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Application to Optimal Stopping

10.1 The Time-Homogeneous Case

Problem 5 in the introduction is a special case of a problem of the following
type:

Problem 10.1.1 (The optimal stopping problem)
Let Xt be an Itô diffusion on Rn and let g (the reward function) be a given
function on Rn, satisfying

a) g(ξ) ≥ 0 for all ξ ∈ Rn (10.1.1)
b) g is continuous.

Find a stopping time τ∗ = τ∗(x, ω) (called an optimal stopping time) for
{Xt} such that

Ex[g(Xτ∗)] = sup
τ

Ex[g(Xτ )] for all x ∈ Rn , (10.1.2)

the sup being taken over all stopping times τ for {Xt}. We also want to find
the corresponding optimal expected reward

g∗(x) = Ex[g(Xτ∗)] . (10.1.3)

Here g(Xτ ) is to be interpreted as 0 at the points ω ∈ Ω where τ(ω) = ∞
and as usual Ex denotes the expectation with respect to the probability law
Qx of the process Xt; t ≥ 0 starting at X0 = x ∈ Rn.

We may regard Xt as the state of a game at time t, each ω corresponds to
one sample of the game. For each time t we have the option of stopping the
game, thereby obtaining the reward g(Xt), or continue the game in the hope
that stopping it at a later time will give a bigger reward. The problem is of
course that we do not know what state the game is in at future times, only the
probability distribution of the “future”. Mathematically, this means that the
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possible “stopping” times we consider really are stopping times in the sense
of Definition 7.2.1: The decision whether τ ≤ t or not should only depend
on the behaviour of the Brownian motion Br (driving the process X) up to
time t, or perhaps only on the behaviour of Xr up to time t. So, among all
possible stopping times τ we are asking for the optimal one, τ∗, which gives
the best result “in the long run”, i.e. the biggest expected reward in the sense
of (10.1.2).

In the following we will outline how a solution to this problem can be
obtained using the material from the preceding chapter. Later in this chapter
we shall see that our discussion of problem (10.1.2)–(10.1.3) also covers the
apparently more general problems

g∗(s, x) = sup
τ

E(s,x)[g(s + τ,Xτ )] = E(s,x)[g(s + τ∗,Xτ∗)] (10.1.4)

and

G∗(s, x) = sup
τ

E(s,x)

[ τ∫
0

f(s + t,Xt)dt + g(s + τ,Xτ )
]

= E(s,x)

[ τ∗∫
0

f(s + t,Xt)dt + g(s + τ∗,Xτ∗)
]

(10.1.5)

where f is a given profit rate (or reward rate) function (satisfying certain
conditions).

We shall also discuss possible extensions of problem (10.1.2)–(10.1.3) to
cases where g is not necessarily continuous or where g may assume negative
values.

A basic concept in the solution of (10.1.2)–(10.1.3) is the following:

Definition 10.1.2 A measurable function f :Rn → [0,∞] is called super-
meanvalued (w.r.t. Xt) if

f(x) ≥ Ex[f(Xτ )] (10.1.6)

for all stopping times τ and all x ∈ Rn.
If, in addition, f is also lower semicontinuous, then f is called l.s.c. su-

perharmonic or just superharmonic (w.r.t. Xt).

Note that if f :Rn → [0,∞] is lower semicontinuous then by the Fatou
lemma

f(x) ≤ Ex[ lim
k→∞

f(Xτk
)] ≤ lim

k→∞
Ex[f(Xτk

)] , (10.1.7)

for any sequence {τk} of stopping times such that τk → 0 a.s. P . Combining
this with (10.1.6) we see that if f is (l.s.c.) superharmonic, then

f(x) = lim
k→∞

Ex[f(Xτk
)] for all x , (10.1.8)

for all such sequences τk.
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Remarks. 1) In the literature (see e.g. Dynkin (1965 II)) one often finds
a weaker concept of Xt-superharmonicity, defined by the supermeanvalued
property (10.1.6) plus the stochastic continuity requirement (10.1.8). This
weaker concept corresponds to the Xt-harmonicity defined in Chapter 9.

2) If f ∈ C2(Rn) it follows from Dynkin’s formula that f is superharmonic
w.r.t. Xt if and only if

Af ≤ 0

where A is the characteristic operator of Xt. This is often a useful criterion
(See e.g. Example 10.2.1).

3) If Xt = Bt is Brownian motion in Rn then the superharmonic functions
for Xt coincide with the (nonnegative) superharmonic functions in classical
potential theory. See Doob (1984) or Port and Stone (1979).

We state some useful properties of superharmonic and supermeanvalued
functions.

Lemma 10.1.3 a) If f is superharmonic (supermeanvalued) and α > 0, then
αf is superharmonic (supermeanvalued).

b) If f1, f2 are superharmonic (supermeanvalued), then f1 + f2 is superhar-
monic (supermeanvalued).

c) If {fj}j∈J is a family of supermeanvalued functions, then f(x):= inf
j∈J

{fj(x)}
is supermeanvalued if it is measurable (J is any set).

d) If f1, f2, · · · are superharmonic (supermeanvalued) functions and fk ↑ f
pointwise, then f is superharmonic (supermeanvalued).

e) If f is supermeanvalued and σ ≤ τ are stopping times, then Ex[f(Xσ)] ≥
Ex[f(Xτ )].

f) If f is supermeanvalued and H is a Borel set, then f̃(x):= Ex[f(XτH
)] is

supermeanvalued.

Proof of Lemma 10.1.3.

a) and b) are straightforward.
c) Suppose fj is supermeanvalued for all j ∈ J . Then

fj(x) ≥ Ex[fj(Xτ )] ≥ Ex[f(Xτ )] for all j .

So f(x) = inf fj(x) ≥ Ex[f(Xτ )], as required.
d) Suppose fj is supermeanvalued, fj ↑ f . Then

f(x) ≥ fj(x) ≥ Ex[fj(Xτ )] for all j, so
f(x) ≥ lim

j→∞
Ex[fj(Xτ )] = Ex[f(Xτ )] ,

by monotone convergence. Hence f is supermeanvalued. If each fj is also
lower semicontinuous then if yk → x as k → ∞ we have

fj(x) ≤ lim
k→∞

fj(yk) ≤ lim
k→∞

f(yk) for each j .
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Hence, by letting j → ∞,

f(x) ≤ lim
k→∞

f(yk) .

e) If f is supermeanvalued we have by the Markov property when t > s

Ex[f(Xt)|Fs] = EXs [f(Xt−s)] ≤ f(Xs) , (10.1.9)

i.e. the process
ζt = f(Xt)

is a supermartingale w.r.t. the σ-algebras Ft generated by {Br; r ≤ t}.
(Appendix C). Therefore, by Doob’s optional sampling theorem (see Gih-
man and Skorohod (1975, Theorem 6 p. 11)) we have

Ex[f(Xσ)] ≥ Ex[f(Xτ )]

for all stopping times σ, τ with σ ≤ τ a.s. Qx.
f) Suppose f is supermeanvalued. By the strong Markov property (7.2.2) and

formula (7.2.6) we have, for any stopping time α,

Ex[f̃(Xα)] = Ex[EXα [f(XτH
)]] = Ex[Ex[θαf(XτH

)|Fα]]
= Ex[θαf(XτH

)] = Ex[f(Xτα
H

)] (10.1.10)

where τα
H = inf{t > α;Xt /∈ H}. Since τα

H ≥ τH we have by e)

Ex[f̃(Xα)] ≤ Ex[f(XτH
)] = f̃(x) ,

so f̃ is supermeanvalued. ��

The following concepts are fundamental:

Definition 10.1.4 Let h be a real measurable function on Rn. If f is a su-
perharmonic (supermeanvalued) function and f ≥ h we say that f is a super-
harmonic (supermeanvalued) majorant of h (w.r.t. Xt). The function

h(x) = inf
f

f(x); x ∈ Rn , (10.1.11)

the inf being taken over all supermeanvalued majorants f of h, is called the
least supermeanvalued majorant of h.

Similarly, suppose there exists a function ĥ such that

(i) ĥ is a superharmonic majorant of h and
(ii) if f is any other superharmonic majorant of h then ĥ ≤ f .
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Then ĥ is called the least superharmonic majorant of h.
Note that by Lemma 10.1.3 c) the function h is supermeanvalued if it is

measurable. Moreover, if h is lower semicontinuous, then ĥ exists and ĥ = h.
Later we will prove that if g is nonnegative (or lower bounded) and lower
semicontinuous, then ĝ exists and ĝ = g (Theorem 10.1.7).

Let g ≥ 0 and let f be a supermeanvalued majorant of g. Then if τ is a
stopping time

f(x) ≥ Ex[f(Xτ )] ≥ Ex[g(Xτ )] .

So
f(x) ≥ sup

τ
Ex[g(Xτ )] = g∗(x) .

Therefore we always have, if ĝ exists,

ĝ(x) ≥ g∗(x) for all x ∈ Rn . (10.1.12)

What is not so easy to see is that the converse inequality also holds, i.e. that
in fact

ĝ = g∗ . (10.1.13)

We will prove this after we have established a useful iterative procedure for
calculating ĝ. Before we give such a procedure let us introduce a concept which
is related to superharmonic functions:

Definition 10.1.5 A lower semicontinuous function f :Rn → [0,∞] is called
excessive (w.r.t. Xt) if

f(x) ≥ Ex[f(Xs)] for all s ≥ 0, x ∈ Rn . (10.1.14)

It is clear that a superharmonic function must be excessive. What is not
so obvious, is that the converse also holds:

Theorem 10.1.6 Let f :Rn → [0,∞]. Then f is excessive w.r.t. Xt if and
only if f is superharmonic w.r.t. Xt.

Proof in a special case. Let L be the differential operator associated to X
(given by the right hand side of (7.3.3)), so that L coincides with the generator
A of X on C2

0 . We only prove the theorem in the special case when f ∈ C2(Rn)
and Lf is bounded: Then by Dynkin’s formula we have

Ex[f(Xt)] = f(x) + Ex

[ t∫
0

Lf(Xr)dr

]
for all t ≥ 0 ,

so if f is excessive then Lf ≤ 0. Therefore, if τ is a stopping time we get

Ex[f(Xt∧τ )] ≤ f(x) for all t ≥ 0 .

Letting t → ∞ we see that f is superharmonic. ��
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A proof in the general case can be found in Dynkin (1965 II, p. 5).
The first iterative procedure for the least superharmonic majorant ĝ of g

is the following:

Theorem 10.1.7 (Construction of the least superharmonic majorant)

Let g = g0 be a nonnegative, lower semicontinuous function on Rn and define
inductively

gn(x) = sup
t∈Sn

Ex[gn−1(Xt)] , (10.1.15)

where Sn = {k ·2−n; 0 ≤ k ≤ 4n}, n = 1, 2, . . . . Then gn ↑ ĝ and ĝ is the least
superharmonic majorant of g. Moreover, ĝ = g.

Proof. Note that {gn} is increasing. Define ǧ(x) = lim
n→∞

gn(x). Then

ǧ(x) ≥ gn(x) ≥ Ex[gn−1(Xt)] for all n and all t ∈ Sn .

Hence
ǧ(x) ≥ lim

n→∞
Ex[gn−1(Xt)] = Ex[ǧ(Xt)] (10.1.16)

for all t ∈ S =
∞⋃

n=1
Sn .

Since ǧ is an increasing limit of lower semicontinuous functions
(Lemma 8.1.4) ǧ is lower semicontinuous. Fix t ∈ R and choose tk ∈ S such
that tk → t. Then by (10.1.16), the Fatou lemma and lower semicontinuity

ǧ(x) ≥ lim
k→∞

Ex[ǧ(Xtk
)] ≥ Ex[ lim

k→∞
ǧ(Xtk

)] ≥ Ex[ǧ(Xt)] .

So ǧ is an excessive function. Therefore ǧ is superharmonic by Theorem 10.1.6
and hence ǧ is a superharmonic majorant of g. On the other hand, if f is any
supermeanvalued majorant of g, then clearly by induction

f(x) ≥ gn(x) for all n

and so f(x) ≥ ǧ(x). This proves that ǧ is the least supermeanvalued majorant
g of g. So ǧ = ĝ. ��

It is a consequence of Theorem 10.1.7 that we may replace the finite sets
Sn by the whole interval [0,∞]:

Corollary 10.1.8 Define h0 = g and inductively

hn(x) = sup
t≥0

Ex[hn−1(Xt)] ; n = 1, 2, . . .

Then hn ↑ ĝ.
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Proof. Let h = lim hn. Then clearly h ≥ ǧ = ĝ. On the other hand, since ĝ is
excessive we have

ĝ(x) ≥ sup
t≥0

Ex[ĝ(Xt)].

So by induction
ĝ ≥ hn for all n .

Thus ĝ = h and the proof is complete.

We are now ready for our first main result on the optimal stopping prob-
lem. The following result is basically due to Dynkin (1963) (and, in a martin-
gale context, Snell (1952)):

Theorem 10.1.9 (Existence theorem for optimal stopping)
Let g∗ denote the optimal reward and ĝ the least superharmonic majorant of
a continuous reward function g ≥ 0.

a) Then
g∗(x) = ĝ(x) . (10.1.17)

b) For ε > 0 let
Dε = {x; g(x) < ĝ(x) − ε} . (10.1.18)

Suppose g is bounded. Then stopping at the first time τε of exit from Dε

is close to being optimal, in the sense that

|g∗(x) − Ex[g(Xτε
)]| ≤ 2ε (10.1.19)

for all x.
c) For arbitrary continuous g ≥ 0 let

D = {x; g(x) < g∗(x)} (the continuation region) . (10.1.20)

For N = 1, 2, . . . define g
N

= g ∧ N , DN = {x; g
N

(x) < ĝ
N

(x)} and
σN = τDN

. Then DN ⊂ DN+1, DN ⊂ D ∩ g−1([0, N)), D =
⋃
N

DN . If

σN < ∞ a.s. Qx for all N then

g∗(x) = lim
N→∞

Ex[g(XσN
)] . (10.1.21)

d) In particular, if τD < ∞ a.s. Qx and the family {g(XσN
)}N is uniformly

integrable w.r.t. Qx (Appendix C), then

g∗(x) = Ex[g(XτD
)]

and τ∗ = τD is an optimal stopping time.
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Proof. First assume that g is bounded and define

g̃ε(x) = Ex[ĝ(Xτε
)] for ε > 0 . (10.1.22)

Then g̃ε is supermeanvalued by Lemma 10.1.3 f). We claim that

g(x) ≤ g̃ε(x) + ε for all x . (10.1.23)

To see this suppose
β: = sup

x
{g(x) − g̃ε(x)} > ε . (10.1.24)

Then for all η > 0 we can find x0 such that

g(x0) − g̃ε(x0) ≥ β − η . (10.1.25)

On the other hand, since g̃ε + β is a supermeanvalued majorant of g, we have

ĝ(x0) ≤ g̃ε(x0) + β . (10.1.26)

Combining (10.1.25) and (10.1.26) we get

ĝ(x0) ≤ g(x0) + η . (10.1.27)
Consider the two possible cases:

Case 1: τε > 0 a.s. Qx0 . Then by (10.1.27) and the definition of Dε

g(x0) + η ≥ ĝ(x0) ≥ Ex0 [ĝ(Xt∧τε
)] ≥ Ex0 [(g(Xt) + ε)X{t<τε} ] for all t > 0 .

Hence by the Fatou lemma and lower semicontinuity of g

g(x0) + η ≥ lim
t→0

Ex0 [(g(Xt) + ε)X{t<τε}]

≥ Ex0 [ lim
t→0

(g(Xt) + ε)X{t<τε}] ≥ g(x0) + ε .

This is a contradiction if η < ε.

Case 2: τε = 0 a.s. Qx0 . Then g̃ε(x0) = ĝ(x0), so g(x0) ≤ g̃ε(x0), contradict-
ing (10.1.25) for η < β.

Therefore (10.1.24) leads to a contradiction. Thus (10.1.23) is proved and
we conclude that g̃ε + ε is a supermeanvalued majorant of g. Therefore

ĝ ≤ g̃ε + ε = E[ĝ(Xτε
)] + ε ≤ E[(g + ε)(Xτε

)] + ε ≤ g∗ + 2ε (10.1.28)

and since ε was arbitrary we have by (10.1.12)

ĝ = g∗ .
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If g is not bounded, let

g
N

= min(N, g) , N = 1, 2, . . .

and as before let ĝ
N

be the least superharmonic majorant of gN . Then

g∗ ≥ g∗
N

= ĝ
N
↑ h as N → ∞ , where h ≥ ĝ

since h is a superharmonic majorant of g. Thus h = ĝ = g∗ and this proves
(10.1.17) for general g. From (10.1.28) and (10.1.17) we obtain (10.1.19).

Finally, to obtain c) and d) let us again first assume that g is bounded.
Then, since

τε ↑ τD as ε ↓ 0

and τD < ∞ a.s we have

Ex[g(Xτε
)] → Ex[g(XτD

)] as ε ↓ 0 , (10.1.29)

and hence by (10.1.28) and (10.1.17)

g∗(x) = Ex[g(XτD
)] if g is bounded . (10.1.30)

Finally, if g is not bounded define

h = lim
N→∞

ĝ
N

.

Then h is superharmonic by Lemma 10.1.3 d) and since ĝ
N
≤ ĝ for all N we

have h ≤ ĝ. On the other hand g
N

≤ ĝ
N

≤ h for all N and therefore g ≤ h.
Since ĝ is the least superharmonic majorant of g we conclude that

h = ĝ . (10.1.31)

Hence by (10.1.30), (10.1.31) we obtain (10.1.21):

g∗(x) = lim
N→∞

ĝ
N

(x) = lim
N→∞

Ex[g
N

(XσN
)] ≤ lim

N→∞
Ex[g(XσN

)] ≤ g∗(x) .

Note that ĝ
N
≤N everywhere, so if g

N
(x)<ĝ

N
(x) then g

N
(x)<N and there-

fore g(x) = g
N

(x) < ĝ
N

(x) ≤ ĝ(x) and g
N+1(x) = g

N
(x) < ĝ

N
(x) ≤ ĝ

N+1(x).
Hence DN ⊂ D∩{x; g(x) < N} and DN ⊂ DN+1 for all N . So by (10.1.31) we
conclude that D is the increasing union of the sets DN ; N = 1, 2, . . . Therefore

τD = lim
N→∞

σN .

So by (10.1.21) and uniform integrability we have

ĝ(x) = lim
N→∞

ĝ
N

(x) = lim
N→∞

Ex[g
N

(XσN
)]

= Ex[ lim
N→∞

g
N

(XσN
)] = Ex[g(XτD

)] ,

and the proof of Theorem 10.1.9 is complete. ��
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Remarks.

1) Note that the sets D,Dε and DN are open, since ĝ = g∗ is lower semicon-
tinuous and g is continuous.

2) By inspecting the proof of a) we see that (10.1.17) holds under the weaker
assumption that g ≥ 0 is lower semicontinuous.

The following consequence of Theorem 10.1.9 is often useful:

Corollary 10.1.10 Suppose there exists a Borel set H such that

g̃
H

(x):= Ex[g(XτH
)]

is a supermeanvalued majorant of g. Then

g∗(x) = g̃
H

(x) , so τ∗ = τH is optimal .

Proof. If g̃
H

is a supermeanvalued majorant of g then clearly

g(x) ≤ g̃
H

(x) .

On the other hand we of course have

g̃
H

(x) ≤ sup
τ

Ex[g(Xτ )] = g∗(x) ,

so g∗ = g̃
H

by Theorem 10.1.7 and Theorem 10.1.9 a). ��
Corollary 10.1.11 Let

D = {x; g(x) < ĝ(x)}

and put
g̃(x) = g̃

D
(x) = Ex[g(XτD

)] .

If g̃ ≥ g then g̃ = g∗.

Proof. Since XτD
/∈ D we have g(XτD

) ≥ ĝ(XτD
) and therefore g(XτD

) =
ĝ(XτD

), a.s. Qx. So g̃(x) = Ex[ĝ(XτD
)] is supermeanvalued since ĝ is, and the

result follows from Corollary 10.1.10. ��
Theorem 10.1.9 gives a sufficient condition for the existence of an optimal

stopping time τ∗. Unfortunately, τ∗ need not exist in general. For example, if

Xt = t for t ≥ 0 (deterministic)

and

g(ξ) =
ξ2

1 + ξ2
; ξ ∈ R

then g∗(x) = 1, but there is no stopping time τ such that

Ex[g(Xτ )] = 1 .

However, we can prove that if an optimal stopping time τ∗ exists, then the
stopping time given in Theorem 10.1.9 is optimal:



10.1 The Time-Homogeneous Case 217

Theorem 10.1.12 (Uniqueness theorem for optimal stopping)
Define as before

D = {x; g(x) < g∗(x)} ⊂ Rn .

Suppose there exists an optimal stopping time τ∗ = τ∗(x, ω) for the problem
(10.1.2) for all x. Then

τ∗ ≥ τD for all x ∈ D (10.1.32)

and
g∗(x) = Ex[g(XτD

)] for all x ∈ Rn . (10.1.33)

Hence τD is an optimal stopping time for the problem (10.1.2).

Proof. Choose x ∈ D. Let τ be an Ft-stopping time and assume
Qx[τ < τD] > 0. Since g(Xτ ) < g∗(Xτ ) if τ < τD and g ≤ g∗ always, we have

Ex[g(Xτ )] =
∫

τ<τD

g(Xτ )dQx +
∫

τ≥τD

g(Xτ )dQx

<

∫
τ<τD

g∗(Xτ )dQx +
∫

τ≥τD

g∗(Xτ )dQx = Ex[g∗(Xτ )] ≤ g∗(x) ,

since g∗ is superharmonic. This proves (10.1.32).
To obtain (10.1.33) we first choose x ∈ D. Since ĝ is superharmonic we

have by (10.1.32) and Lemma 10.1.3 e)

g∗(x) = Ex[g(Xτ∗)] ≤ Ex[ĝ(Xτ∗)] ≤ Ex[ĝ(XτD
)]

= Ex[g(XτD
)] ≤ g∗(x) , which proves (10.1.33) for x ∈ D .

Next, choose x ∈ ∂D to be an irregular boundary point of D. Then τD > 0
a.s. Qx. Let {αk} be a sequence of stopping times such that 0 < αk < τD and
αk → 0 a.s. Qx, as k → ∞. Then Xαk

∈ D so by (10.1.32), (7.2.6) and the
strong Markov property (7.2.2)

Ex[g(XτD
)]=Ex[θαk

g(XτD
)]=Ex[EXαk [g(XτD

)]]=Ex[g∗(Xαk
)] for all k .

Hence by lower semicontinuity and the Fatou lemma

g∗(x) ≤ Ex[ lim
k→∞

g∗(Xαk
)] ≤ lim

k→∞
Ex[g∗(Xαk

)] = Ex[g(XτD
)] .

Finally, if x ∈ ∂D is a regular boundary point of D or if x �∈ D we have τD = 0
a.s. Qx and hence g∗(x) = Ex[g(XτD

)]. ��

Remark. The following observation is sometimes useful:
Let A be the characteristic operator of X. Assume g ∈ C2(Rn). Define

U = {x;Ag(x) > 0} . (10.1.34)
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Then, with D as before, (10.1.20),

U ⊂ D . (10.1.35)

Consequently, from (10.1.32) we conclude that it is never optimal to stop the
process before it exits from U . But there may be cases when U �= D, so that
it is optimal to proceed beyond U before stopping. (This is in fact the typical
situation.) See e.g. Example 10.2.2.

To prove (10.1.35) choose x ∈ U and let τ0 be the first exit time from a
bounded open set W � x, W ⊂ U . Then by Dynkin’s formula, for u > 0

Ex[g(Xτ0∧u)] = g(x) + Ex

[ τ0∧u∫
0

Ag(Xs)ds

]
> g(x)

so g(x) < g∗(x) and therefore x ∈ D.

Example 10.1.13 Let Xt = Bt be a Brownian motion in R2. Using that Bt

is recurrent in R2 (Example 7.4.2) one can show that the only (nonnegative)
superharmonic functions in R2 are the constants (Exercise 10.2).

Therefore

g∗(x) = ‖g‖∞: = sup{g(y); y ∈ R2} for all x .

So if g is unbounded then g∗ = ∞ and no optimal stopping time exists.
Assume therefore that g is bounded. The continuation region is

D = {x; g(x) < ‖g‖∞} ,

so if ∂D is a polar set i.e. cap (∂D) = 0, where cap denotes the logarithmic
capacity (see Port and Stone (1979)), then τD = ∞ a.s. and no optimal
stopping exists. On the other hand, if cap(∂D) > 0 then τD < ∞ a.s. and

Ex[g(BτD
)] = ‖g‖∞ = g∗(x) ,

so τ∗ = τD is optimal.

Example 10.1.14 The situation is different in Rn for n ≥ 3.

a) To illustrate this let Xt = Bt be Brownian motion in R3 and let the reward
function be

g(ξ) =
{
|ξ|−1 for |ξ| ≥ 1
1 for |ξ| < 1

; ξ ∈ R3 .

Then g is superharmonic (in the classical sense) in R3, so g∗ = g every-
where and the best policy is to stop immediately, no matter where the
starting point is.
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b) Let us change g to

h(x) =
{
|x|−α for |x| ≥ 1
1 for |x| < 1

for some α > 1. Let H = {x; |x| > 1} and define

h̃(x) = Ex[h(BτH
)] = P x[τH < ∞] .

Then by Example 7.4.2

h̃(x) =
{

1 if |x| ≤ 1
|x|−1 if |x| > 1 ,

i.e. h̃ = g (defined in a)), which is a superharmonic majorant of h. There-
fore by Corollary 10.1.10

h∗ = h̃ = g ,

H = D and τ∗ = τH is an optimal stopping time.

Reward Functions Assuming Negative Values

The results we have obtained so far regarding the problem (10.1.2)–(10.1.3)
are based on the assumptions (10.1.1). To some extent these assumptions can
be relaxed, although neither can be removed completely. For example, we have
noted that Theorem 10.1.9 a) still holds if g ≥ 0 is only assumed to be lower
semicontinuous.

The nonnegativity assumption on g can also be relaxed. First of all, note
that if g is bounded below, say g ≥ −M where M > 0 is a constant, then we
can put

g1 = g + M ≥ 0

and apply the theory to g1. Since

Ex[g(Xτ )] = Ex[g1(Xτ )] − M if τ < ∞ a.s. ,

we have g∗(x) = g∗1(x) − M , so the problem can be reduced to the optimal
stopping problem for the nonnegative function g1. (See Exercise 10.4.)

If g is not bounded below, then problem (10.1.2)–(10.1.3) is not well-
defined unless

Ex[g−(Xτ )] < ∞ for all τ (10.1.36)

where
g−(x) = −min(g(x), 0) .

If we assume that g satisfies the stronger condition that

the family {g−(Xτ ); τ stopping time} is uniformly integrable (10.1.37)

then basically all the theory from the nonnegative case carries over. We refer to
the reader to Shiryaev (1978) for more information. See also Theorem 10.4.1.
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10.2 The Time-Inhomogeneous Case

Let us now consider the case when the reward function g depends on both
time and space, i.e.

g = g(t, x):R × Rn → [0,∞) , g is continuous . (10.2.1)

Then the problem is to find g0(x) and τ∗ such that

g0(x) = sup
τ

Ex[g(τ,Xτ )] = Ex[g(τ∗,Xτ∗)] . (10.2.2)

To reduce this case to the original case (10.1.2)–(10.1.3) we proceed as follows:
Suppose the Itô diffusion Xt = Xx

t has the form

dXt = b(Xt)dt + σ(Xt)dBt ; t ≥ 0 , X0 = x

where b:Rn → Rn and σ:Rn → Rn×m are given functions satisfying the
conditions of Theorem 5.2.1 and Bt is m-dimensional Brownian motion. Define
the Itô diffusion Yt = Y

(s,x)
t in Rn+1 by

Yt =
[

s + t
Xx

t

]
; t ≥ 0 . (10.2.3)

Then

dYt =
[

1
b(Xt)

]
dt +

[
0

σ(Xt)

]
dBt = b̂(Yt)dt + σ̂(Yt)dBt (10.2.4)

where

b̂(η) = b̂(t, ξ) =
[

1
b(ξ)

]
∈ Rn+1 , σ̂(η) = σ̂(t, ξ) =

⎡
⎣ 0 · · · 0

- - - -
σ(ξ)

⎤
⎦∈ R(n+1)×m ,

with η = (t, ξ) ∈ R × Rn.
So Yt is an Itô diffusion starting at y = (s, x). Let Ry = R(s,x) denote the

probability law of {Yt} and let Ey = E(s,x) denote the expectation w.r.t. Ry.
In terms of Yt the problem (10.2.2) can be written

g0(x) = g∗(0, x) = sup
τ

E(0,x)[g(Yτ )] = E(0,x)[g(Yτ∗)] (10.2.5)

which is a special case of the problem

g∗(s, x) = sup
τ

E(s,x)[g(Yτ )] = E(s,x)[g(Yτ∗)] , (10.2.6)

which is of the form (10.1.2)–(10.1.3) with Xt replaced by Yt.
Note that the characteristic operator Â of Yt is given by

Âφ(s, x) =
∂φ

∂s
(s, x) + Aφ(s, x) ; φ ∈ C2(R × Rn) (10.2.7)

where A is the characteristic operator of Xt (working on the x-variables).
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Example 10.2.1 Let Xt = Bt be 1-dimensional Brownian motion and let
the reward function be

g(t, ξ) = e−αt+βξ ; ξ ∈ R

where α, β ≥ 0 are constants. The characteristic operator Â of Y s,x
t =

[
s+t
B

x
t

]
is given by

Âf(s, x) =
∂f

∂s
+

1
2
· ∂2f

∂x2
; f ∈ C2 .

Thus
Ag = (−α + 1

2β2)g ,

so if β2 ≤ 2α then g∗ = g and the best policy is to stop immediately. If
β2 > 2α we have

U : = {(s, x); Âg(s, x) > 0} = R2

and therefore by (10.1.35) D = R2 and hence τ∗ does not exist. If β2 > 2α
we can use Theorem 10.1.7 to prove that g∗ = ∞:

sup
t∈Sn

E(s,x)[g(Yt)] = sup
t∈Sn

E[e−α(s+t)+βBx
t ]

= sup
t∈Sn

[e−α(s+t) · eβx+ 1
2 β2t] (see the remark following (5.1.6))

= sup
t∈Sn

g(s, x) · e(−α+ 1
2 β2)t = g(s, x) · exp((−α + 1

2β2)2n) ,

so gn(s, x) → ∞ as n → ∞.
Hence no optimal stopping exists in this case.

Example 10.2.2 (When is the right time to sell the stocks?
(Part 1)) We now return to a specified version of Problem 5 in the introduc-
tion:

Suppose the price Xt at time t of a person’s assets (e.g. a house, stocks,
oil ...) varies according to a stochastic differential equation of the form

dXt = rXtdt + αXtdBt,X0 = x > 0 ,

where Bt is 1-dimensional Brownian motion and r, α are known constants.
(The problem of estimating α and r from a series of observations can be
approached using the quadratic variation 〈X,X〉t of the process {Xt} (Ex-
ercise 4.7) and filtering theory (Example 6.2.11), respectively. Suppose that
connected to the sale of the assets there is a fixed fee/tax or transaction cost
a > 0. Then if the person decides to sell at time t the discounted net of the
sale is

e−ρt(Xt − a) ,

where ρ > 0 is given discounting factor. The problem is to find a stopping
time τ that maximizes

E(s,x)[e−ρτ (Xτ − a)] = E(s,x)[g(τ,Xτ )] ,
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where
g(t, ξ) = e−ρt(ξ − a) .

The characteristic operator Â of the process Yt = (s + t,Xt) is given by

Âf(s, x) =
∂f

∂s
+ rx

∂f

∂x
+ 1

2α2x2 ∂2f

∂x2
; f ∈ C2(R2) .

Hence Âg(s, x) = −ρe−ρs(x − a) + rxe−ρs = e−ρs((r − ρ)x + ρa). So

U : = {(s, x); Âg(s, x) > 0} =
{

R × R+ if r ≥ ρ
{(s, x);x < aρ

ρ−r} if r < ρ .

So if r ≥ ρ we have U = D = R × R+ so τ∗ does not exist. If r > ρ then
g∗ = ∞ while if r = ρ then

g∗(s, x) = xe−ρs .

(The proofs of these statements are left as Exercise 10.5.)

It remains to examine the case r < ρ. (If we regard ρ as the sum of
interest rate, inflation and tax etc., this is not an unreasonable assumption in
applications.) First we establish that the region D must be invariant w.r.t. t,
in the sense that

D + (t0, 0) = D for all t0 . (10.2.8)

To prove (10.2.8) consider

D + (t0, 0) = {(t + t0, x); (t, x) ∈ D} = {(s, x); (s − t0, x) ∈ D}
= {(s, x); g(s − t0, x) < g∗(s − t0, x)} = {(s, x); eρt0g(s, x) < eρt0g∗(s, x)}
= {(s, x); g(s, x) < g∗(s, x)} = D ,

where we have used that

g∗(s − t0, x) = sup
τ

E(s−t0,x)[e−ρτ (Xτ − a)] = sup
τ

E[e−ρ(τ+(s−t0))(Xx
τ − a)]

= eρt0 sup
τ

E[e−ρ(τ+s)(Xx
τ − a)] = eρt0g∗(s, x) .

Therefore the connected component of D that contains U must have the form

D(x0) = {(t, x); 0 < x < x0} for some x0 ≥ aρ
ρ−r .

Note that D cannot have any other components, for if V is a component of
D disjoint from U then Âg < 0 in V and so, if y ∈ V ,

Ey[g(Yτ )] = g(y) + Ey

[ τ∫
0

Âg(Yt)dt

]
< g(y)
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for all exit times τ bounded by the exit time from an x-bounded strip in V .
From this we conclude by Theorem 10.1.9 c) that g∗(y) = g(y), which implies
V = ∅.

Put τ(x0) = τD(x0) and let us compute

g̃(s, x) = g̃x0(s, x) = E(s,x)[g(Yτ(x0))] . (10.2.9)

From Chapter 9 we know that f = g̃ is the (bounded) solution of the boundary
value problem

∂f

∂s
+ rx

∂f

∂x
+ 1

2α2x2 ∂2f

∂x2
= 0 for 0 < x < x0

f(s, x0) = e−ρs(x0 − a) .

⎫⎬
⎭ (10.2.10)

(Note that R×{0} does not contain any regular boundary points of D w.r.t.
Yt = (s + t,Xt).)

If we try a solution of (10.2.10) of the form

f(s, x) = e−ρsφ(x)

we get the following 1-dimensional problem

−ρφ + rxφ′(x) + 1
2α2x2φ′′(x) = 0 for 0 < x < x0

φ(x0) = x0 − a .

}
(10.2.11)

The general solution φ of (10.2.11) is

φ(x) = C1x
γ1 + C2x

γ2 ,

where C1, C2 are arbitrary constants and

γi = α−2
[

1
2α2 − r ±

√
(r − 1

2α2)2 + 2ρα2
]

(i = 1, 2) , γ2 < 0 < γ1 .

Since φ(x) is bounded as x → 0 we must have C2 = 0 and the boundary
requirement φ(x0) = x0 − a gives C1 = x−γ1

0 (x0 − a). We conclude that the
bounded solution f of (10.2.10) is

g̃x0(s, x) = f(s, x) = e−ρs(x0 − a)
(

x

x0

)γ1

. (10.2.12)

If we fix (s, x) then the value of x0 which maximizes g̃x0(s, x) is easily seen to
be given by

x0 = xmax =
aγ1

γ1 − 1
(10.2.13)

(note that γ1 > 1 if and only if r < ρ).
Thus we have arrived at the candidate g̃xmax(s, x) for g∗(s, x) =

sup
τ

E(s,x)[e−ρτ (Xτ − a)]. To verify that we indeed have g̃xmax = g∗ it would
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suffice to prove that g̃xmax is a supermeanvalued majorant of g (see Corol-
lary 10.1.10). This can be done, but we do not give the details here, since this
problem can be solved more easily by Theorem 10.4.1 (see Example 10.4.2).

The conclusion is therefore that one should sell the assets the first time
the price of them reaches the value xmax = aγ1

γ1−1 . The expected discounted
profit obtained from this strategy is

g∗(s, x) = g̃xmax(s, x) = e−ρs

(
γ1 − 1

a

)γ1−1(
x

γ1

)γ1

.

Remark. The reader is invited to check that the value x0 = xmax is the only
value of x0 which makes the function

x → g̃x0(s, x) (given by (10.2.9))

continuously differentiable at x0. This is not a coincidence. In fact, it illustrates
a general phenomenon which is known as the high contact (or smooth fit)
principle. See Samuelson (1965), McKean (1965), Bather (1970) and Shiryaev
(1978). This principle is the basis of the fundamental connection between opti-
mal stopping and variational inequalities. Later in this chapter we will discuss
some aspects of this connection. More information can be found in Bensoussan
and Lions (1978) and Friedman (1976). See also Brekke and Øksendal (1991).

10.3 Optimal Stopping Problems Involving an Integral

Let
dYt = b(Yt)dt + σ(Yt)dBt , Y0 = y (10.3.1)

be an Itô diffusion in Rk. Let g:Rk → [0,∞) be continuous and let f :Rk →
[0,∞) be Lipschitz continuous with at most linear growth. (These conditions
can be relaxed. See (10.1.37) and Theorem 10.4.1.) Consider the optimal stop-
ping problem: Find Φ(y) and τ∗ such that

Φ(y) = sup
τ

Ey

[ τ∫
0

f(Yt)dt + g(Yτ )
]

= Ey

[ τ∗∫
0

f(Yt)dt + g(Yτ∗)
]

. (10.3.2)

This problem can be reduced to our original problem (10.1.2)–(10.1.3) by
proceeding as follows: Define the Itô diffusion Zt in Rk × R = Rk+1 by

dZt =
[

dYt

dWt

]
: =

[
b(Yt)
f(Yt)

]
dt +

[
σ(Yt)

0

]
dBt ; Z0 = z = (y, w) . (10.3.3)

Then we see that

Φ(y) = sup
τ

E(y,0)[Wτ + g(Yτ )] = sup
τ

E(y,0)[g̃(Zτ )]
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with

g̃(z):= g̃(y, w):= g(y) + w ; z = (y, w) ∈ Rk × R . (10.3.4)

This is again a problem of the type (10.1.2)–(10.1.3) with Xt replaced by
Zt and g replaced by g̃. Note that the connection between the characteristic
operators AY of Yt and AZ of Zt is given by

AZφ(z) = AZφ(y, w) = AY φ(y, w) + f(y)
∂φ

∂w
, φ ∈ C2(Rk+1) . (10.3.5)

In particular, if g̃(y, w) = g(y) + w ∈ C2(Rk+1) then

AZ g̃(y, w) = AY g(y) + f(y) . (10.3.6)

Hence, in this general case the domain U of (10.1.34) gets the form

U = {y;AY g(y) + f(y) > 0} . (10.3.7)

Example 10.3.1 Consider the optimal stopping problem

Φ(x) = sup
τ

Ex

[ τ∫
0

θe−ρtXtdt + e−ρτXτ

]
,

where
dXt = αXtdt + βXtdBt ; X0 = x > 0

is geometric Brownian motion (α, β, θ constants, θ > 0). We put

dYt =
[

dt
dXt

]
=

[
1

αXt

]
dt +

[
0

βXt

]
dBt ; Y0 = (s, x)

and

dZt =
[

dYt

dWt

]
=

⎡
⎣ 1

αXt

θe−ρtXt

⎤
⎦ dt +

⎡
⎣ 0

βXt

0

⎤
⎦ dBt ; Z0 = (s, x, w) .

Then with
f(y) = f(s, x) = θe−ρsx , g(y) = e−ρsx

and
g̃(s, x, w) = g(s, x) + w = e−ρsx + w

we have

AZ g̃ =
∂g̃

∂s
+ αx

∂g̃

∂x
+ 1

2β2x2 ∂2g̃

∂x2
+ θe−ρsx

∂g̃

∂w
= (−ρ + α + θ)e−ρsx .

Hence
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U = {(s, x, w);AZ g̃(s, x, w) > 0} =
{

R3 if ρ < α + θ
∅ if ρ ≥ α + θ .

From this we conclude (see Exercise 10.6):

If ρ ≥ α + θ then τ∗ = 0
and Φ(s, x, w) = g̃(s, x, w) = e−ρsx + w . (10.3.8)

If α < ρ < α + θ then τ∗ does not exist
and Φ(s, x, w)= θx

ρ−αe−ρs+w . (10.3.9)

If ρ ≤ α then τ∗ does not exist and Φ = ∞ . (10.3.10)

10.4 Connection with Variational Inequalities

The ‘high contact principle’ says, roughly, that – under certain conditions –
the solution g∗ of (10.1.2)–(10.1.3) is a C1 function on Rn if g ∈ C2(Rn).
This is a useful information which can help us to determine g∗. Indeed, this
principle is so useful that it is frequently applied in the literature also in cases
where its validity has not been rigorously proved.

Fortunately it turns out to be easy to prove a sufficiency condition of
high contact type, i.e. a kind of verification theorem for optimal stopping,
which makes it easy to verify that a given candidate for g∗(that we may have
found by guessing or intuition) is actually equal to g∗. The result below is a
simplified variant of a result in Brekke and Øksendal (1991):

In the following we fix a domain G in Rk and we let

dYt = b(Yt)dt + σ(Yt)dBt ; Y0 = y (10.4.1)

be an Itô diffusion in Rk. Define

τG = τG(y, ω) = inf{t > 0;Yt(ω) /∈ V } . (10.4.2)

Let f :Rk → R, g:Rk → R be continuous functions satisfying

(a) Ey[

τG∫
0

f−(Yt)dt] < ∞ for all y ∈ Rk (10.4.3)

and

(b) the family {g−(Yτ ); τ stopping time, τ ≤ τG} is uniformly integrable
w.r.t. Ry (the probability law of Yt), for all y ∈ Rk. (10.4.4)

Let T denote the set of all stopping times τ ≤ τG. Consider the following
problem: Find Φ(y) and τ∗ ∈ T such that

Φ(y) = sup
τ∈T

Jτ (y) = Jτ∗
(y) , (10.4.5)
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where

Jτ (y) = Ey

[ τ∫
0

f(Yt)dt + g(Yτ )
]

for τ ∈ T .

Note that since J0(y) = g(y) we have

Φ(y) ≥ g(y) for all y ∈ G . (10.4.6)

We can now formulate the variational inequalities. As usual we let

L = LY =
k∑

i=1

bi(y)
∂

∂yi
+ 1

2

k∑
i,j=1

(σσT )ij(y)
∂2

∂yi∂yj

be the partial differential operator which coincides with the generator AY of
Yt on C2

0 (Rk).

Theorem 10.4.1 (Variational inequalities for optimal stopping)
a) Suppose we can find a function φ:G → R such that

(i) φ ∈ C1(G) ∩ C(G )
(ii) φ ≥ g on G lim

t→τ−
G

φ(Yt) = g(YτG
)X{τG<∞} a.s.

Define
D = {x ∈ G;φ(x) > g(x)} .

Suppose Yt spends 0 time on ∂D a.s., i.e.

(iii) Ey
[ τG∫

0

X∂D(Yt)dt
]

= 0 for all y ∈ G

and suppose that
(iv) ∂D is a Lipschitz surface, i.e. ∂D is locally the graph of a function

h:Rk−1 → R such that there exists K < ∞ with

|h(x) − h(y)| ≤ K|x − y| for all x, y .

Moreover, suppose the following:
(v) φ ∈ C2(G\∂D) and the second order derivatives of φ are locally bounded

near ∂D
(vi) Lφ + f ≤ 0 on G \ D.

Then
φ(y) ≥ Φ(y) for all y ∈ G.

b) Suppose, in addition to the above, that

(vii) Lφ + f = 0 on D
(viii) τD: = inf{t > 0;Yt /∈ D} < ∞ a.s. Ry for all y ∈ G

and
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(ix) the family {φ(Yτ ); τ ≤ τD, τ ∈ T } is uniformly integrable w.r.t. Ry, for
all y ∈ G.

Then

φ(y) = Φ(y) = sup
τ∈T

Ey

[ τ∫
0

f(Yt)dt + g(Yτ )
]

; y ∈ G (10.4.7)

and
τ∗ = τD (10.4.8)

is an optimal stopping time for this problem.

Proof. By (i), (iv) and (v) we can find a sequence of functions
φj ∈ C2(G) ∩ C(G ), j = 1, 2, . . ., such that

(a) φj → φ uniformly on compact subsets of G, as j → ∞
(b) Lφj → Lφ uniformly on compact subsets of G \ ∂D, as j → ∞
(c) {Lφj}∞j=1 is locally bounded on G.

(See Appendix D).

Let
{
GR

}∞
R=1

be a sequence of bounded open sets such that G =
∞⋃

R=1

GR.

Put TR = min(R, inf {t > 0;Yt �∈ GR}) and let τ ≤ τG be a stopping time.
Let y ∈ G. Then by Dynkin’s formula

Ey[φj(Yτ∧TR
)] = φj(y) + Ey

[ τ∧TR∫
0

Lφj(Yt)dt

]
(10.4.9)

Hence by (a), (b), (c) and (iii) and the bounded a.e. convergence

φ(y) = lim
j→∞

Ey

[ τ∧TR∫
0

−Lφj(Yt)dt + φj(Yτ∧TR
)
]

= Ey

[ τ∧TR∫
0

−Lφ(Yt)dt + φ(Yτ∧TR
)
]

. (10.4.10)

Therefore, by (ii), (iii) and (vi),

φ(y) ≥ Ey

[ τ∧TR∫
0

f(Yt)dt + g(Yτ∧TR
)
]

.

Hence by the Fatou lemma and (10.4.3), (10.4.4)

φ(y) ≥ lim
R→∞

Ey

[ τ∧TR∫
0

f(Yt)dt + g(Yτ∧TR
)
]
≥ Ey

[ τ∫
0

f(Yt)dt + g(Yτ )
]

.



10.4 Connection with Variational Inequalities 229

Since τ ≤ τG was arbitrary, we conclude that

φ(y) ≥ Φ(y) for all y ∈ G , (10.4.11)

which proves a).
We proceed to prove b): If y /∈ D then φ(y) = g(y) ≤ Φ(y) so by (10.4.11)

we have

φ(y) = Φ(y) and τ̂ = τ̂(y, ω):= 0 is optimal for y /∈ D . (10.4.12)

Next, suppose y ∈ D. Let {Dk}∞k=1 be an increasing sequence of open sets Dk

such that Dk⊂D, Dk is compact and D=
∞⋃

k=1

Dk. Put τk =inf{t>0;Yt �∈Dk},
k = 1, 2, . . . By Dynkin’s formula we have for y ∈ Dk,

φ(y) = lim
j→∞

φj(y) = lim
j→∞

Ey

[ τk∧TR∫
0

−Lφj(Yt)dt + φj(Yτk∧TR
)
]

= Ey

[ τk∧TR∫
0

−Lφ(Yt)dt + φ(Yτk∧TR
)
]
=Ey

[ τk∧TR∫
0

f(Yt)dt + φ(Yτk∧TR
)
]

So by uniform integrability and (ii), (vii), (viii) we get

φ(y) = lim
R,k→∞

Ey

[ τk∧TR∫
0

f(Yt)dt + φ(Yτk∧TR
)
]

= Ey

[ τD∫
0

f(Yt)dt + g(YτD
)
]

= JτD (y) ≤ Φ(y) . (10.4.13)

Combining (10.4.11) and (10.4.13) we get

φ(y) ≥ Φ(y) ≥ JτD (y) = φ(y)

so

φ(y) = Φ(y) and τ̂(y, ω):= τD is optimal when y ∈ D . (10.4.14)

From (10.4.12) and (10.4.14) we conclude that

φ(y) = Φ(y) for all y ∈ G .

Moreover, the stopping time τ̂ defined by

τ̂(y, ω) =
{

0 for y /∈ D
τD for y ∈ D

is optimal. By Theorem 10.1.12 we conclude that τD is optimal also. ��
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Example 10.4.2 (When is the right time to sell the stocks?
(Part 2))
To illustrate Theorem 10.4.1 let us apply it to reconsider Example 10.2.2:

Rather than proving (10.2.8) and the following properties of D, we now
simply guess/assume that D has the form

D = {(s, x); 0 < x < x0}
for some x0 > 0, which is intuitively reasonable. Then we solve (10.2.11) for
arbitrary x0 and we arrive at the following candidate φ for g∗:

φ(s, x) =
{

e−ρs(x0 − a)( x
x0

)γ1 for 0 < x < x0

e−ρs(x − a) for x ≥ x0 .

The requirement that φ ∈ C1 (Theorem 10.4.1 (i)) gives the value (10.2.13)
for x0. It is clear that φ ∈ C2 outside ∂D and by construction Lφ = 0 on
D. Moreover, conditions (iii), (iv), (viii) and (ix) clearly hold. It remains to
verify that

(ii) φ(s, x)>g(s, x) for 0<x<x0, i.e. φ(s, x)>e−ρs(x − a) for 0<x<x0

and
(v) Lφ(s, x) ≤ 0 for x > x0, i.e. Lg(s, x) ≤ 0 for x > x0.

This is easily done by direct calculation (assuming r < ρ).
We conclude that φ = g∗ and τ∗ = τD is optimal (with the value (10.2.13)

for x0).

Exercises

10.1.* In each of the optimal stopping problems below find the supremum
g∗ and – if it exists – an optimal stopping time τ∗. (Here Bt denotes
1-dimensional Brownian motion)
a) g∗(x) = sup

τ
Ex[B2

τ ]

b) g∗(x) = sup
τ

Ex[|Bτ |p],
where p > 0.

c) g∗(x) = sup
τ

Ex[e−B2
τ ]

d) g∗(s, x) = sup
τ

E(s,x)[e−ρ(s+τ)cosh Bτ ]

where ρ > 0 and cosh x = 1
2 (ex + e−x).

10.2.* a) Prove that the only nonnegative (Bt -) superharmonic functions in
R2 are the constants.
(Hint: Suppose u is a nonnegative superharmonic function and that
there exist x, y ∈ R2 such that

u(x) < u(y) .
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Consider
Ex[u(Bτ )] ,

where τ is the first hitting time for Bt of a small disc centered at
y).

b) Prove that the only nonnegative superharmonic functions in R are
the constants and use this to find g∗(x) when

g(x) =
{

xe−x for x > 0
0 for x ≤ 0 .

c) Let γ ∈ R, n ≥ 3 and define, for x ∈ Rn,

fγ(x) =
{
|x|γ for |x| ≥ 1
1 for |x| < 1 .

For what values of γ is fγ(·) ((Bt)-) harmonic for |x| > 1 ? Prove
that fγ is superharmonic in Rn iff γ ∈ [2 − n, 0] .

10.3.* Find g∗, τ∗ such that

g∗(s, x) = sup
τ

E(s,x)[e−ρ(s+τ)B2
τ ] = E(s,x)[e−ρ(s+τ∗)B2

τ∗ ] ,

where Bt is 1-dimensional Brownian motion, ρ > 0 is constant.
Hint: First assume that the continuation region has the form

D = {(s, x);−x0 < x < x0}

for some x0 and then try to determine x0. Then apply Theorem 10.4.1.

10.4. Let Xt be an Itô diffusion on Rn and g:Rn → R+ a continuous reward
function. Define

g�(x) = sup{Ex[g(Xτ )] ; τ stopping time, Ex[τ ] < ∞} .

Show that g� = g∗.
(Hint: If τ is a stopping time put τk = τ∧k for k = 1, 2, . . . and consider

Ex[g(Xτ ) · X
τ<∞ ] ≤ Ex[ lim

k→∞
g(Xτk

)]) .

10.5. With g, r, ρ as in Example 10.2.2 prove that
a) if r > ρ then g∗ = ∞,
b) if r = ρ then g∗(s, x) = xe−ρs.

10.6. Prove statements (10.3.8), (10.3.9), (10.3.10) in Example 10.3.1.
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10.7. As a supplement to Exercise 10.4 it is worth noting that if g is not
bounded below then the two problems

g∗(x) = sup{Ex[g(Xτ )] ; τ stopping time}

and

g�(x) = sup{Ex[g(Xτ )] ; τ stopping time, Ex[τ ] < ∞}

need not have the same solution. For example, if g(x)=x, Xt =Bt∈R
prove that

g∗(x) = ∞ for all x ∈ R

while
g�(x) = x for all x ∈ R .

(See Exercise 7.4.)

10.8. Give an example with g not bounded below where Theorem 10.1.9 a)
fails. (Hint: See Exercise 10.7.)

10.9.* Solve the optimal stopping problem

Φ(x) = sup
τ

Ex

[ τ∫
0

e−ρtB2
t dt + e−ρτB2

τ

]
.

10.10. Prove the following simple, but useful, observation, which can be re-
garded as an extension of (10.1.35):
Let W = {(s, x);∃τ with g(s, x) < E(s,x)[g(s + τ,Xτ )]}.
Then W ⊂ D.

10.11. Consider the optimal stopping problem

g∗(s, x) = sup
τ

E(s,x)[e−ρ(s+τ)B+
τ ] ,

where Bt ∈ R and x+ = max{x, 0}.
a) Use the argument for (10.2.8) and Exercise 10.10 to prove that the

continuation region D has the form

D = {(s, x);x < x0}

for some x0 > 0.
b) Determine x0 and find g∗.
c) Verify the high contact principle:

∂g∗

∂x
=

∂g

∂x
when (s, x) = (s, x0) ,

where g(t, x) = e−ρtx+.
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10.12.* The first time the high contact principle was formulated seems to
be in a paper by Samuelson (1965), who studied the optimal time for
selling an asset, if the reward obtained by selling at the time t and
when price is ξ is given by

g(t, ξ) = e−ρt(ξ − 1)+ .

The price process is assumed to be a geometric Brownian motion Xt

given by
dXt = rXtdt + αXtdBt , X0 = x > 0 ,

where r < ρ.
In other words, the problem is to find g∗, τ∗ such that

g∗(s, x) = sup
τ

E(s,x)[e−ρ(s+τ)(Xτ −1)+] = E(s,x)[e−ρ(s+τ∗)(Xτ∗−1)+] .

a) Use the argument for (10.2.8) and Exercise 10.10 to prove that the
continuation region D has the form

D = {(s, x); 0 < x < x0}
for some x0 > ρ

ρ−r .
b) For a given x0 > ρ

ρ−r solve the boundary value problem

⎧⎪⎨
⎪⎩

∂f
∂s + rx∂f

∂x + 1
2α2x2 ∂2f

∂x2 = 0 for 0 < x < x0

f(s, 0) = 0
f(s, x0) = e−ρs(x0 − 1)+

by trying f(s, x) = e−ρsφ(x).
c) Determine x0 by using the high contact principle, i.e. by using that

∂f

∂x
=

∂g

∂x
when x = x0 .

d) With f, x0 as in b), c) define

γ(s, x) =
{

f(s, x) ; x < x0

e−ρs(x − 1)+ ; x ≥ x0 .

Use Theorem 10.4.1 to verify that γ = g∗ and that τ∗ = τD is
optimal.

10.13.* (A resource extraction problem)
Suppose the price Pt of one unit of a resource (e.g. gas, oil) at time t
is varying like a geometric Brownian motion

dPt = αPtdt + βPtdBt ; P0 = p

where Bt is 1-dimensional Brownian motion and α, β are constants.
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Let Qt denote the amount of remaining resources at time t. Assume
that the rate of extraction is proportional to the remaining amount, so
that

dQt = −λQtdt ; Q0 = q

where λ > 0 is a constant.
If the running cost rate is K > 0 and we stop the extraction at the
time τ = τ(ω) then the expected total discounted profit is given by

Jτ (s, p, q) = E(s,p,q)

[ τ∫
0

(λPtQt − K)e−ρ(s+t)dt + e−ρ(s+τ)g(Pτ , Qτ )
]

,

where ρ > 0 is the discounting exponent and g(p, q) is a given bequest
function giving the value of the remaining resource amount q when the
price is p.
a) Write down the characteristic operator A of the diffusion process

dXt =

⎡
⎣ dt

dPt

dQt

⎤
⎦ ; X0 = (s, p, q)

and formulate the variational inequalities of Theorem 10.4.1 corre-
sponding to the optimal stopping problem

Φ(s, p, q) = sup
τ

Jτ (s, p, q) = Jτ∗
(s, p, q) .

b) Assume that g(p, q) = pq and find the domain U corresponding to
(10.1.34), (10.3.7), i.e.

U = {(s, p, q);A(e−ρsg(p, q)) + f(s, p, q) > 0} ,

where
f(s, p, q) = e−ρs(λpq − K) .

Conclude that
(i) if ρ ≥ α then τ∗ = 0 and Φ(s, p, q) = pqe−ρs

(ii) if ρ < α then D ⊃ {(s, p, q); pq > K
α−ρ}.

c) As a candidate for Φ when ρ < α we try a function of the form

φ(s, p, q) =
{

e−ρspq ; 0 < pq ≤ y0

e−ρsψ(pq) ; pq > y0

for a suitable ψ:R → R, and a suitable y0. Use Theorem 10.4.1 to
determine ψ, y0 and to verify that with this choice of ψ, y0 we have
φ = Φ and τ∗ = inf{t > 0;PtQt ≤ y0}, if ρ < α < ρ + λ.

d) What happens if ρ + λ ≤ α ?



Exercises 235

10.14.* (Finding the optimal investment time (I))
Solve the optimal stopping problem

Ψ(s, p) = sup
τ

E(s,p)

[ ∫ ∞

τ

e−ρ(s+t)Ptdt − Ce−ρ(s+τ)

]
,

where
dPt = αPtdt + βPtdBt ; P0 = p ,

Bt is 1-dimensional Brownian motion and α, β, ρ, C are constants,
0 < α < ρ and C > 0. (We may interpret this as the problem of finding
the optimal time τ for investment in a project. The profit rate after
investment is Pt and the cost of the investment is C. Thus Ψ gives the
maximal expected discounted net profit.)

Hint: Write
∞∫
τ

e−ρ(s+t)Ptdt = e−ρs[
∞∫
0

e−ρtPtdt −
τ∫
0

e−ρtPtdt]. Compute

E[
∞∫
0

e−ρtPtdt] by using the solution formula for Pt (see Chapter 5) and

then apply Theorem 10.4.1 to the problem

Φ(s, p) = sup
τ

E(s,p)

[
−

τ∫
0

e−ρ(s+t)Ptdt − Ce−ρ(s+τ)

]
.

10.15. Let Bt be 1-dimensional Brownian motion and let ρ > 0 be constant.
a) Show that the family

{e−ρτBτ ; τ stopping time}

is uniformly integrable w.r.t. P x.
b) Solve the optimal stopping problem

Φ(s, x) = sup
τ

E(s,x)[e−ρ(s+τ)(Bτ − a)]

when a > 0 is constant. This may be regarded as a variation of Ex-
ample 10.2.2/10.4.2 with the price process represented by Bt rather
than Xt.

10.16. (Finding the optimal investment time (II))
Solve the optimal stopping problem

Ψ(s, p) = sup
τ

E(s,p)

[ ∞∫
τ

e−ρ(s+t)Ptdt − Ce−ρ(s+τ)

]

where
dPt = µdt + σ dBt ; P0 = p

with µ, σ �= 0 constants. (Compare with Exercise 10.14.)
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10.17. a) Let
dXt = µdt + σ dBt ; X0 = x ∈ R

where µ and σ are constants. Prove that if ρ > 0 is constant then

Ex
[ ∞∫

0

e−ρt|Xt|dt
]

< ∞ for all x .

b) Solve the optimal stopping problem

Φ(s, x) = sup
τ≥0

Es,x
[ τ∫

0

e−ρ(s+t)(Xt − a)dt
]
,

where a ≥ 0 is a constant.
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