earlier, a unified theory of quantum electrodynamics and quantum weak dynam-
ics had been formulated [2] in which an integral constituent was the weak neutral current. The
success of this theory, now known as the electroweak theory (EWT), became apparent with the
experimental discovery of weak neutral currents (WNC) and is exhibited in the ability of the
EWT to describe in precise detail the wide variety of phenomena which have been intensively
studied experimentally since 1973. The junction of the EWT and experiment culminated in
the direct observation in 1983 of the massive vector bosons, the W± and Z0, at the mass values
predicted by the EWT [3], the predictions of which require as input the measured strength of
the WNC found in WNC experiments.

Fig. 1: Feynman diagram for photon exchange in quantum
electrodynamics (a). In the unified electroweak theory, the
weak interactions are mediated by massive vector bosons: the
charged W for β decay (b), and the neutral Z for elastic
neutrino scattering (c).
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More generally, the EWT provides a unified, renormalizable, gauge-invariant description
of weak charged current (WCC) and electromagnetic neutral current (ENC) interactions, as
well as WNC interactions [4]. It is, however, WNC phenomena and the W± and Z0 masses
which contribute the major quantitative tests of the predictions of the EWT. These extend
over the wide range of squared momentum transfer from 10−6 (GeV/c)2 to 104 (GeV/c)2

and encompass such diverse processes as deep inelastic neutrino and longitudinally polarized
electron scattering from isoscalar and nonisoscalar targets, ν–p scattering, ν–e scattering, par-
ity violation in atoms via an induced transition electric dipole moment, asymmetries in high
center-of-mass energy e+ + e−→ µ+ +µ− reactions, and the masses of W± and Z0.

In what follows we record in the next section the EWT expressions for various WNC in-
teractions [5], primarily to illustrate their structure and emphasize the importance of radiative
corrections in the theory. We then summarize the comparisons of EWT predictions with exper-
imental data. Finally, a short discussion is given of future exploration of still higher-precision
WNC measurements as more stringent tests of the EWT and as sensitive probes of new physics
beyond the EWT.

EWT Expressions for WNC Interactions [5]

The effective Lagrangian for WNC interactions between massless neutrinos (ν) and quarks (q)
is

−LνH =
GF√

2
ν̄γ

µ(1+ γ5)νJH
µ , (1)

where GF is the Fermi coupling constant (= 10−5/M2
p),γµ and γ5 are Dirac matrices, and

JH
µ = ∑

i
q̄iγµ(gi

V +gi
Aγ5)qi . (2)

Here, identical V , A couplings are assumed for all neutrino flavors, and, with gi
V,A ≡ εL(i)±

εR(i), flavor independence of the quark couplings is also assumed, i. e., εL,R(u) = εL,R(c), etc.,
where u and c are “up” and “charm” [5] quarks, respectively.

In the EWT the εL(i) and εR(i) are completely specified in terms of constants, calcula-
ble radiative-correction parameters, and the only undetermined parameter in the theory, the
relative coupling strength of the WNC, usually written as the function sin2

θW of the angle
θW.

The effective Lagrangian for the WNC interaction between muon-type neutrinos (and au-
tineutrinos), νµ (and ν̄µ ), and electrons is

−Lνe =
GF√

2
ν̄µγ

µ(1+ γ5)νµJe
µ , (3)

where

Je
µ = ēγµ(ge

V +ge
Aγ5)e (4)

and ge
V and ge

A are, again in the EWT, given in terms of sin2
θW and radiative-correction pa-

rameters.
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The parity-violating (but CP-conserving) interaction between electrons and quarks is given
by

−LeH =
GF√

2 ∑
i
(C1iēγµγ5eq̄i +C2iēγµeq̄iγ

µ
γ5qi) . (5)

In the EWT, the constants C1u, C1d , and C2u depend on sin2
θW and radiative-correction pa-

rameters.
Finally, in the EWT the W± and Z0 masses are predicted to be

MW =
A0

sinθW(1−∆r)1/2 , (6)

MZ =
MW

cosθW
, (7)

where

A0 =
(

πα√
2GF

)1/2

= 37.281GeV/c2 , (8)

and ∆r is a calculable radiative-correction parameter.
It is customary to define the so-called renormalized weak angle in the EWT as

sin2
θW ≡ 1−M2

W /M2
Z . (9)

The effective Lagrangians in Eqns. (1) through (8) and the definition of sin2
θW in Eq. (9)

are sufficient to describe quantitatively all the WNC reactions mentioned in the Introduction.
In principle, once a value of sin2

θW is extracted from a given class of experiments and an ap-
propriate radiative correction applied to the empirical value, all other classes of experiments
then yield (when radiatively corrected) values of sin2

θW which serve to test in detail the cor-
rectness and self-consistency of the EWT over a multiplicity of phenomena and a wide range
of energies and momentum transfers. This is the strategy employed to compare the results of
one class of experiments with another class and to facilitate and make clear comparison of
experiment with the EWT.

WNC Data and the EWT

In this section we briefly summarize WNC experimental results and compare them with the
predictions of the EWT.

In Fig. 2 are shown values of sin2
θW obtained from various classes of WNC experiments

and measurements of the W and Z masses plotted against Q2, the square of the four- mo-
mentum transfer typical of each class of experiment [7J. Each point in the plot is labeled by
the experiment type that produced it. Note the wide range of Q2 and the convergence of the
different determinations of sin2

θW on the single, universal value shown by the horizontal line
in Fig. 2 at sin2

θW = 0.230±0.0048.
The data in Fig. 2 are also summarized in Table 1 [7] which gives, in addition to the precise

numerical values of sin2
θW from the different classes of experiments, values of sin2

θ0, i. e.,
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Fig. 2: Various determinations of sin2
θW, the fundamental unspecified

parameter of the electroweak theory, plotted against Q2, the square of the
four-momentum transfer typical of each class of experiments. Each
determination is labeled by experiment type (see Table 1). The horizontal line
is at sin2

θW = 0.230±0.0048. Reprinted from Ref. [7].

the values obtained directly from experiment without the radiative corrections provided by the
EWT. One sees the importance of the radiative corrections which are approximately 4% in
the determination of sin2

θW from the parity violation in heavy atoms, approximately 7% in
extracting sin2

θW from measurement of W and Z masses, and less than 1% in νµe scattering.
In addition to the wide range of Q2 shown in Fig. 2, the wide diversity of the phenomena

and the experimental techniques represented by the different classes of measurement in that
figure should be emphasized. For example, parity violation in heavy atoms, at the extreme
low end of momentum transfer, originates through a modified transition probability for the
scattering of circularly polarized photons by a gas of heavy atoms. The modification is due to
an induced transition electric dipole moment generated by the parity-violating WNC through
exchange of a virtual Z0 boson between electron and nucleus in addition to virtual photon
exchange. The experiment consists in measuring very small rotations of the axis of polariza-
tion of the incident circularly polarized light following its passage through the atomic gas.
Compare this with production of the massive Z0 boson (MZ ' 91GeV/c2) in p̄p collisions
at center-of-mass energy of 560GeV, and detection of the multi-GeV e+ and e− from the
subsequent decay, Z0 → e+e−.
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Table 1: Determination of sin2
θW from Various Reactions [7].

Reaction sin2
θW

a sin2
θW

b

Deep inelastic νµN scattering 0.233±0.003± [0.005] 0.242
νµp→ νµp 0.210±0.033 0.208
νµe→ νµe 0.223±0.018± [0.002] 0.221
W and Z masses 0.229±0.007± [0.002] 0.214
Parity violation in heavy atoms 0.220±0.007± [0.018] 0.212
Polarized eD scattering 0.221±0.015± [0.013] 0.226
All data 0.230±0.0048

Data from Ref. [5]. See also Fig. 2.
a Where two uncertainties are shown, the first is experimental, and the second, in squared brackets, is
theoretical. The latter includes the effect of letting the unknown masses of the top quark and Higgs
boson range widely. The central values assume M1 = 45 and M11 = 100GeV.
b Values that would be obtained from the data without radiative corrections.

Table 2: Values of the Model-Independent
Neutral-Current Parameters Compared With the
Prediction for sin2

θW = 0.230. After Ref. [7].

Quantity Experimental Value Prediction

εL(u) 0.339± 0.017 0.345
εL(d) −0.429± 0.014 −0.427
εR(u) −0.172± 0.014 −0.152
εR(d) 0.011± 0.081

0.057 0.076
ge

A −0.498± 0.027 −0.503
ge

V −0.044± 0.036 −0.045
C1u −0.249± 0.071 −0.191
C1d 0.381± 0.064 0.340
C2u− 1

2C2d 0.19± 0.37 −0.039

To compare experiment and theory in still greater detail, we show in Table 2 the experi-
mental values of the quantities appearing in the effective Lagrangians and the values predicted
by the EWT [7] when the value of sin2

θW is taken to be 0.230.
The content of Fig. 2 and Tables 1 and 2 may be summarized as demonstrating the “sym-

biotic” relationship between WNC phenomena and the EWT. The experimental tests provided
by these phenomena and passed successfully by the EWT help to establish the theory as the
quantitatively correct description of weak and electromagnetic interactions at the present level
of experimental error.

Future Progress

There exists the prospect that the precision of several of the classes of experiments discussed
in the last section might be substantially improved in the coming decade. The precision of
sin2

θW determined from a single class of experiments is of the order of 5–7% at present,
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but improvements to the level of 1% or better are likely to be made in the near future. This
increased precision will in turn stimulate calculations of higher-order radiative corrections.
Taken together, the result will be that WNC processes will serve not only as tests of the
validity of the EWT, but also as probes of new physics beyond the EWT if any significant
discrepancy between experiment and theory is found.

See also: Currents in Particle Theory; Elementary Particles in Physics; Grand Unified
Theories; Weak Interactions.
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Whiskers
R. V. Coleman

The term whisker describes any fibrous growth of a solid, and such forms were studied exten-
sively in relation to the development of microscopic theories of crystal growth, particularly
those involving screw dislocations. If crystal growth proceeds by the motion of a dislocation
step and if conditions are such that the rate of step generation dominates over the motion of
steps away from the dislocation source, then a whisker profile results. This is a simple and
elegant explanation for the growth of single-crystal whiskers, but many modifications and al-
ternative theories involving oxidation, solid-state diffusion, stress recrystallization, or some
combination of these have been developed. Impurities may also play a significant role.

Whisker crystals can be produced by vapor deposition, chemical reaction, electrolytic de-
position, or oxidation of surfaces, and at vapor–liquid–solid interfaces. A famous form of
whisker growth is that of Sn whiskers growing from tin-plated metal where applied stress can
enhance the growth rate, and this has led to the term squeeze whisker. Low-melting-point met-
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als such as Zn, Cd, Mg, Hg, and K have been grown from vapor, while higher-melting-point
metals and semiconductors such as Fe, Co, Ni, Cu, Au, Ag, Pt, Si, and Ge are often grown by
the hydrogen reduction of metallic salts. Whiskers of oxides, carbides, nitrides, metallic salts,
graphite, polymers, organic materials, and metallic alloys have been reported.

Whisker-like crystals also result from the growth of very anisotropic solids such as the
quasi-one-dimensional solids NbSe3 and TaS3 which contain linear chains of metal atoms.
This extreme structural anisotropy is also reflected in the electronic structure which under-
goes a phase transition to a charge-density-wave state at lower temperature characterized
by a superlattice of charge modulation. Quasi-one-dimensional organic compounds such as
(TMTSF)2PF6 also grow as whiskers and exhibit a phase transition to a spin-density-wave
state characterized by a superlattice modulation of spin. Quasi-two-dimensional compounds
such as the high-Tc superconductor Bi2Sr2Ca1Cu2Ox can also be grown in single-crystal
whisker form.

The high surface and volume perfection of whiskers originally made them very useful for
the study of mechanical properties. Stress–strain curves were obtained with elastic strain
regions extending to 4 or 5%. The crystal perfection of whiskers has also made them excellent
samples for the study of a wide range of electric and magnetic properties in solids. Many of
these experiments are discussed in the review articles listed in the Bibliography, which also
contain extensive reference to the original work.

See also: Crystal Defects; Crystal Growth.
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Work Function
T. M. Donovan and A. D. Baer

The work function W is the minimum energy required to remove an electron at the Fermi
energy from a solid. Figure 1 shows a simplified model of the surface of metal, with electronic
states in the metal occupied up to the Fermi level. The work function is

W = Ev−Ef ,

where Ev is the energy of an electron at rest outside the solid, and Ef is the energy of an
electron at the Fermi energy inside the solid.
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Fig. 1: Simplified model of electrons in a metal showing electron emission.

The work function is determined experimentally by measuring the minimum amount of
excitation energy required to emit an electron from the solid. There is a high density of
filled electronic states near the Fermi level of a metal, and clear-cut theoretical relationships
exist which relate photoemission and thermionic emission of electrons from these states to the
work function [1–3]. For example, in Fig. 1, if an electron is excited from the Fermi level by
a photon of energy hν, and the electron is emitted from the solid into vacuum without energy
loss, then

W = hν−Ek ,

where Ek is the kinetic energy of the electron outside the solid.
Since the Fermi level of a semiconductor or insulator generally lies in the band gap, the

work function of a nonmetal sample is usually measured by first determining the work function
of a metal surface and then measuring the difference between the work functions of the metal
and the sample. The difference is equal to the contact potential difference which can be
measured directly in a Kelvin probe [2, 3] or retarding-potential experiment [4, 5].

See also: Electron Energy States in Solids and Liquids; Photoelectron Spectroscopy;
Thermionic Emission.
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