
Chapter 10
Model Risk and Uncertainty—Illustrated
with Examples from Mathematical Finance

Karl F. Bannör and Matthias Scherer

Stochastic modeling techniques have become increasingly popular during the last
decades, particularly in mathematical finance since the groundbreaking work of
Bachelier (Théorie de la spéculation, Gauthier-Villars, Paris, 1900), Samuelson
(Ind. Manag. Rev. 6(2):13–39, 1965), and Black and Scholes (J. Polit. Econ.
81(3):637–654, 1973). Essentially, all models are wrong in the sense that they sim-
plify reality. However, there are numerous models available to model particular phe-
nomena of financial markets and calculated option prices, hedging strategies, port-
folio allocations, etc. depend on the chosen model. This gives rise to the question
which model to choose from the rich pool of available models and, second, how to
determine the correct parameters after having selected some specific model class.
Thus, one is exposed to both model and parameter risk (or uncertainty). In this sur-
vey, we first provide an inside view into the principles of stochastic modeling, illus-
trated with examples from mathematical finance. Afterwards, we define model risk
and uncertainty according to Knight (Risk, uncertainty, and profit, Hart, Schaffner
& Marx, Chicago, 1921) and present some methods how to deal with model risk
and uncertainty.
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The Facts

• In natural sciences as physics, chemistry, and biology, laws of nature often sup-
port model building. In social sciences like economics, there may be no natural
laws offering models.
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• Stochastic modeling tries to capture the stylized facts of the distribution of out-
comes in concern.

• Often, there is considerable ambiguity which model (or, equivalently, which prob-
ability distribution) to choose.

• One distinguishes between model risk and model uncertainty, following the ter-
minology of Knight [9].

• Model risk is a situation where one can quantify the likelihood of the validity of
the different models to choose from, i.e. a probability distribution on the set of
models is known.

• Model uncertainty is a situation where one does not have any additional informa-
tion about the different models, i.e. a probability distribution on the set of models
is unknown.

1 Stochastic Modeling of Real-World Phenomena

Die Theorie liefert viel, aber dem Geheimnis des Alten bringt sie uns doch nicht näher. Je-
denfalls bin ich überzeugt davon, dass der nicht würfelt.1—Albert Einstein, Nobel Laureate
in Physics

Models from classical mechanics, as illustrated in Chap. 4 of Mainzer [38], often
describe effects that have fully been studied. Hence, a deterministic functional re-
lationship can be taken as a mathematical model for description.2 In contrast, there
exist many real-world phenomena that exhibit deterministic behavior, but the de-
scription of the deterministic behavior is much too complex, or the behavior is dif-
ficult to observe. In such cases, it has turned out to be a tractable way to move from
deterministic modeling to stochastic modeling, enriching a deterministic functional
relationship by accounting for different random states which may occur. These dif-
ferent random states are gathered in a stochastic basis, which is mathematically
described by a probability space (�,F,P ).

Simplification Due to Stochasticity Stochasticity is often used to model deter-
ministic phenomena in a tractable way such that the model still describes the out-
comes of real-world phenomena (that might actually be deterministic in nature).
Instead of modeling the deterministic and possibly complicated procedure which
leads to the outcome, one focuses only on data concerning the outcome, analyzes
the “distribution” of the outcomes, and finally one sets up a stochastic model which
captures the distribution of the outcomes as realistic as possible.

A very easy but vivid example of a situation where specifying the deterministic
behavior may be awkward is modeling the result of throwing a (fair) dice: obvi-
ously, throwing a dice is an action which can be described completely by classical

1Translation: the theory yields a lot, but it does not bring us closer to the secret of the old one
[god]. Anyway, I am convinced that he [god] does not throw the dice.
2One prominent exception is the statistical approach to quantum physics.
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mechanics. Shaking the dice in a dice cup is a mechanic procedure, where the dice
turns when touching the walls of the dice cup, falls and rolls on the table, and eventu-
ally displays some number. But the whole procedure of shaking the dice and rolling
is extremely complicated to model in the world of classical mechanics, since many
different influences have to be taken into account (like, e.g., the shape and size of
the dice cup and the dice, the different directions and magnitudes of the shaking,
etc.). Such a deterministic model would be hard to determine, to set up, and even
more difficult to evaluate.

If one, however, is only interested in the result, i.e. the thrown number, one
might imagine a model which is much more simple and circumvents the difficul-
ties of modeling such a situation with classical mechanics. The mixing procedure
cannot be reproduced easily and as a result, every side of the dice occurs similarly
often. Mathematically spoken, the relative share r(j) of obtaining a fixed number
j ∈ {1,2,3,4,5,6} is independent of the number j and since the relative shares
have to add up to one, it follows that r(j) ≈ 1/6 for all j ∈ {1,2,3,4,5,6}. Hence,
a probabilistic model describing the result of throwing a dice, which both models
reality feasibly and yields a tractable situation, is to provide a stochastic basis in the
following way: let � := {1,2,3,4,5,6} be the state space of possible dice throw
outcomes, F := P(�) all possible combinations of outcomes, and P : F → [0,1] a
probability measure defined via P({j}) = 1/6 for all j ∈ {1,2,3,4,5,6}. Then the
probability space (�,F ,P ) sufficiently describes the possible outcomes of a dice
throw in an abstract, easy, and tractable manner.

Contrary to modeling the dice throw by classical mechanics, the stochastic model
has simplified and abstracted tremendously from the original situation. The whole
procedure of throwing the dice physically is completely disregarded. Instead, the
stochastic model only focuses on the result of the dice throw and models it directly,
which turns out to be much more tractable and also feasible from an empirical point
of view.

A Detailed Excursion: Stochastic Modeling in Finance In physics and engi-
neering, mathematical modeling of real-world phenomena goes back to Isaac New-
ton, Gottfried Wilhelm Leibniz, and even to the ancient Greeks. In contrast, in fi-
nance, mathematical and particularly stochastic modeling is a rather recent trend,
starting with the seminal dissertation of Bachelier [16].

When regarding the financial world instead of modeling phenomena from clas-
sical mechanics, one immediately recognizes that the whole system is much more
complex in the sense that many different forces drive the market, and their influence
is of non-negligible order. When describing the fall of a stone to the ground in a lab-
oratory, there are undoubtly also many different forces apart from earth gravitation
that actually have some influence (e.g. the aerodynamic resistance, the gravitation of
different objects in the laboratory). But their magnitude is so small compared to the
magnitude of earth gravitation that not considering them eventually does not matter
for a realistic model.

In contrast, when modeling financial markets (e.g. stock markets for the purpose
of, e.g., option pricing), there are many different market participants that influence
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asset prices by their trade decisions. Hence, a model trying to capture the whole
market microstructure with all interactions of market participants would be a mon-
struous, extremely complicated attempt with myriads of parameters. Thus, such an
approach is only tractable under severe simplifications (similar to the dice example).
But, additionally, there are several other reasons not to model the microstructure of
financial markets.

• First, different to the dice example, financial markets cannot be put under labo-
ratory conditions and therefore models cannot be tested reliably, i.e. experiments
cannot be repeated.

• Second, due to the complexity of the operations, it is impossible to observe all
market participant’s behavior and interaction simultaneously.

• Third, many market participants exhibit irrational and erratic behavior which may
be difficult to model even when modeling only a single market participant. There
have been approaches as the celebrated “Prospect Theory” of Kahneman and
Tversky [34]3 trying to provide a scope for such a kind of behavior, which still is
ongoing research.

• Finally, and maybe most crucial, the whole system is dynamic, with new market
participants entering and leaving the system. Even if one could observe the market
participants’ behavior and collect huge amounts of data, in every second, new
market participants enter the financial markets and behave differently, such that
predictions relying on historical data might not explain future market situations
successfully.4

Hence, the typical approach to model stock markets is to disregard the market mi-
crostructure (which is, e.g., forgetting about the market participants action and in-
teraction,5 analog to forgetting about the mechanics when rolling the dice) and to
model asset prices statistically.

To set up a sensible stochastic model for the price of, e.g., a stock or an index,
one typically scrutinizes stylized facts of time series of the price process and tries
to mimic these properties with stochastic models fulfilling as many of these stylized
facts as possible. Compared to an ansatz focusing more on data (an extreme ansatz
may be a non-parametric one only exploiting data), such a modeling paradigm al-
lows to capture general movements. Furthermore, a stochastic model for a stock
price should be tractable enough in the sense that it costs moderate effort to simulate
the stock price and prices of related financial instruments (e.g. futures and options,
see Hull [8] for an introduction into financial instruments) may be calculated in a
(semi-)analytic way. With these requirements for a model, one starts to collect some
stylized facts of time series of stock prices and obtains as first observations:

3Daniel Kahneman was awarded the Nobel Memorial Prize in Economic Sciences 2002 for his
work on irrational behavior in economics.
4In financial markets, one can even argue that relying too much on collected data may result in
overconfidence, since the data may not be representative any more to model future events.
5One should note that there are some approaches trying to capture the microstructure.
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• The stock price process, abbreviated by S = (St )t≥0, is always positive.
• Returns (yields) of stock prices are symmetrically scattered around 0 (or around

somewhere close to 0) and behave roughly similar and uncorrelated of each other.

Taking the second stylized fact as a starting point, a possible tool for model-
ing stock returns seems to be the normal distribution, which is widely understood,
mathematically tractable, and plays a prominent role in asymptotic statistics (cf. the
central limit theorem). Furthermore, for small periods �t , the discrete return

St+�t − St

St

may comfortably be approximated by the difference of the logarithm logSt+�t −
logSt . Hence, a first idea might be to model logarithmic differences by i.i.d. nor-
mally distributed random variables. With this motivation and the notion of Brown-
ian motion (we omit the formal definition due to technicalities, see Øksendal [10]
for details), one arrives at modeling stock prices with a geometric Brownian motion
(which goes back to Samuelson [44]), also often called the Black–Scholes model.6

Example 1.1 (Black–Scholes Model) A stock price (St )t≥0 is modeled by a Black–
Scholes model if it follows a geometric Brownian motion, i.e. its dynamics follow
the stochastic differential equation7

dSt = μSt dt + σSt dWt, S0 > 0,

where (Wt)t≥0 is a standard Brownian motion. The parameter μ ∈ R is called the
drift of the stock price and the parameter σ > 0 is called the volatility of the stock
price.

The Black–Scholes model allows for an easy and comprehensive interpretation:
the whole model is parameterized by the drift and the volatility of the process. Since
the model implies normally distributed stock returns, everyone who is familiar with
the normal distribution can apply and handle the model. The drift parameter μ con-
trols the average stock return, which grows linearly in μ. In terms of stock prices,
μ is the (exponential) growth rate of the stock price. The higher the drift μ, the
faster the stock price grows on average. On the other hand, the volatility parameter
σ describes how the returns scatter around the average returns. When regarding the
stock price instead of the returns, the volatility controls how much the stock price

6Actually, the model was not developed by Black and Scholes, but by Samuelson and was inspired
by the seminal PhD thesis Bachelier [16]. Fischer Black and Myron Scholes derived tractable
formulae for European options in this model and introduced the idea of replication in their seminal
paper Black and Scholes [3]. This work, together with the inspired work of Robert Merton, resulted
in awarding the Nobel Memorial Prize in Economic Sciences to Robert Merton and Myron Scholes
in 1997. Fischer Black died already in 1995, thus he did not receive the prize.
7Stochastic processes are often described via stochastic differential equations (SDEs). For readers
that are unfamiliar with SDEs, we recommend the introductory book of Öksendal [10].



284 K.F. Bannör and M. Scherer

Fig. 1 Comparison: a time series of the DAX index level compared with a simulated path of the
DAX in the Black–Scholes model

moves non-directionally. The higher the volatility σ , the more fluctuations the stock
price exhibits.

For the pricing of options on the stock, one applies the risk-neutral version of the
Black–Scholes model, where the drift equals the interest rate of a risk-free invest-
ment.

Obviously, the dynamics imposed by the Black–Scholes model are rough sim-
plifications of real stock price dynamics. While the only source of randomness in
the Black–Scholes model is the Brownian motion and all other ingrediences (i.e.
drift and volatility) are deterministic, real stock prices are driven by an extremely
complex market microstructure. Instead of modeling the whole market microstruc-
ture with the dynamics of action and interaction, one simply assumes that it suffices
to reduce the complexity to the determination of two parameters—the drift and the
volatility. In case of risk-neutral dynamics (which is the standard assumption when
pricing options), the complexity is further reduced to the determination of one sin-
gle parameter—the Black–Scholes volatility. On the other hand, trajectories which
are simulated in the Black–Scholes model look somewhat like plots of time series of
real stock prices (cf. Fig. 1). Furthermore, the simple structure ensures the tractabil-
ity of the model, in particular, there exist closed-form pricing formulas for various
kind of options, like the classical Black–Scholes formula for European calls and
puts.

Taking a closer look on stock price time series as well as on stock price related
data (e.g. option prices), one clearly sees that the Black–Scholes model is oversim-
plifying reality and some stylized facts may not be explained by the Black–Scholes
model like the following (which are not exhaustive):

• Extremely high and low returns are more likely to occur in reality than the normal
distribution implies (“heavy tails of returns”).

• Volatility is not constant, different market periods (high and low volatility) can be
observed (“volatility clustering”).
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• Downward price movements are typically accompanied by large undirectional
movements (“leverage effect”).

• Option prices do not follow the Black–Scholes model, implied volatilities8 are
non-constant (“smile effect”).

Hence, different alternatives to (and extensions of) the Black–Scholes model
have been developed to tackle the shortcomings of using simple geometric Brow-
nian motion, introducing models based on different processes with heavier tails or
stochastic volatility and/or jumps. One model that has become popular in practice
is the Heston model, see Heston [7], it uses a Cox–Ingersoll–Ross square-root pro-
cess9 as stochastic volatility. We briefly sketch the ingredients of the Heston model.

Example 1.2 (Heston Model) A stock price (St )t≥0 is modeled by a Heston model
if its dynamics follow the coupled stochastic differential equations

dSt = μSt dt + σtSt dW
(1)
t , S0 > 0,

dσ 2
t = κ

(
σ 2

long − σ 2
t

)
dt + ξσt dW

(2)
t , σ 2

0 > 0,

dW
(1)
t dW

(2)
t = ρ dt,

where (W
(j)
t )t≥0, j = 1,2 are correlated Brownian motions with correlation ρ ∈

[−1,1].
For further explanation, one can see that the general stock price dynamics re-

semble closely the dynamics of the Black–Scholes model, except for one fact: the
volatility σ is not assumed to be constant any more, but is now a stochastic process
itself (due to technical reasons, one models the “variance process” (σ 2

t )t≥0 instead
of the volatility process (σt )t≥0). In particular, the noise in the stock price process
is now time-dependent and has its own dynamics.

Assuming the dynamics of a Cox–Ingersoll–Ross square-root process for the
variance process, one may see the following behavior of the variance:

• The variance process (σ 2
t )t≥0 exhibits non-constant noise, which is governed by

the parameter ξ > 0. This parameter is usually called the vol-of-vol.
• In the long run, the variance fluctuates around a fixed number, the long-term vari-

ance, which is controlled by the parameter σ 2
long > 0.

• The variance process is mean-reverting to the long-term variance, i.e. if the vari-
ance is dragged away from its long-term level, it drifts back to the long-term
variance. The speed of mean reversion is controlled by the parameter κ > 0.

8In the Black–Scholes model, for a given European option, there is a one-to-one relationship be-
tween volatilities and option prices. Hence, for options with known market prices, one can re-
calculate the implied volatility from the market prices. Usually, one can exhibit that for different
options, the recalculated implied volatilities differ, which is a hint that the Black–Scholes model
cannot explain the observed option prices.
9The name stems from the Cox–Ingersoll–Ross interest rate model.
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Fig. 2 Comparison: logarithmic returns of the DAX compared with simulated logarithmic returns
from the Black–Scholes and the Heston model. One can see that the Black–Scholes model produces
returns with regular noise, while the Heston model incorporates volatility clustering, i.e. there exist
time periods of high and low fluctuations in the returns

• The correlation ρ ∈ [−1,1] describes the co-movement of the stock price and its
variance. As described above, this can be used to account for the so-called “lever-
age effect”, establishing that volatility movements and stock price movements
have negative correlation.

The Heston model is a relatively simple extension of the Black–Scholes frame-
work (replacing constant volatility by a variance process following a Cox–Ingersoll–
Ross model) to model stock prices. But, unarguably, the Heston model overcomes
some of the shortcomings of the Black–Scholes model that have been described
above (cf. Fig. 2). By making volatility stochastic and time-dependent, it captures
the non-constant behavior of volatility. Furthermore, incorporating correlation be-
tween the drivers of the stock price and variance processes allows to account for the
leverage effect, i.e. for negative correlations ρ. One has to remark that these addi-
tional stylized facts come at the price of losing mathematical tractability: prices for
some important options (e.g. European put and call options) cannot be calculated
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with simple formulae any more as in the Black–Scholes model, instead one has to
rely on numerical algorithms as, e.g., techniques from Fourier analysis to obtain
semi-analytic formulae as described in Carr and Madan [23].

2 Model Risk and Uncertainty

[T]here are known knowns; there are things we know that we know. There are known un-
knowns; that is to say there are things that, we now know we don’t know. But there are also
unknown unknowns—there are things we do not know, we don’t know.—Donald Rumsfeld,
United States Secretary of Defence 1975–1977, 2001–2006

In the previous section, we have roughly outlined the main principles of mathe-
matical modeling, in particular stochastic modeling where we will focus on below.
Hence, if we refer to modeling in the remaining part of this survey, we always mean
stochastic modeling.

When setting up a stochastic model, one often observes a complicated situation
where the outcome in concern behaves in a more or less erratic manner. In some
cases (like the dice example), a simple and accurate description may be provided
easily. But, typically, the object to model is much more complicated (like the price
process of a stock). Hence, it is not clear from the beginning that the choice of one
stochastic model P is a good choice or a different model P̃ might be more suitable,
like choosing either a Black–Scholes or a Heston model for stock prices. Typically,
the quantity of interest is modeled by a random variable X or some stochastic pro-
cess (St )t≥0. Hence, a situation where modeling may be complex can be mathemat-
ically described as a situation where a whole set of probability measures P (which
may typically be infinite) is available for modeling. Sometimes, the set of possible
probability measures (i.e. different stochastic models) P may be parameterized in a
canonical way by a parameter space �, i.e. P = {Pθ : θ ∈ �}.

To provide a concise wording to different situations that may occur if different
models P are available, we first make a short excursion into the literature. The semi-
nal dissertation of Knight [9] analyzes the situation where different states x1, . . . , xN

are possible outcomes for X. Knight [9] distinguishes between two possible situa-
tions that may occur:

1. One knows the probability of each possible outcome x1, . . . , xN .
2. One does not know the probability of each possible outcome x1, . . . , xN .

The ladder situation, where hardly any information is available, is called uncer-
tainty by Knight [9]. The former one, which at least allows for a probabilistic de-
scription, is called risk. Obviously, facing risk is a special case of uncertainty (since
one could always forget about the probabilities) and a more comfortable situation
compared to facing real uncertainty. One can try to deal with a risky situation by risk
management, i.e. exploiting the information about the probabilities of the different
outcomes x1, . . . , xN and acting such that a certain risk functional is minimized.

Research from economics, but also from behavioral sciences like psychology and
cognitive science, has shown that most people exhibit aversion towards both risk and
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uncertainty (often subsumed under the term risk aversion). A mathematical concept
covering risk aversion (prefering situations of certainty over situations of risk) is de-
scribed by the foundations of utility theory by von Neumann and Morgenstern [48]
and furthermore by the introduction of the axioms of subjective expected utility by
Savage [45]. Arrow [14] and Pratt [41] analyze risk aversion from an economic per-
spective. Concerning uncertainty, it has been shown that the concept of uncertainty
aversion is available, describing that a situation of risk is generally prefered to a
situation where true uncertainty is exhibited. This idea was promoted by Ellsberg
[29], challenging the axioms of Savage, which was later reconciled in the works of
Gilboa and Schmeidler [31].

Transfering the concepts of risk and uncertainty to stochastic modeling, the situ-
ation of having a whole set of models P to choose from for modeling is generally
referred to as model uncertainty. If each model P ∈ P can be identified by a param-
eter θ from some parameter space �, one speaks about parameter uncertainty.10 If
we additionally have given a probability measure R on the set of possible models
P (resp. on the parameter space �) which quantifies the probability of each model
(resp. parameter) to be the right choice, then we are in a setting of model risk (resp.
parameter risk), which can be considered as a special case of model (resp. parame-
ter) uncertainty.

This is illustrated in Fig. 3.

Examples Model and parameter uncertainty arise in numerous situations. If one
faces a complex situation where a stochastic model is applied, one is often am-
biguous between different models to choose from. Even after having decided for a
specific parametric model, the correct determination of the model’s parameters is
not straightforward and may result in different obstacles.

When stochastically modeling financial objects, there are myriads of possibilities
to simplify, thus many different models are competing with each other. In option
pricing, model risk (resp. uncertainty) should not be underestimated, as pointed out
by Figlewski [5]. During the financial crisis of 2008, where massive misvaluation
of portfolio credit instruments played an important role, this has been discussed in
quite some detail among experts, but also in popular media as, e.g., Salmon [11].

Example 2.1 (Parameter Uncertainty in Financial Market Models) All models
treated in Sect. 1 are exposed to parameter uncertainty. We will discuss later whether
we experience true parameter uncertainty in the sense that no information about the
parameters is known or we have parameter risk, i.e. we are able to quantify whether
certain parameters are more likely than others.11

10From a purely mathematical point of view, distinguishing between model and parameter uncer-
tainty is just up to a mapping � → P which may always be obtained for some set �. Often, the
set � can be chosen such that treating different parameters θ ∈ � allows for more convenient
interpretation in the real world than treating the corresponding model Pθ .
11Besides parameter uncertainty, the chosen parametric models can also be incorrect, i.e. model
uncertainty can occur.
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Fig. 3 Relationship between
model uncertainty and risk.
One can regard model risk as
a “special case” of model
uncertainty, since one can
always ignore the probability
measure R quantifying the
likelihood of the different
models

1. Examining the risk-neutral version of the Black–Scholes model, the dynamics of
a stock price follow the stochastic differential equation

dSt = rSt dt + σSt dWt, S0 > 0,

with (Wt)t≥0 being Brownian motion, r the risk-free interest rate, and σ the
stock’s volatility. While the initial stock price S0 and the risk-free rate r are
usually available from market information, one does not have direct informa-
tion about the volatility σ . Hence, a priori every positive number σ > 0 can be
taken. Usually, one uses market data (e.g. estimation based on time series of
stock prices, or fits the model to the prices of traded instruments) to specify the
volatility σ .

2. In the (risk-neutral) Heston model, the stock price dynamics follow the coupled
stochastic differential equations

dSt = rSt dt + σtSt dW
(1)
t , S0 > 0,

dσ 2
t = κ

(
σ 2

t − σ 2
long

)
dt + ξσt dW

(2)
t , σ 2

0 > 0,

with (W
(j)
t )t≥0, j = 1,2, being Brownian motions with correlation ρ ∈ [−1,1].

Contrary to the Black–Scholes model, the number of unknown parameters is
higher. Again, the initial stock price S0 and the risk-free rate r are known by
market quotation. On the other hand, the initial volatility σ0, the mean reversion
speed κ > 0, the long-term volatility σ 2

long > 0, the vol-of-vol ξ > 0, and the
correlation ρ ∈ [−1,1] are typically not given and—different from the Black–
Scholes case—their interpretation is more complicated. Hence, we face parame-
ter risk concerning the parameters σ0, κ, σ 2

long, ξ, ρ.

Even across different models and when establishing perfect fits to market prices12

of standard instruments (e.g. European call options), one obtains that there is still
ambiguity and different models may cause different prices for non-standard options
(as pointed out in Schoutens, Simons, and Tistaert [12]).

12One possibility to estimate the model parameters is to fit the parameters to known market prices
of options.
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3 Dealing with Model Risk

If history repeats itself, and the unexpected always happens, how incapable must Man be of
learning from experience?—George Bernard Shaw, dramatist

Scrutinizing the available mathematical objects in presence of model (resp. pa-
rameter) risk, there exists more than only the set of different possible models P . Ad-
ditionally, one assumes that P is the state space of a probability space (P,FP ,R)

where the probability measure R quantifies the probabilities that the different mod-
els P ∈P are the correct models to choose. This delivers a lot of information which
has to be analyzed carefully: first, for each stochastic model P ∈ P , there are given
probabilities for the different outcomes one has to deal with. Second, among all
these models there is a second probability measure R assigning “weights” to the
different models collected in the set P .13 In this case, one has numerous mathe-
matical obstacles to tackle and to find the right way to incorporate model risk into
quantities which may be of interest to be calculated like, e.g., prices of options.

From a statistical perspective, model risk can be regarded as an ansatz in the tra-
dition of Bayesian statistics, where one main assumption is that the chosen model
(or parameter) itself is random and the probability distribution on the possible mod-
els reflects subjective beliefs about the likelihood of the model. Opposed to this
view, so-called frequentist statistics (going back to the seminal work of Fisher [30])
assumes that a true, but unknown, model (resp. parameter) exists and one cannot as-
sign probabilities to different “candidate models”. In history, there has been major
dissent between these two philosophical approaches to statistics. A detailed critique
and discussion of Bayesian and frequentist methods in statistics is beyond the scope
of this article and we refer the interested reader to the books of Samaniego [43] and
Bertsch McGrayne [18], but we give a short insight into the foundations of Bayesian
statistics later in Sect. 3.2.

One situation where parameter risk traditionally occurs is parameter estimation
from given data (e.g. time series of stock prices). In a standard procedure, disre-
garding parameter risk, one computes the derived estimators from the given data,
i.e. calculates point estimates for the parameters. But from estimation theory, one
knows that an estimator is a random object itself. Furthermore, an estimator may
be biased. Hence, procedures that solely rely on using the point estimate disregard
the parameter risk which arises through the estimator’s distribution, e.g. its bias and
variance.

Parameter estimation is a key step in every application where real data is ana-
lyzed. Hence, we present an example employing the Black–Scholes model where
the estimator’s distribution quantifies the parameter risk.

Example 3.1 (Parameter Risk from Estimation of the Black–Scholes Volatility) We
consider a Black–Scholes setting as given in Example 1.1, where the volatility σ is

13Due to technical reasons, it may occur that the probability for all single models is zero, i.e.
R({P }) = 0 for all P ∈ P .
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the key parameter for option pricing. This parameter is not directly given by the
market (different from the current stock price S0 and the risk-free rate r). Hence,
the determination of the volatility is a situation where one is exposed to parameter
uncertainty. If the stock price actually follows a Black–Scholes model, it may be
a sensible idea to estimate the volatility from time series data. Taking the logarith-
mic returns x1, . . . , xN , xj = logStj +�t − logStj , j = 1, . . . ,N , one may choose
the classical estimator for the variance (it may be more convenient to estimate the
returns’ variance), corrected for the frequency of the data �t , which results in the
estimator

σ̂ 2
N = 1

�t(N − 1)

N∑

j=1

(xj − x̄)2, x̄ = 1

N

N∑

j=1

xj

for the variance corresponding to the Black–Scholes volatility, which is consistent
and asymptotically normal under very weak assumptions. Applying general theory
from statistics, one obtains that, under the assumption of independent normally dis-
tributed returns and a true variance σ 2

0 > 0 (as the Black–Scholes model does), the
distribution of the estimator is a χ2-distribution up to some scaling. Hence, the dis-
tribution determining the parameter risk arising from the estimation risk of volatility
(resp. variance) is essentially determined by the χ2-distribution, provided that the
true model is a Black–Scholes model with variance σ 2

0 . The parameter space is given
by � = R>0 and the estimator’s distribution R has density r given by

r(x) = (�t(N − 1))
N−1

2

�(N−1
2 )(2σ 2

0 )
N−1

2

x
N−3

2 exp

(
−x�t(N − 1)

2σ 2
0

)
1{x>0}.

3.1 Measuring and Quantifying Model Risk

As defined by Knight [9], the exposure to model risk is a situation where probabili-
ties of different possible models are available. Hence, one should have mathematical
instruments at hand to measure and/or to quantify model risk. Fortunately, for the
general situation of the measurement and quantification of risk, a rich and mathe-

matically rigorous theory of risk measures14 has been developed, yielding numerous
interesting results. For the specific purpose of treating model risk, the theory of risk
measures can be transferred, specifically tailored, and applied to the model risk set-
ting under concern. The theory of (convex) risk measures was originally designed
for treating financial and actuarial risk, headed by the seminal paper Artzner, Del-
baen, Eber, and Heath [1], we follow the red line of this survey and the model risk
framework in a financial context.

14The terminology “risk measure” may be misleading from a mathematical point of view, since the
functions that are proposed to be risk measures are not measures from a measure-theoretical point
of view, but functionals.
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To ensure a concise understanding, we recapitulate the proper definition of risk
measures in a slightly more general setup. A special case of the definition can be
found in the textbook Föllmer and Schied [6].

Definition 3.2 (Risk Measure, cf. Biagini, Meyer-Brandis, and Svindland [19],
Chap. 5) Let X be a collection of random variables on a probability space
(�,F,P ), i.e. risk-exposed quantities, let π : H → R be a linear mapping on a
subcollection of random variables H ⊂X and let ρ :X → R be a function.

ρ is called a risk measure w.r.t. π , if ρ fulfills the following axioms:

• ρ is monotone, i.e. for X,Y ∈X and X ≥ Y , ρ(X) ≥ ρ(Y ) holds;
• ρ is π -translation invariant, i.e. for X ∈ X and Y ∈ H the equality ρ(X + Y) =

ρ(X) + π(Y ) holds.15

Furthermore, ρ may have additional properties which are often postulated:

• ρ is called convex, if for X,Y ∈ X and λ ∈ [0,1], ρ(λX + (1 − λ)Y ) ≤ λρ(X) +
(1 − λ)ρ(Y ) holds;

• ρ is called coherent, if it is convex and positively homogeneous, i.e. for X ∈ X
and c > 0, ρ(cX) = cρ(X) holds;

• ρ is called P -law-invariant,16 if the value of ρ(X) only depends on the P -
distribution of X, i.e. ρ(X) = ρ(Y ) holds if X and Y have the same distribution
under P .

In practice, several “risk measures” are used. A traditional risk measure is, e.g,
the variance, which was suggested for quantifying the risk of investments in portfo-
lio theory in the seminal work of Markowitz [39].17 However, the variance is not a
risk measure in the sense of Definition 3.2, since it fails to be monotone.

The idea behind a risk measure is to compress all risk modeled by a random
variable X into a single number ρ(X). Obviously, this means that some information
(i.e. the whole distribution of X) is lost and complexity is reduced, but it is a helpful
and popular method to provide insight into risk for professional risk managers and
to communicate to external audience. The convexity property translates into risk di-
versification: combining different risky quantities should not be penalized, i.e. the
combined position cannot be riskier than the combination of the single positions.
Furthermore, at first glance, the notion of π -translation invariance is rather unintu-
itive and difficult to understand: the interpretation is that the elements from H do not
exhibit the kind of risk which is supposed to be measured (“risk-less positions”). Its
risk quantification is solely determined by the linear mapping π , which is not risky

15In many cases, as discussed below, it is sufficient to think of H as the constants and of π as the
identity function.
16If there is no ambiguity between different probability measures, the reference to the probability
measure P is omitted.
17Harry M. Markowitz received the Nobel Memorial Prize in Economic Sciences 1990 for his
groundbreaking research on portfolio theory.
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by definition (since it does not exhibit risk diversification). In the original definition
of convex risk measures, the subspace H only consists of the constant functions
(“no risk”) and the linear mapping π is simply the identity, i.e. π(c) = c.

The notion of risk measures was developed due to the shortcoming of classical
risk measures as, e.g., quantiles (Value-at-Risk, often abbreviated by VaR), which
in many cases did not exhibit desirable properties (e.g. VaR does not always support
diversification). (Convex) risk measures provide a mathematically precise and rich
framework for the measurement of risk, thus, it may also be adapted to measure
model (resp. parameter) risk. The most popular non-trivial example of a convex risk
measure is the Average-Value-at-Risk, which averages over the tails of a distribution
and overcomes the shortfall of the Value-at-Risk being not convex.

The concrete implementation of the adaptation of the general framework of risk
measures always depends on the setting what has to be measured, but, as a first idea,
when a certain number f (P ) has to be calculated which depends on the probability
measure P ∈ P , it may be a sensible idea to apply the risk measure framework to
the function f to provide a number accounting for the model (resp. parameter) risk.

Example: Option Pricing Incorporating Parameter Risk A canonical example
where model/parameter risk arises is option pricing. For this task, one uses financial
market models as described in Sect. 1 which heavily rely on parameters that are not
directly observable on the markets. Hence, those parameters have to be estimated,
either via time series analysis of financial data or via fitting to market prices of
available instruments (e.g. call and put options). As pointed out in Example 3.1, the
procedure of obtaining the parameters exposes one to parameter risk. If one wants
to state a price for some option using a certain model, e.g. the Heston model, one
should account for parameter risk in the chosen model.18 For some option X, each
parameter vector θ in a financial market model yields the risk-neutral price of the
option X w.r.t. the parameter vector θ as an expectation Eθ [X]. But, different from
the usual model output, option traders typically state two prices—a bid price (to
which she or he is willing to buy the option) and an ask price (to which she or he
sells the option). Hence, the key idea is that parameter risk is a crucial determinant
for the width and location of the bid-ask spread.

Thus, for option pricing purposes, the notion of a (model) risk-capturing func-
tional and risk-captured (ask and bid) prices are developed in Bannör and Scherer
[17] using the theory of convex risk measures.

Definition 3.3 (Model Risk-Capturing Functional, Risk-Captured Prices) Let Q be
a family of option pricing models19 and let R be a probability measure on Q. Let
D denote all options X we seek to price, which additionally satisfy some technical
conditions. Let furthermore ρ be a normalized, law invariant convex risk measure

18Actually, one should also account for model risk, but this may not be tractable any more.
19To remain consistent with the usual terminology from mathematical finance, we denote risk-
neutral measures by Q and a set of different risk-neutral measures by Q.
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on some functions on Q. Then the mapping � :D → R, defined by

�(X) := ρ
(
Q �→ EQ[X]), (3.1)

is called a model risk-capturing functional w.r.t. the distribution R. �(X) is called
the risk-captured (ask) price of X given the functional �. Furthermore, �̄(X) :=
−�(−X) is called the risk-captured bid price of X.

The definition of risk-captured prices is somewhat technical and involves many
different requirements (mainly to ensure the existence of the objects we deal with),
but, in principle, the concept of treating the number of interest—the option price—
as a function of the random model and applying a risk measure to it remains the
same. In this case, since the methodology is supposed to be used for option pricing
purposes, some additional quantities are required (e.g. normalization) to ensure that
the number �(X) makes sense. Furthermore, convexity is crucial since model risk
should be a risk that profits from risk diversification. Option traders always regard
their positions from a portfolio point of view, quoting bid-ask prices according to
their portfolio position (e.g. they give better prices for options fitting to their present
position).

The definition of model (resp. parameter) risk-captured prices is related to the
idea behind some other non-linear pricing ideas that were mainly used for pricing
in incomplete markets (like, e.g., Carr, Geman, and Madan [24], Cherny and Madan
[25]).

3.2 Bayesian Treatment of Model Risk

A popular mathematical tool, when confronted with model risk, is Bayesian statis-
tics. The basic idea behind Bayesian statistics is that the relationship between distri-
butions of different models and samples thereof is not static, but is a dynamic pro-
cess where the knowledge of the model distribution is constantly enhanced/updated.
In this case, the model (resp. the parameter) is regarded to be random as well. Hence,
one of the key results of Bayesian statistics we will present here is how the model
(resp. parameter) distribution is updated and learns from the collected samples.
Summarizing, Bayesian methodology is about how to obtain a proper distribution
on the models incorporating information about the data into the construction pro-
cess. A standard reference on Bayesian theory is Bernardo and Smith [2], one can
find more about Bayesian methods in Chap. 8 of Czado and Brechmann [27].

Bayes’s theorem, going back to the English minister of the Presbyterian church
Thomas Bayes, is—in its most basic form—a relationship of conditional probabil-
ities. Interchanging the conditioning set with the set which is evaluated, the con-
ditional probability can be easily derived. Formulated in a mathematically precise
manner, Bayes’s theorem states the following result:



10 Model Risk and Uncertainty—Illustrated with Examples 295

Theorem 3.4 (Bayes’s Theorem, General Version) Let (�,F ,P ) be a probability
space and A,B ∈ F some events with P(A),P (B) > 0. Then the following rela-
tionship between the conditional probabilities of the considered events holds:

P(B|A) = P(B)P (A|B)

P (A)
.

At first glance, Bayes’s theorem does not seem to have any interconnection with
model risk and the application of Bayes’s theorem towards model risk is not obvious.
But when a distribution on the set of possible probability measures P is at hand,
Bayes’s theorem delivers an interesting interpretation of the relationship between
the probability of outcomes and the probability of having the right model.

Therefore, let R be a probability distribution on the set of probability measures
P quantifying the model risk, a joint probability measure � living on the Cartesian
product of the state space and the possible probability measures � × P may be
defined on the “rectangle sets” via

�(A × B) :=
∫

B

P (A)R(dP) (3.2)

for A×B ∈ �×P (this measure may be extended to the whole product σ -algebra).
The product measure � can be interpreted as a probability measure which both
incorporates possibilities of the outcomes and the different models. If we then apply
Bayes’s theorem to this situation, we obtain the following “model risk version” of
Bayes’s theorem.

Theorem 3.5 (Bayes’s Theorem, Model Risk Version) Let � be defined as in (3.2)
and �(A ×P) > 0. Then

�(� × B|A ×P) = �(� × B)�(A ×P|� × B)

�(A ×P)
= R(B)�(A ×P|� × B)

∫
P P(A)R(dP)

holds.

Defining suggestively �(A|B) := �(A × P|� × B) as well as �(B|A) :=
�(� × B|A ×P), one may summarize Theorem 3.5 via the handy expression

�(B|A) = R(B)�(A|B)
∫

P(A)R(dP)
. (3.3)

If we have a closer look on this formula, (3.3) reveals an interesting relationship
between model-intrinsic risk (which is inherent in the different possible stochastic
models P ∈ P) and model risk (which is quantified by the probability measure R

on the possible models P). The probability that a set of stochastic models B ⊂ P is
correct, given that a certain outcome A ⊂ � arrives, can be calculated by a fraction
of the raw probability R(B), corrected by a fraction which consists of the probability
of the outcome A given the models B and the probability of A averaged over all
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possible models P . Hence, starting with a probability measure R on P quantifying
model risk, one may obtain some further information and correct for the outcome A.
In particular, if B = {P0} consists only of the probability measure P0 (with positive
probability R({P0}) > 0), (3.3) reduces to the even simpler form

�(P0|A) = R(P0)P0(A)
∫

P(A)R(dP)
. (3.4)

In a model risk framework based on continuous risk, one often has that the prob-
ability for a single model P0 is zero (i.e. risk that comes from Lebesgue-a.c. proba-
bility measures), so the convenient representation (3.4) is usually not available. But
there is a way out to find a nice form for Bayes’s theorem treating model risk: if
we assume that a parameterization of the set of possible models P = (Pθ )θ∈� with
� ⊂ R

n is at hand, the model risk probability measure R has a density r(θ), and the
random variable of interest X : � → R

d has density p(x|θ) under Pθ for all θ ∈ �,
we obtain the classical model risk version of Bayes’s theorem involving densities.

Theorem 3.6 (Bayes’s Theorem, Parameter Risk Version with Densities) Let r ,
(pθ )θ∈� be as above. Then the conditional density r(·|x) can be calculated via

r(θ |x) = r(θ)p(x|θ)
∫
�

p(x|θ)r(θ)dθ
. (3.5)

Theorem 3.6 suggests particularly that the distribution on the parameters (repre-
sented by the density r) can be updated and adjusted, given the information from
the samples x = (x1, . . . , xd). This can be regarded as follows: one starts with a
parameter distribution r20 (which is usually called a priori distribution or prior
distribution, since it is the distribution imposed without any further information)
and observes samples x1, . . . , xd on the market. Now, the distribution r is adjusted
to the observation of the sample x = (x1, . . . , xd). Roughly speaking, the weights
on the parameters are adjusted according to the likelihood of the sample outcome
x = (x1, . . . , xd). As a result, one obtains a new distribution represented by the
density r(·|x) incorporating both the information which was given by the a pri-
ori distribution and the additional information contained in the samples x1, . . . , xd .
Consequently, the obtained distribution r(·|x) is called the a posteriori distribution
or posterior distribution on the parameters given x = (x1, . . . , xd). The whole pro-
cedure is referred to as Bayesian updating or Bayesian inference, since the new
information contained in the samples x1, . . . , xd causes the old beliefs of the param-
eter distribution (summarized in the a priori density r) to be updated, resulting in
the a posteriori density r(·|x). Bayesian updating can be done constantly when new
data is available. Often, the old posterior distribution then comes into play as the
new prior distribution, which is again updated with information from new samples
x̃ = (xd+1, . . . , xd+d̃

). Figure 4 illustrates this updating procedure.

20In the following, we use the word distribution for abbreviation and mean the distribution induced
by the respective density.
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Fig. 4 This diagram
illustrates the process which
is done in Bayesian updating
(here as a mathematical
“black box”). The
information from the prior
density (top left) is merged
with data samples (top right),
resulting in a unified
distribution (bottom)

Merging Expert Knowledge and Data Evidence into a Unified Framework
A common application of the Bayesian updating process is when the input source is
twofold: first, one has real-world data available for estimating parameters. A clas-
sical statistic paradigm would now solely rely on the given data, estimating the pa-
rameters and—if required—calculating the (asymptotic) distribution by using the-
ory from mathematical statistics or resampling methods. But, in some cases, one
wants to incorporate some expert judgement as well, particularly in case that the
data may be difficult to judge (e.g. the data only reflects the recent past and some
events not reflected in the past may happen in the future). Another case where one
would like to incorporate expert judgements is when only very few data is available
(like, e.g., operational risk events or corporate defaults) or a large fraction of data is
outdated. For example, an option trader with long experience might impose a dis-
tribution on the parameters of a financial market model (e.g. Heston model) being
subject to parameter risk (compare Example 2.1). Using a Bayesian updating pro-
cedure, one would use this distribution being the result of expert judgement as the
a priori distribution. As a second step, one may use the Bayesian updating proce-
dure and samples from financial market data (e.g. option prices) to adjust the expert
view to real-world data.

One could also interpret Bayesian updating the other way round and start with
a prior distribution that may be a sensible idea without having a closer look (prior
distribution as “default distribution”). One can then use data or “expert estimates”
to tilt the distribution towards results that are more in line with the data/the expert
estimates.
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As a result of applying Bayes’s theorem in the version stated in Theorem 3.6, one
obtains the a posteriori distribution integrating both the expert judgement as well as
the data. Hence, loosely speaking, the a posteriori distribution may be regarded as a
“merger” between the expert opinion and information extracted from data.

Examples The methodology of Bayesian updating has widely been exploited in
practice. Due to its handyness in terms of mathematical formulae and its mathemat-
ical rigorousity, it is one of the first choices to obtain distributions on models and
particularly parameters.

Example 3.7 (Black–Litterman Portfolio Selection) A popular application of
Bayesian updating is the Black–Litterman approach to portfolio optimization, as
described in Black and Litterman [20]. In classical Markowitz portfolio optimiza-
tion, risk and return characteristics of different investments are purely estimated
from data (e.g. time series, option prices). A clear drawback of this procedure is
that the used data is backward looking and does not carry information about fu-
ture developments. Hence, one would like to introduce some procedure where data
is one input, but on the other hand some subjective market opinion may influence
the result. One way to incorporate some “market opinion” additionally is to use a
Bayesian approach. In this case, both subjective views of investment performance
and risk (a priori distribution) as well as financial market data (typically time series
of financial instrument prices) can be integrated by means of Bayesian updating.
As a result, one obtains a new distribution for risks and returns which is used for
portfolio optimization purposes, called Black–Litterman portfolio selection.

Also in option pricing, Bayesian methodology provides a framework to obtain a
distribution on the parameters such that today’s option prices can be merged with
an external view, e.g. coming from expert judgement or exploiting “more probable”
market information.

Example 3.8 (Bayesian Option Pricing) There have been several attempts to incor-
porate Bayesian ideas into option pricing, we only sketch few of them (a complete
overview would be out of scope). As described above, option pricing is a situation
where one is exposed to parameter risk (and, presumably, model risk). Hence, Bun-
nin, Guo, and Ren [22] and Gupta and Reisinger [32] both suggest to compute the
posterior distribution via Bayesian updating incorporating new data like realizations
from time series and (more forward-looking) prices of European options. Gupta and
Reisinger [32] assume that put and call option prices follow a true model that is
noised by independent error terms. A mathematical framework is suggested how
this assumption can be interpreted in terms of a parameter prior distribution. In par-
ticular, a local volatility framework is used and it is assumed that in the short run, the
market-implied Black–Scholes volatilities of the most popular options21 are concise
approximations for the local volatility.

21Usually, the options which are most traded are the options with a strike close to today’s stock
price, the so-called at-the-money options.
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An interesting question remains from choosing the prior distribution. Once hav-
ing done the Bayesian updating procedure several times, one may use the old ob-
tained posterior density as the new prior to start with as described above. Later, we
refer to the Bernstein–von Mises theorem treating the asymptotic impact of the prior
distribution.

In insurance applications, one is often more involved with using time-series data
due to more stationary conditions (e.g. fire claims or other insurance losses observe
more stationary behavior as financial markets). Many textbooks as, e.g., Böcker
[21], Klugman [35], Wüthrich and Merz [49] address Bayesian methods for risk
management in insurance and finance.

4 Dealing with Model Uncertainty

In nichts zeigt sich der Mangel an mathematischer Bildung mehr, als in einer übertrieben
genauen Rechnung.22—Carl Friedrich Gauss, mathematician

In some cases, it is a hard task to quantify the probability of certain models to
be the true model. It may be even impossible to impose a probability measure R on
the set of different models P from which one may choose. In these situations, one
experiences true model uncertainty. In such a situation, one has much fewer alterna-
tives than in case of model risk, where quantification may be done via different risk
measures, as we have described earlier. Conversely, in case of model uncertainty,
one is typically restricted to consider worst-case scenarios: if there is no additional
information and we have complete ambiguity between different stochastic models
represented by the set of probability measures P , one has little choice to boil the
“degree of model uncertainty” down to one number as we have done it in case of
model risk.

Worst-Case Approaches Mostly, one seeks to calculate a number f (P ) (e.g. the
price of some option) which depends on the chosen model P ∈ P . Not having any
further information at hand, the easiest way (and maybe the only feasible one—since
everything in the scope of the model set P is possible) to quantify model uncertainty
(as described for option pricing by Cont [4]) is to take the worst cases (resp. best
cases) between the different models, namely

u = sup
P∈P

f (P ), l = inf
P∈P

f (P ).

Hence, the whole model uncertainty may be quantified by the difference of the two
numbers

u − l = sup
P∈P

f (P ) − inf
P∈P

f (P ).

22Translation: nothing shows the lack of mathematical education more than an exaggeratedly exact
calculation.
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The difference between the extremes is an appropriate number to measure the (max-
imal) impact of model uncertainty on the quantity f . In case of model risk, i.e. the
knowledge about the likelihood of each model, worst-case approaches can also be
done. But, due to the additional knowledge, many other alternatives (as, e.g., convex
risk measures) are possible.

Often, the number of interest f (P ) is the expectation of some random variable
X w.r.t. the probability measure P (as in the case of option pricing). If this holds,
the theory of convex risk measures (a standard reference is Föllmer and Schied [6])
immediately yields that the quantity

u(X) = sup
P∈P

EP [X]

fulfills all the axioms of a coherent risk measure (without law invariance). One can
go even further and define the upper envelope of a set of probability measures by
defining

μP (A) := sup
P∈P

P(A), A ∈F .

In general, the upper envelope μP is not a probability measure any more, but a sub-
modular set function. Here, we can still define some integral, the Choquet integral
w.r.t. μP , and the quantity u(X) can be represented as a Choquet integral

u(X) =
∫

X dμP .

The Choquet integral is a generalization of the regular integral and relaxes some
properties, e.g. it is not linear any more in general, but preserves features as, e.g.,
monotonicity. The rich theory of Choquet integration, delivering many tools to work
with, can be found in the compendium of Denneberg [28].

Examples

Worst-Case Option Pricing Cont [4] describes the situation when a set of risk-
neutral probability measures Q is available, but one does not have any information
which one to pick for the valuation of some option X. As described above, it is
suggested to use a worst case ansatz and to deliver two prices

u(X) = sup
Q∈Q

EQ[X] and l(X) = inf
Q∈Q

EQ[X],

which can again be interpreted as bid-ask prices. As described above, the functional
u fulfills the axioms of a coherent risk measure. Conversely, if there is a coherent
risk measure ρ which is defined on a suitable collection of random variables, gen-
eral theory immediately yields that it can be represented as the supremum of the
expectation w.r.t. some “stress-test measures” Q, i.e.

ρ(X) = sup
P∈Q

EQ[X]
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holds for a set of “stress-test measures” Q which are absolutely continuous w.r.t.
the original measure P . Hence, in this sense, convex risk measures as treated in
Sect. 3.1 can also provide a framework to measure model uncertainty.

In some cases (as, e.g., the calibration to market prices), one might have addi-
tional information about the trustworthyness of a model, contained in some “penalty
function” α : Q → [0,∞]. In this case, Cont [4] suggests “penalized worst-case
pricing” by setting the two option prices via

u(X) = sup
Q∈Q

EQ[X] − α(Q) and l(X) = inf
Q∈Q

EQ[X] − α(Q). (4.1)

On the other hand, it can be shown that, in principle, every convex risk measure
can be represented in the style of (4.1) (cf., e.g., Föllmer and Schied [6]). The very
general framework developed by Cont [4] may be understood best by stating an
example. One prominent example incorporating a rich class of pricing models is the
uncertain volatility model by Avellaneda, Levy, and Paras [15].

Example 4.1 (Pricing with Uncertain Volatility) As described earlier, in a Black–
Scholes model (cf. Example 1.1), the assumption of volatility being constant has
caused numerous critique. Hence, stochastic volatility models (e.g. the Heston
model presented in Example 1.2) have been developed. Again, these models assume
certain characteristics of the volatility process. Another approach, leaving many de-
grees of freedom, was suggested by Avellaneda et al. [15]: volatility is introduced
to be a stochastic process, living on a compact interval; i.e. the volatility process
(σt )t≥0 has its range in an interval [σl, σu] with σu > σl > 0. The bounds σu,σl may
be obtained from expert judgements or data like, e.g., available implied volatilities
of liquid options. With these implicitly imposed models, Avellaneda et al. [15] de-
velop an approach based on control theory methods to calculate model-free upper
and lower bounds for the price of options.

Dependence Modeling Another situation where model uncertainty may arise is de-
pendence modeling: often, different stochastic quantities that are related to each
other (e.g. weight and height of persons) should be modeled jointly. Typically,
this is modeled by assuming the realizations to come from a random vector X =
(X1, . . . ,Xd). Assuming that the univariate distributions of the random variables
X1, . . . ,Xd are known, one still has to determine the interconnection between the
random variables, i.e. the dependence structure. Fortunately, Sklar’s theorem pro-
vides that the dependence structure of any multivariate distribution may be sepa-
rated from the univariate marginal distributions and any dependence structure cor-
responds to some copula, which is a multivariate distribution function with uniform
marginals (see, e.g., Nelsen [40]). However, the set of copulas provides a broad
and rich source with numerous dependence structures like, e.g., elliptical copulas or
Archimedean copulas. Hence there are still infinitely many copulas to choose from,
and sometimes there is little evidence about how the dependence structure may look
like. More on this class of functions can be found in Chap. 9 of Klüppelberg and
Stelzer [36].
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In many cases, the choice of dependence structure is crucial for modeling events
correctly, a vividly discussed example being portfolio default risk. On the eve of
the financial crisis of 2008, there existed massive misvaluation of financial prod-
ucts called CDO (collateralized debt obligations) that were structured from, e.g.,
housing mortgages. The key principle of these products was to bundle several cred-
its and redistribute the credit repayments and interest payments into different slices
(so-called “tranches”) in the following manner: in case of default, all defaults first
reduce the notional of the most junior tranche. After elimination of the most junior
tranche through defaults, the notional of the second-most junior tranche is reduced
by occuring defaults and so on. As pointed out by Heitfield [33], the valuation of
CDO tranches heavily relies on the imposed model of the dependence structure be-
tween the credit defaults. Predominantly, Gaussian copulas were used to account for
the dependence, but Gaussian copulas were not able to capture important stylized
facts like, e.g., contagion effects and tail dependence.

Typically, in case of dependence uncertainty, one wants to calculate a quantity
fP (X1, . . . ,Xd) and is uncertain about the dependence structure (represented by
a copula model P ) of the random vector (X1, . . . ,Xd). This means that the set
of possible models P is constructed such that the univariate distributions of the
random variables X1, . . . ,Xd do not vary, but the dependence structure, which can
be summarized by

P := {
P probability measure on (�,F) with

fixed marginal distributions P Xj ∼ Fj

}
.

The optimization problem to solve is to find upper and lower bounds (as in the
proposal of Cont [4])

u(X1, . . . ,Xd) = sup
P∈P

fP (X1, . . . ,Xd),

l(X1, . . . ,Xd) = inf
P∈P

fP (X1, . . . ,Xd)

for functions f , which may include numerous applications, e.g. the calculation
of risk measures of portfolios of financial instruments X1, . . . ,Xd . An important
result from copula theory is that the set of copulas has upper and lower natural
bounds, called the Fréchet–Hoeffding bounds. These can be interpreted (at least in
dimension d = 2) as “complete positive dependence” (comonotonicity) and “com-
plete negative dependence” (countermonotonicity). But the Fréchet–Hoeffding cop-
ula bounds are not necessarily the copulas23 which produce the upper and lower
bounds u(X1, . . . ,Xd) resp. l(X1, . . . ,Xd) for the quantity f (X1, . . . ,Xd). Hence,
the problem of determining the right dependence structure to approximate the upper
and lower bounds has to be tackled mathematically.

23For d > 2, the lower Fréchet–Hoeffding bound is not even a copula.
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Puccetti and Rüschendorf [42] present numerical and computational techniques
to calculate upper and lower bounds for special functions f , including important
examples like the Value-at-Risk (VaR) of portfolios. Using the fact that the empirical
equivalent of copulas can be regarded as rearrangements, an algorithm is developed
to calculate the bounds u(X1, . . . ,Xd) resp. l(X1, . . . ,Xd). In particular, it turns
out that the comonotonicity copula (the upper Fréchet–Hoeffding bound) usually
produces not the largest Value-at-Risk, but a copula that manages concentrating
mass to the tail in a uniform manner.

In the bivariate case, there is another approach by Tankov [47], which refines the
upper and lower bounds for a functional f (X1,X2) when some information about
the dependence (i.e. Kendall’s Tau, a standardized association measure which is
often more suitable than the correlation) is given. This is used to compute model-
free bounds for bivariate options (e.g. best-of-two options), given a certain level of
association measured by Kendall’s Tau.

5 Food for Thoughts

This chapter intends to give a brief survey about model risk and uncertainty with a
tilt towards financial topics, but, obviously, there are several questions that naturally
arise.

• In this chapter, model risk and uncertainty is discussed in the context of mathe-
matical finance. Obviously, also in natural sciences, model risk and uncertainty
plays an important role. As a detailed example for a discussion of model risk and
uncertainty in a natural sciences context, we refer to the book of Cooke [26].

• Convex risk measures are a tractable and well-studied class of risk functionals,
but convexity (resp. subadditivity) may be an assumption that is too strong for
real-life applications. Thus, there have been numerous generalizations and en-
hancements of convex risk measures incorporating weaker properties, like quasi-
convexity or comonotone convexity (resp. subadditivity), studied in Song and Yan
[46].

• When incorporating model (resp. parameter) risk by using convex risk measures,
one might think about continuity properties of the computed numbers when im-
posing different kind of distributions on the parameters. In particular, one might
want that if there is a sequence of distributions (RN)N∈N on the parameter set
� converging to some limit distribution R∞, the sequence of numbers capturing
the model risk w.r.t. the distributions (RN)N∈N should eventually converge to the
number capturing the model risk w.r.t. the distribution R∞. An application would,
e.g., be the distribution induced by some consistent estimator θ̂N converging to
the “true” parameter. It turns out that, dependent on the risk measure, different
types of convergence yield convergence for different classes of risk measures.
Some ideas which risk measures behave as desired with weak convergence can
be found in Bannör and Scherer [17], a detailed technical analysis about different
topologies on probability measures that induce convergence of the risk measures
is given in Krätschmer, Schied, and Zähle [37].
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• In case of Bayesian methodology, one key problem is the choice of prior distri-
bution. In some cases, the Bernstein–von Mises theorem states that in the asymp-
totics, the choice of prior distribution does not matter any more (e.g. van der Vaart
[13]). Hence, the more iterations one does in the Bayesian updating procedure,
one obtains more stable results (in case of drawing the sample from a stationary
situation). Conversely, there are also situations where the Bernstein–von Mises
theorem does not hold, which lead to criticism of the Bayesian methodology.

6 Summary

We presented an introduction to stochastic modeling and highlighted some prob-
lems concerned with model specification and the decision process which model to
select. We defined and distinguished model uncertainty and risk, both are situations
one typically faces when modeling complex objects as, e.g., financial markets, in a
stochastic manner. We mentioned various examples, primarily from mathematical
finance, where model and parameter risk and uncertainty play a prominent role. We
have outlined methods based on convex risk measures dealing with both model risk
and uncertainty, furthermore, we gave insight into Bayesian updating, which can be
a helpful tool to refine parameter distributions in case of parameter risk.

Acknowledgement We thank Claudia Klüppelberg and Roger M. Cooke for valuable remarks
on earlier versions of the manuscript.
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