
Preface

The rapidly developing methods of systems biology can help investigators in various areas 
of modern biomedical research to make inference and predictions from their data that 
intuition alone would not discern. Many of these methods, however, are commonly 
perceived as esoteric and inaccessible to biomedical researchers: Even evaluating their 
applicability to the problem at hand seems to require from the biologist a broad knowl-
edge of mathematics or engineering. This book is written by scientists who do possess 
such knowledge, who have successfully applied it to biological problems in various con-
texts, and who found that their experience can be crystallized in a form very similar to a 
typical biological laboratory protocol.

Learning a new laboratory procedure may at first appear formidable, and the inter-
ested researchers may be unsure whether their problem falls within the area of applicability 
of the new technique. The researchers will rely on the experience of others who have 
condensed it into a methods paper, with the theory behind the method, its step-by-step 
implementation, and the pitfalls explained thoroughly and from the practical angle. It is 
the intention of the authors of this book to make the methods of systems biology widely 
understood by biomedical researchers by explaining them in the same proven format of a 
protocol article.

It is recognized that, in comparison to the systems biology methods, many of the 
laboratory methods are much better established and their theory may be understood to a 
greater depth by interested researchers with a biomedical background. We intend, how-
ever, this volume to shatter the perceived insurmountable barrier between the laboratory 
and systems-biological research techniques. We hope that many laboratory researchers 
will find a method in it that they will recognize as applicable to their field, and that the 
practical usefulness of the basic techniques described here will stimulate interest in their 
further development and adaptation to diverse areas of biomedical research.

Pittsburgh, PA Ivan V. Maly
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      Chapter 2

 Computational Modeling of Biochemical Networks 
Using COPASI       

     Pedro   Mendes  ,      Stefan   Hoops,       Sven   Sahle,       Ralph   Gauges,       
Joseph   Dada, and       Ursula   Kummer     

  Summary 

 Computational modeling and simulation of biochemical networks is at the core of systems biology and 
this includes many types of analyses that can aid understanding of how these systems work. COPASI is 
a generic software package for modeling and simulation of biochemical networks which provides many 
of these analyses in convenient ways that do not require the user to program or to have deep knowl-
edge of the numerical algorithms. Here we provide a description of how these modeling techniques 
can be applied to biochemical models using COPASI. The focus is both on practical aspects of software 
usage as well as on the utility of these analyses in aiding biological understanding. Practical examples 
are described for steady-state and time-course simulations, stoichiometric analyses, parameter scanning, 
sensitivity analysis (including metabolic control analysis), global optimization, parameter estimation, and 
stochastic simulation. The examples used are all published models that are available in the BioModels 
database in SBML format.  

  Key words:   Simulation ,  Modeling ,  Systems biology ,  Optimization ,  Stochastic simulation ,  Sensitivity 
analysis ,  Parameter estimation ,  SBML ,  Stoichiometric analysis .    

    

 Biochemical networks are intrinsically complex, not only because 
they encompass a large number of interacting components, but 
also because those interactions are nonlinear. Like many other 
nonlinear phenomena in nature, their behavior is often unintuitive 
and thus quantitative models are needed to describe and under-
stand their function. While the concept of biochemical networks 
arose from the reductionist process of biochemistry, where the 
focus was on studying isolated enzymatic reactions, it is now better 
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understood in the framework of  systems biology , where the focus is 
on the behavior of the whole system, or at least several reactions, 
and particularly on what results from the interactions of its parts. 
Computational modeling is thus a technique of systems biology 
as important as its experimental counterparts. This chapter covers 
the definition and analysis of computational models of biochemi-
cal networks using the popular software COPASI. It provides 
essentially a practical view of the utility of several computational 
analyses, using established models as examples. All software and 
models discussed here are freely available on the Internet. 

 From a modeling perspective, biochemical networks are 
a set of chemical species that can be converted into each other 
through chemical reactions. The focus of biochemical network 
models is usually on the levels of the chemical species and this 
usually requires explicit mathematical expressions for the velocity 
at which the reactions proceed. The most popular representation 
for these models uses ordinary differential equations (ODEs) to 
describe the change in the concentrations of the chemical spe-
cies. Another representation that is gaining popularity in systems 
biology uses probability distribution functions to estimate when 
single reaction events happen and therefore track the number 
of particles of the chemical species. As a general rule, the lat-
ter approach, known as stochastic simulation, is preferred where 
the numbers of particles of a chemical species is small; the ODE 
approach is required when the number of particles is large because 
the stochastic approach would be computationally intractable. 

    Each chemical species in the network is represented by an ODE 
that describes the rate of change of that species along time. The 
ODE is composed by an algebraic sum of terms that represent 
the rates of the reactions that affect the chemical species. For a 
chemical species  X : 

 all reactions
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 where  s   i   is a stoichiometry coefficient that is the number of mol-
ecules of  X  consumed or produced in one cycle of reaction  i , with 
a positive sign if it is produced or negative if consumed, and  v   i   
is the velocity of reaction  i . Obviously, for reactions that do not 
produce or consume  X  the corresponding  s   i   is zero. 

 The velocity of each reaction is described by a  rate law  that 
depends on the concentrations of the reaction substrates, prod-
ucts, and modifiers ( see   Note    1  ). Rate laws are the subject of 
chemical and enzyme kinetics and are generally nonlinear (except 
the case of first-order mass action kinetics). Often these rate laws 
are saturable functions, i.e., have finite limits for high concentrations 
of substrates, products, and also for many modifiers ( see   Note    2  ). 

1.1. ODE-Based 
Models
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An example of a rate law is depicted in  Eq. 2 , which represents a 
rate law of reaction with one substrate ( S ), one product ( P ), and 
a competitive inhibitor ( I )
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 In  Eq. 2 , the limiting rate of reaction (“ V  max ”) is directly 
represented as a product of the concentration of the enzyme and 
the turnover number ( E · k  cat ). It is usually good practice to make 
this product explicit, since it is then possible to have the enzyme 
concentration be a variable of the model too. This is important 
if the model includes protein synthesis, degradation, or protein–
protein interactions. 

 These ODE models can be used to simulate the dynamics of 
the concentrations of the chemical species along time given their 
initial values. This is achieved by numerical integration of the 
system of ODE which can be carried out with well-established 
algorithms (for example  (1,   2)  but  see   Note    3  ). It is also useful 
to find steady states of the system, which are conditions when 
the concentrations of the chemical species do not change. If the 
steady state is such that the fluxes are also zero, then the system 
is in chemical equilibrium, otherwise the fluxes are finite mean-
ing that the concentrations do not change because the rates of 
synthesis balance with the rates of degradation for every chemical 
species. Steady states can be found using the Newton–Raphson 
method which finds the roots of the right-hand side of the ODE 
(which must be zero by the definition of steady state). Alterna-
tively steady states can also be found by integration of the ODE. 
COPASI can use either one of these strategies or a combination 
of the two ( see   Note    4  ). 

 Other model analyses can be carried out but a description of 
their theory in any detail is beyond the scope of this article. Some 
of them are described at a high level in  Subheading    3  , whenever 
they are used.  

    When analyzing a biochemical system which contains small num-
bers of particles of each reactant, the assumption of continuous 
concentrations fails and consequently the underlying basis of the 
ODE representation also fails. Moreover, in such conditions, sto-
chastic effects become more pronounced and may lead to dynam-
ics that differ significantly from those that would result from the 
ODE approach. In the conditions described above, one should 
then use a stochastic discrete approach for the simulation of the 
system dynamics. 

1.2. Stochastic Models
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 Stochastic models represent the number of particles of each 
chemical species and use a reaction probability density function 
(PDF) to describe the timing of reaction events. Gillespie devel-
oped a Monte Carlo simulation algorithm, known as the stochastic 
simulation algorithm (SSA) first reaction method, that simulates 
the stochastic dynamics of the system by sampling this PDF 
 (3,   4) . The theoretical derivation of this method is too involved 
to be described here, and the reader is directed to the original 
publications  (3,   4)  or a recent review  (5) . It is important to stress 
that one simulation run according to this approach is only one 
realization of a probabilistic representation, and thus provides 
limited amount of information on its own. In the stochastic for-
malism, it is very important that simulations are repeated for a 
sufficient number of times in order to reveal the entire range of 
behavior presented by such a system (i.e., to estimate a distribu-
tion for each chemical species and its dynamic evolution).   

    

    The software COPASI  (6)  will be used throughout this chapter. 
COPASI is freely available for noncommercial use ( see   Note    5  ) and 
executable versions are provided for the most popular operating 
systems: Microsoft Windows, Apple Mac OS X, Linux, and Sun 
Solaris. The source code of COPASI is also available under an open 
source license and so it can be compiled for other architectures. 

 New versions of COPASI are released often and there is a dis-
tinction between  stable  and  development  versions. Development 
versions are those where new features are introduced; stable ver-
sions have no new features and differ from the previous devel-
opment release only by having bug fixes. While testing is more 
intense in stable releases, the reader is encouraged to download 
the latest development release. Irrespective of being stable or 
development releases, COPASI releases are labeled with a  build 
number , which is sequential ( see also   Note    6  ). 

    Instructions for installation of COPASI depend on the operat-
ing system version, but all start with downloading the appropri-
ate binary from the project’s Web page   http://www.copasi.org.     
Choose the  download non-commercial  option from the site’s menu 
and then select the appropriate version for your platform. Down-
load will proceed after selecting the nearest server and accepting 
the license terms. Once the file has finished downloading, the 
installation instructions are different for each platform. 

 For Microsoft Windows, the downloaded file, Copasi-XX-
WIN32.msi, is an installation program which you should run by 

2. Materials

2.1. Copasi

2.1.1. Installing COPASI
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double clicking it. For Apple OS X, the downloaded file, Copasi-
XX-Darwin.dmg, is a disk image containing a folder named 
“copasi.” You can either start COPASI directly from the disk 
image or drop the folder into your applications folder and start 
it from there. 

 Finally, for Linux or Solaris, you need to unpack the archive 
where you want to install it (it can be in a system-wide loca-
tion like /usr/local/copasi, or in a user home, such as  ~ /copasi). 
For optimal performance you should set the environment vari-
able COPASIDIR to /usr/local/copasi (or wherever you have 
installed it).   

    “BioModels” is a database that archives biochemical models 
that have previously been published in peer-reviewed journals 
 (7) . Some examples in this chapter use models that are available 
there and so to avoid entering those models manually it is best to 
download them from BioModels. 

 Models in this database are primarily distinguished by their 
identifier, which is in the form BIOMDxxxxxxxxxx where the x’s 
represent a number. To download a specific model, point your 
Web browser to   http://www.ebi.ac.uk/biomodels/,     select the 
 search  option, type the model ID in the search box, and then click 
on the link for that model’s page ( see   Note    7  ). Once in the mod-
el’s page you can examine the model’s characteristics, including 
the citation of the original publication, who was the author of the 
model, etc. To download the model in a format that COPASI (and 
most other systems biology software) can read select the link enti-
tled  SBML L2 V1  ( see   Note    8  ) at the very top of the page, and 
download it to your local computer ( see   Note    9  ). This will be a file 
entitled BIOMDxxxxxxxxxx.xml which COPASI can import.   

    

       The COPASI user interface is composed of two main areas: a 
hierarchical organization of functions on the left (a  tree ), and a 
larger area on the right which contains the controls related with 
the function selected on the tree. All features related with model 
specification reside on the first main entry of the tree, appropri-
ately named  Model.  When this entry is selected on the left, the 
right displays the basic information about the model, such as its 
name, the units used, and a large field for comments ( see   Note    10   
and   11  ). Expanding the  Model  subtree reveals two other entries: 
 Biochemical  and  Mathematical , these are different views of the 
model. Specification of a new model is done in the  Biochemical  
part as the other is only for examining equations and matrices. 

2.2. BioModels 
Database

3. Methods

3.1. Model 
Construction and 
Basic Simulation

3.1.1. Model Specification
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 The most practical way to enter a model is to start by adding 
its component reactions. Select  Reactions  and then double click 
the first empty row of the table on the right. This will change to 
display the detailed reaction window. Enter a name for the reac-
tion and type its chemical equation, for example “NAD + ethanol 
= acetaldehyde + NADH” ( see   Note    12  ). The equals sign has 
quite a specific meaning, not only does it separate substrates from 
products, but it also means the reaction is considered kinetically 
reversible. If you want the reaction to be irreversible then you 
should use instead the combination of characters “->” ( dash  and 
 right angle bracket ). 

 After entering the reaction equation, you should select 
the appropriate rate law for this reaction. COPASI only allows 
selecting rate laws that match the characteristics of the reaction 
entered: same number of substrates and products and reversibil-
ity. You can chose a rate law from the menu; if the appropriate 
one is not available, then you can add one yourself by pressing 
the  New Rate Law  button. Type the rate law in the box, for 
example:  V / K *( A * B − P * Q  )/( K  +  A  +  B  +  P  +  Q  ). Next select 
the appropriate type of each symbol in the equation ( see   Note  
  13  ). You should also mark the reaction as  reversible  or  irrevers-
ible  ( see   Note    14  ).  Figure    1   shows this window when entering 
the above rate law. When you finish press  Commit  and go back 
to  Model Reactions  where you can now select this rate law for the 
reaction (assuming it was reversible with two substrates and two 

  Fig. 1.    Definition of a kinetic rate law       .
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products). At that point you will be able to enter the values of the 
parameters (in this case  V  and  K ).  

 You can define more compartments and change their sizes (vol-
umes) on the entry named  Compartments.  By default there is always 
a compartment called simply “compartment” of unit volume. You 
can define any number of compartments of any positive size. 

 After entering all reactions you can examine the chemical 
species by selecting  Species  on the tree which will show a sum-
mary table with all species included in the reactions. You can 
change their initial concentrations, set their compartment and 
change their type. The species type determines how its concen-
tration (actually its particle number) is calculated in the models: 
it can be set by  reactions , which means that its concentration will 
be determined by the ODE generated from the reactions or by 
the SSA; it can be  fixed , meaning that it becomes a parameter of 
the model; set by  assignments , which are algebraic expressions 
(see below); or set by arbitrary  ODE  (i.e., entered directly by the 
user). You can add extra species directly at the end of the table. If 
you double click any row, you will then see a more detailed page 
for that species alone, which additionally lists all reactions where 
the species is involved in. 

 The entry marked  Global Quantities  in the tree is to add 
explicit mathematical expressions that are to be calculated in the 
model (unlike the ODE that are defined implicitly from the reac-
tion stoichiometry and rate laws). There are three types of global 
quantity (1)  fixed , which are arbitrary constants; (2)  assignment , 
which are new variables that have their value calculated by alge-
braic expressions; or (3)  ODEs , which are new variables that are 
determined by an explicit ODE. These global quantities are use-
ful to expand the model to include features that are not directly 
linked with the biochemistry. As an example, suppose you would 
want to calculate the ratio of NADH/(NAD + NADH) at all 
times in your model, either because you just want to monitor it, 
or maybe you want to make it affect something else. Then you 
should double click the list of global quantities to enter a detailed 
form. There you should enter its name, select the type as  assign-
ment , then enter the expression in the larger box. Note, however, 
that you are not allowed to type “NADH” or “NAD,” since these 
are variables of the model (species) and you will instead have to 
select them from a dialog box: press the small button that has 
the COPASI logo ( see   Note    15  ), then select  Species ,  Transient 
Concentrations , and select “[NADH](t)”; the division sign and 
the brackets are typed directly. ODEs are set the same way, except 
that the expression is now the right-hand side of the differential 
equation that will be integrated in the model simulations.  

    The popular SBML format is used as a means of sharing models
between systems biology software, so an important feature of 

3.1.2. Importing and 
Exporting SBML
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COPASI is that it can indeed read and write models in this format. 
However, it is important to realize that COPASI can represent a 
small number of features that are not possible to be specified in 
SBML and those will be lost on export to SBML. On the other 
hand there are features of SBML that are not yet implemented 
in COPASI – when loading files with such features a warning is 
produced such that you are aware of this fact. When importing 
SBML there are also often warnings about issues with the files 
that are either not like the specifications require, or because they 
follow bad practices. In any case, even with warnings, COPASI 
almost always succeeds in importing the model if not totally, at 
least partially.  

    Once a new model has been entered or loaded it is ready to be 
used for simulation. There are two basic types of simulation:  Time 
Course  and  Steady State  which are entries under the  Tasks  branch. 
Let us use model number 10 of BioModels, a MAP kinase model 
 (8) , to illustrate these basic tasks. 

 To run time course, select the appropriate entry on the tree on 
the left and the time-course control window will appear on the right. 
You have to decide for how long you want to run the time course 
(in model time, not real time) and enter that value in the box 
labeled  Duration  (enter 1,000 for this example); you also need 
to decide how many  Intervals  in the time course you will want to 
sample, or alternatively the  Interval size  (when you set one, the 
other one updates automatically). Below are several control vari-
ables of the numerical methods, which are outside the scope of this 
article. Simply press the  Run  button to carry out the simulation, 
which will take place very fast. Expand the  Time Course  entry on 
the tree to reveal  Results  and select it. This displays a table with 
the numerical values of the time series, which can be saved to a file 
(button  Save data to file ). 

 It is also very useful to visualize the results of a time series 
simulation in a plot. To create it press the button  Output Assist-
ant  (located at the level of  Time Course ) and select the first line 
entitled “Concentrations, Volumes, and Global Quantity Values,” 
then press the button  Create! . This creates a plot definition that 
will plot all variables, however, the plot is constructed while the 
simulation runs, and thus you must run it again to make the plot 
appear. The legend of the plot is composed of buttons, one for 
each curve, and by pressing them you select/deselect that curve 
from being displayed.  

    Another important task is the calculation of a steady state of the 
model. Select the  Steady State  entry under  Tasks.  The control 
variables of the steady state deserve some attention, mainly the 
 Steady-state resolution , which is the smallest value of a change 
in species concentration that is the smallest distinguishable from 

3.1.3. Time Course

3.1.4. Steady-State 
Simulations
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zero. This value will be used to decide when to stop iterations, but 
also to recognize a steady state. Smaller values of this parameter 
lead to more accurate solutions. Another important set of control 
variables are named  Use Newton, Use Integration, Use Back Inte-
gration , which are related to the strategy used to find the steady 
state. These variables take the values 1 or 0 meaning to use them 
or not, respectively. The Newton method is a solver for nonlin-
ear algebraic equations which is very fast. However, the Newton 
method is not guaranteed to converge, therefore the integration 
method can be used to help. Integration is the method used to 
calculate a time course – this method attempts to find a steady 
state as it goes along a time course. The back-integration method 
is a fail safe device that is used when the other two cannot con-
verge and may be able to find an  unstable  steady state. Pressing 
the  Run  button will trigger all calculations. The results are also in 
a branch of the tree, below the  Steady state  and can also be saved 
to a file like the time course results.  

    One of the most frequent aims of using models to study bio-
chemical networks is to find out how certain parameters affect 
several aspects of the system. Thus it is likely that one needs to 
carry out several steady-state and/or time-course simulations at 
different values of the parameters of interest. COPASI supports 
this activity by providing a flexible scheme for changing parame-
ter values with associated simulations, which is termed  Parameter 
Scan  and is under the tree branch  Multiple Task  ( see   Note    16  ). 
The  Parameter scan  window ( Fig.    2  ) is an interface that allows 
us to specify a series of hierarchical changes in model parameters 
which culminate with the execution of a task (e.g., time-course or 
a steady-state simulation).  

 We will use here the model of the branch point of threonine/
methionine biosynthesis of Curien et al.  (9) , which is number 68 
in BioModels. This is a very simple model of the branch point 
with only one variable chemical species that has one input and 
two output fluxes. Curien et al. study the effect of the Cysteine 
(Cys) and S-Adenosylmethionine (AdoMet) on the partition of 
the output fluxes. One issue that you may wonder about is that 
while AdoMet is a chemical species, the authors of the SBML 
file decided to represent it as a constant in the kinetic rate law of 
the enzyme threonine synthase (TS). While this is not incorrect, 
it would have been clearer to define it as a chemical species with 
fixed concentration. 

 We will first investigate the effect of AdoMet on the partition 
of fluxes. In order to be able to visualize the results, we must first 
define a plot where the flux of the TS and CGS are plotted as a 
function of AdoMet. Plots are defined under the main hierarchy 
 Output  and then under  Plots . A list of plots is displayed (cur-
rently empty) and there you should double click the last empty 

3.1.5. Scanning and 
Sampling Parameters
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row which will generate the plot definition window. There you 
should define the name of the plot (“AdoMet effect on Fluxes” 
is suggested) and then create a new curve (press  New curve ) 
where you select the parameter AdoMet in the  X -axis (under 
 Reactions-Reaction Parameters-Threonine synthase-AdoMet ) and 
flux(Cystathionine gamma-synthase) for  Y -axis (under  Reac-
tions-Concentration fluxes-flux ( Cystathionine gamma-synthase )). 
Because you want to plot both fluxes in the same plot, you should 
then create a new curve again and select the same item for the 
 X -axis, but then flux (Threonine Synthase) for the  Y -axis. At this 
point each curve in the plot is represented under a different tab 
which have long titles; it is advisable to make the titles of each 
curve smaller strings for esthetic reasons, rename the first one to 
J(CGS) and the second to J(TS). The plot definition is ready; you 
can go back to  Parameter Scan.  

 The task to be carried out in this case is  Steady state  and 
we want to scan the parameter AdoMet, so in  New scan item  at 
the top select  Parameter scan  and then press… Create!  A new 
entry will appear in the stack above the steady-state task. There 
you need to select the parameter to change, press the button 

  Fig. 2.    Parameter scan window. The structure on the center right is a stack of operations that are carried out in order. 
Thus the example shown is for changing the initial concentration of Cysteine between 0.3 and 300 in five intervals 
spaced logarithmically, then for each of those change the parameter AdoMet between 0 and 100 in 50 equally spaced 
intervals, and finally to run a steady-state calculation for each value of the above       .
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marked “…” and select  Reactions, Reaction Parameters, Threo-
nine synthase, AdoMet.  The minimum and maximum values that 
this parameter will be changed also have to be entered, for exam-
ple 0 and 100 (as in  Fig.    2   of  ref.   9) , and finally the number 
of intervals desired, a value of 50 will produce a smooth curve. 
At the bottom of the stack, in the Tasks slot ( see   Fig.    2  ), you 
should disable the check  output from subtask  since we only want 
the final estimate of the steady-state calculation ( see   Note    17  ). At 
this point you can press  Run  and see the result appear as a plot 
in a new window ( Fig.    3  ). The results plotted can be saved by 
selecting the menu entry  Save data . You can also switch on or off 
each of the curves, simply by pressing its entry in the legend. This 
plot shows that increasing values of AdoMet push the flux toward 
the CGS reaction, as shown in the original  (9) .  

 Let us now ask whether the behavior changes with differ-
ent values of Cys. To do this we simply add this model entity 
to the scan and therefore perform a two-dimensional scan. In 
the  Parameter Scan  window, add another scan item by press-
ing … Create!  once again. A new slot appears where you need to 
select  Species, Initial concentrations, [Cysteine](t = 0) . Set it to 
vary between 0.3 and 300 with five intervals and tick  logarithmic 
scan  ( see   Note    18  ). You can also move this slot to the top by 
pressing the up arrow on the left ( see   Note    19  ). Press  Run  again, 
and now you will see several curves for each of the fluxes plotted. 
Each of them is for different values of Cys. As you can see, Cys 
acts by affecting the initial flux partition and also by moving the 
value of AdoMet where both fluxes are equal. 

  Fig. 3.    Results of a two-dimensional parameter scan       .
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 Finally, we will see how to do a random sample, rather than a 
scan. We shall probe 10,000 random values of the two parameters 
in the same range. For this remove the two slots of AdoMet and 
Cys by pressing the button marked X. Now select  Repeat  in the 
 New scan item  at the top and create a new slot; set the number of 
iterations to 10,000. Next select  Random distribution  in the  New 
scan item  and select the parameter AdoMet as above, and set it to 
the same limits as above. Repeat the same for Cys, also with the 
same limits. You can have both sampled from a uniform distribu-
tion. Note that the stack of operations should be read from the 
top and it means: repeat 10,000 times a random value of AdoMet 
and a random value of Cys and calculate the steady state. To visu-
alize these results it is best to just plot symbols and not connect 
them with lines, so you have to go back to the plot definition and 
change  Type  to  symbols  for each of the curves (it was  lines ). Go 
back to  Parameter Scan  and press  Run . The run now takes some 
more time (there are 10,000 simulations, after all) and finally you 
should obtain a plot as in  Fig.    4  . Each point plotted represents the 
steady-state flux for a pair of values of AdoMet and Cys. It is very 
easy to add more parameters to this sampling, by adding more 
slots associated with those parameters and moving it below the 
 Repeat  slot. It is even possible to combine a sequence of repeats 
below scans below other repeats, etc. This feature of COPASI is a 
very powerful means to program complex simulations.    

  Fig. 4.    Results of a two-dimensional parameter random sampling       .
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    While the analysis of the dynamics of biochemical models is seen 
as the ultimate goal of these models, some properties of the model 
reveal themselves even without considering the kinetics of the reac-
tions involved. These properties are sometimes known as  struc-
tural properties  because they depend only on the structure of the 
network, or as  stoichiometric properties  because they depend only 
on the stoichiometric coefficients of  Eq.  1. COPASI provides two 
 stoichiometric analyses (1) identification of elementary flux modes 
 (10,   11)  and (2) identification of mass conservation relations  (12) . 

    Elementary flux modes are the minimal subsets of reactions that 
would still be able to maintain a steady state if isolated from the 
rest of the network  (10) . They are the basic components of flux 
and any observable flux is a linear combination of these. They can 
also be seen as “functions” that the network fulfills because they 
represent parts of the network that could still operate even when 
the rest of the network had been removed. They can be useful 
to identify what functions would be lost by removing a specific 
reaction from the network (e.g., by a gene knockout) and also 
to calculate maximal yields of a certain end product that can be 
obtained from some substrate  (11) . 

 Let us use a model of erythrocyte metabolism by Holzhütter
 (13) , which is model 70 in the BioModels database. Download 
the corresponding SBML file and import it into COPASI as 
described before. You can examine the model by inspecting the 
various categories under the  Model  section, where you will find 
that it is composed of 38 reactions. The  Elementary Modes  task 
is under  Tasks-Stoichiometry . To run this task simply press  Run  
button on the bottom left of the right pane as there are no other 
choices to make. The table on the right pane should now be 
filled and at the top there is an indication that the model can be 
decomposed into 105 elementary modes. The table, depicted in 
 Fig.    5  , lists each of the modes in detail. The first column indi-
cates whether the mode is reversible or irreversible ( see   Note    20  ); 
the second column lists the reactions that compose the mode and 
the third column lists the actual reaction equations. Note that 
in the second column, the name of the reaction is preceded by a 
number which is a multiplier for that flux, and if the number is 
negative then the flux of that reaction goes in the reverse direc-
tion in this elementary mode. In the mode depicted in  Fig.    5  , 
Glucose transport operates in the reverse direction (glucose is 
exported) while Bisphosphoglycerate mutase operates in the 
forward direction threefold faster than Glucose transport.  

 Elementary flux modes can either link a source to a sink 
(external substrates and products of the model) or be cyclic. 
The overall chemical reaction of the mode depicted in  Fig.    5   
is 2*External Lactate + PRPP = 2*External Pyruvate + 3 Exter-
nal Phosphate + Glucose outside ( see   Note    21  ). This erythrocyte 

3.2. Stoichiometric 
Analyses

3.2.1. Elementary Flux 
Modes
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model also contains cyclic flux modes. In the list of 105 there is, 
for example, a reversible mode composed of Phosphoglycerate 
kinase, Bisphosphoglycerate mutase, Bisphosphoglycerate phos-
phatase, and ATPase. Cyclic modes have no net production or 
consumption of any metabolite (thus they are sometimes called 
 futile cycles ). 

 To save the results of the elementary mode analysis you first 
need to set a report file: press the button labeled  Report  on the 
bottom right, then press  Browse  and enter a filename for your 
report in the desired folder. You will then have to press the  Run  
button again in order to create the report. The report is a tab-
delimited text file that contains a table with the same information 
as displayed in the front-end. You can read this file with a plain 
ASCII text editor, such as “wordpad” in Windows; you can also 
import this file into a spreadsheet program like “Excel.”  

    Mass conservation relations are algebraic sums of amounts of 
chemical species that are constant in any state of the model. These 
algebraic sums imply that the amounts of some chemical species 
are constrained, such that one of them can be directly calculated 
from the others using the algebraic expression. A special case of 
mass conservation relations is when there is conservation of a 
chemical moiety ( see   Note    22  ). 

 Let us continue with the erythrocyte model, and examine 
the mass conservation relations that it contains. The  Mass Con-
servation  task is also under  Tasks-Stoichiometry  and is also run by 
pressing the  Run  button on the bottom left of the right pane. 

3.2.2. Mass Conservation 
Relations

  Fig. 5.    Elementary flux modes       .
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The results of this analysis will appear in a new entry marked 
 Results  that appears below  Mass Conservation  (in the tree on the 
left), which you have to select to inspect the results. 

 The erythrocyte model has seven mass conservation relations 
as shown in  Fig.    6  . The results are listed in a table where the first 
column identifies the chemical species that COPASI will calculate 
from the mass conservation (the  dependent  species,  see also   Note  
  23  ). The second column lists the total number of particles of 
this conservation relation. The third column contains a button 
labeled “…” which creates a new global quantity that mirrors the 
total number of particles. Finally, the fourth column contains the 
actual expression which is constant. In the erythrocyte model, 
the first of these relations reads: “Protein2 bound NADPH” 
+ NADPH + NADP − Protein1 + “Protein2 bound NADP” = 
1.6862 × 10 19 . That means that adding the number of particles 
of all the species with a positive sign and subtracting those with 
a negative sign adds up to 1.6862 × 10 19  particles. This algebraic 
expression is constant throughout any condition of this system, 
except when the initial amounts of any of the chemical species 
involved change (in which case the total would be different). In 
particular, this expression is always true during any time course 
and thus does not depend on the dynamics of the system. The 
reader may recognize the second relation in  Fig.    6   to be the con-
servation of the Adenine moiety, the third is conservation of Mg, 
the fifth is conservation of Protein 1, the sixth is conservation of 
the NAD moiety, and the seventh conservation of the glutath-
ione moiety. Together, relations 1 and 4 represent the conserva-
tion of the Protein 2 moiety (when summing the two, NADP, 
NADPH, and Protein 1 cancel out, leaving just the Protein 2 
forms). Together, relations 1, 4, and 5 represent the conservation 
of the NADP moiety and also that its total is inversely related 
with the total of the free protein forms (expressed by the result of 
computing relation 1 − relation 4 + relation 5). This last complex 

  Fig. 6.    Mass conservation relations       .
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relation appears due to the fact that whenever the free forms of 
the proteins react they always do it with NADPH or NADP – the 
three moieties (NAD, Protein 1, and Protein 2) are intertwined.  

 Note that there are other results of this task, which can be 
inspected by selecting the tabs  Stiochiometry ,  Link Matrix , and 
 Reduced Stoichiometry . These are the matrices that are used to 
calculate these conservation relations and are described in the 
theoretical derivations of Reder  (12) . To save all of the results of 
this task, just press the  Save data  button on the top right corner, 
which creates a tab-delimited ASCII file.   

    As discussed in the context of parameter scans, it is frequently 
desirable to investigate the behavior of a model systematically. In 
addition, every model contains a number of parameters (kinetic 
constants, initial concentrations, and so on) whose values are not 
all known exactly. Changing the values of the parameters will of 
course change the behavior of the model, so it is interesting to 
find how much the model depends on parameters. Sensitivity 
analysis describes how much does a specific parameter change the 
behavior of the model. This is useful for several reasons:
  •  In many cases the value of a parameter is unknown. For exam-

ple, while  K   m   values of enzymes can be measured relatively 
easily in vitro, often the enzyme concentrations in vivo are not 
well known. In this situation, sensitivity analysis can tell us if it 
is important to know a specific parameter value. If a parameter 
is found not to affect the system very much, a rough guess for 
its value may be sufficient. If, on the other hand, a parameter 
influences the behavior of the model significantly, steps must 
be taken to find out its value more accurately, either by execut-
ing more experiments or by literature searches.  

 •  Sometimes the aim of research is to change the behavior of 
the system. Perhaps we want to increase the yield of some 
biotechnological production process, or to find a drug that 
inhibits a metabolic pathway. Sensitivity analysis can give hints 
about which parameters should be changed to achieve a spe-
cific effect.  

 •  Robustness with respect to external influences is an important 
property of biological systems. Living organisms need to be 
able to function under a wide range of environmental condi-
tions. This means some biological processes need to be rather 
insensitive to parameter changes. On the other hand an organ-
ism needs to react to its environment, so other processes need 
to be very sensitive to external influences. Therefore robust-
ness (or the lack of robustness) is an interesting property of 
biological systems, and sensitivity analysis is a way to deter-
mine this.    

3.3. Sensitivity 
Analyses
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 One should note that sensitivities as they will be described 
below are only able to provide a local description of robustness. 
This means that its results are only valid for a given parameter 
set (set of environmental conditions). If several parameters were 
to change at the same time then the individual sensitivity coef-
ficients would also be expected to change. COPASI contains two 
frameworks for doing sensitivity analysis: metabolic control anal-
ysis (MCA) and generic sensitivities. 

    MCA is a concept developed by Kacser and Burns  (14)  and Hein-
rich and Rapoport  (15) . Its most practical formulation deals only 
with steady states ( see   Note    24  ) and provides means to quan-
tify how much the rates of the various reactions of a network 
affect the concentrations and fluxes at the steady state. A deeper 
description of the theory does not fit this text and the reader is 
directed to specialized reviews and books  (16–  19) . 

 As an example we use a model of sucrose accumulation in 
sugar cane  (20) , model 23 in BioModels. After importing the 
SBML file into COPASI select  Tasks  and  Metabolic Control Anal-
ysis  in the tree on the left ( see   Note    25  ). Then simply click the 
 Run  button on the right. The  Results  window then presents a 
screen with three tabs labeled  Elasticities  ( Fig.    7  ),  Flux Control 
Coefficients  ( Fig.    8  ), and  Concentration Control Coefficients .   

 The  elasticity coefficients  (or simply elasticities) quantify the 
amount of change of a reaction rate with the change in concentration 

3.3.1. Metabolic Control 
Analysis

    Fig. 7.   Display of elasticity coefficients. Note that the cells of the matrix are colored according to the magnitude of the 
values, green for positive values and red for negative (colors not shown in this figure).       
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of a certain chemical species. The elasticities of all the reactions 
with respect to all the species in the model are calculated by 
COPASI and displayed in a table where the columns correspond 
to the species and the rows to the reactions. Consider the line 
labeled “(v8)” ( Fig.    7  ): the numbers in this line describe how 
the flux of reaction  v8  (HexP + Fru = Suc + UDP) changes with 
changes of the concentrations of the different species. Notice pos-
itive values for “HexP” and “Fru,” which are the substrates of the 
reaction. This means an increase of 1% in Fructose concentration 
would increase the speed of the reaction by 0.61% ( see   Note    26  ). 
Correspondingly the elasticity with respect to the product ( Suc ) 
is negative – an increase in product concentration would lead to a 
lower flux. Another case, in line “(v4)” the negative value for  Glc  
indicates that glucose is an inhibitor for this reaction. An elastic-
ity equal to zero means that the metabolite concentration has no 
influence on the reaction rate ( see   Note    27  ). 

 The elasticities are properties strictly of a single reaction and 
are independent of the rest of the system (the elasticity of reac-
tion A toward species B does not depend on reactions C, D, etc.). 
The calculation of elasticities is carried out only from the kinetic 
rate law of the respective reaction. Likewise, in an experiment the 
elasticity could be measured in vitro using the purified enzyme, 
so long as the concentrations of its substrates and products are set 
to their physiological value (and the enzyme properties remain 
the same after purification). 

 Note that in COPASI all sensitivities (i.e., MCA and generic 
sensitivities) can be displayed with either scaled or unscaled 
values. The scaled values describe relative changes, e.g., a scaled 
sensitivity of 0.5 means that if the parameter is increased by 10% 
the target value will increase by 5% (0.5 times 10%). The unscaled 
sensitivities describe absolute changes, e.g., an unscaled elasticity 
of 0.5 could mean that increasing the substrate concentration by 

  Fig. 8.    Display of flux control coefficients       .
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1  m M will result in an increase of the reaction flux by 0.5  m M/s 
(if those are the units that are used in the model). The scaled 
sensitivities are the ones most discussed in literature, particularly 
for MCA (but  see   ref.  12) . 

 The next tab shows the  Flux Control Coefficients  ( Fig.    8  ). 
Unlike the elasticities, control coefficients are global properties 
that depend on the whole system. They quantify the extent of 
change of the steady-state flux of one reaction when another 
reaction is made slower or faster. For the MCA formalism it 
does not matter  how  the reaction is made faster or slower, but in 
practice changing the enzyme concentration is the most practi-
cal solution. Imagine a system in a steady state in which at some 
point we increase the concentration of one of the enzymes by 1%. 
After some time a new steady state will be reached, potentially 
all the concentrations and fluxes in the system will have changed 
slightly. The relative change of one of the reaction fluxes is the 
flux control coefficient of this reaction with respect to the reac-
tion with the changed enzyme concentration. Like in the case of 
the elasticities, all combinations of flux control coefficients are 
calculated by COPASI and displayed in a table where the column 
indicate the rate of reaction that is changed and the row indicates 
the flux of the reaction that has been affected. The fact that the 
table contains almost no zeros already indicates that these are 
global properties of system: a change in one reaction changes the 
steady-state fluxes of all reactions. 

 In the example of the sucrose accumulation model, one thing 
that stands out immediately is that two lines (“(v6)” and “(v7)”) 
are identical. This is very common in flux control coefficients 
and comes from the fact that the two reactions (HexP®UDP + 
Suc6P and Suc6P®Suc + P) form a chain without any branches 
in between, so that their steady-state flux is always the same. 
The original publication of the model discusses the accumula-
tion of sucrose in sugar cane (reaction  v11 ) vs. the hydrolysis of 
sucrose (reaction  v9 ), arguing that the sucrose accumulation is 
most effective when the flux of  v11  is large and that of  v9  is small. 
Inspection of the last row of the table calculated in COPASI indi-
cates the control that each reaction has over the flux of  v11  and 
it is interesting that the largest coefficient (0.464) corresponds 
to  v3 . This means that with an overexpression of hexokinase (the 
enzyme that catalyzes  v3 ) by 10% we expect an increase in the 
rate of sucrose accumulation of about 4.6%. However, reaction 
 v3  also has a high control over the flux of  v9 , in fact much larger: 
1.558; thus  v3  is not a good candidate for manipulation because 
while it would stimulate sucrose accumulation it would lead to a 
much larger increase in the hydrolysis of sucrose actually decreas-
ing the overall efficiency. Rohwer et al. argue that the fructose/
glucose transporters ( v1  and  v2 , the first two columns) are better 
candidates for this purpose since increasing their rates causes a 
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simultaneous increase in sucrose accumulation and decrease in 
hydrolysis (as indicated by a negative control coefficient). 

 From this example of a relatively simple model with only five 
variables, it becomes evident that there is no intuitive way to rea-
son about the response of the system to perturbations from the 
network structure alone. In even moderately complicated models 
it is impossible to predict which enzymes control the fluxes with-
out performing actual sensitivity analysis calculations. 

 Another issue that may be obvious to some readers from  Fig.    
8   is that the values of each row in the table sum up to 1. This is 
a reflection of the flux control summation theorem  (14) , which 
allows us to reason about the system. For example, if the value of 
a flux control coefficient is known to be 0.3 then one can be sure 
that also other reactions will control that specific flux (since the 
coefficients have to add up to 1). 

 The third tab of the results window contains the  concentra-
tion control coefficients . These are similar to their flux counter-
parts, and describe how the steady-state concentrations change 
depending on the changes in specific reaction rates. The main 
difference between these and the flux control coefficients is that 
they add up to 0 rather than 1. 

 An important thing to keep in mind about both the  elasticities  
and the  control coefficients  is that they provide information only 
about small changes to the model. So while you can in many cases 
reliably predict from the control coefficients what the effect of a 
5% increase in the expression of one enzyme will be, it is not pos-
sible to predict the effect of a tenfold increase or decrease. This 
type of information, however, could be obtained from parameter 
scans, i.e., by direct numerical simulation, however, that would 
be for a single parameter at a time ( see   Note    28  ). 

 MCA is a powerful concept, and the way it is implemented in 
COPASI is numerically robust  (12) . Basically whenever COPASI 
is able to find a steady state, the MCA calculations will also pro-
vide reliable results.  

    Control coefficients are concepts geared toward an interpretation 
that is dominated by changes in enzyme concentrations (derived 
from gene expression), as they only measure the effects of chang-
ing the overall rate of reactions. It is also interesting to study how 
other parameters, such as  K   m  , affect the model behavior. In MCA, 
these generic sensitivities are known as  response coefficients  and 
measure the change in a system property effected by any system 
parameter ( see   Note    29  ), however, these have no known special 
summation theorems. COPASI can also calculate these generic 
sensitivities and to access this feature we select  Multiple Task and 
Sensitivities  in the tree on the left; the corresponding sensitivities 
window is depicted in  Fig.    9  . Basically these generic sensitivities 
(response coefficients in the vocabulary of MCA) are for arbitrary 

3.3.2. Generic Sensitivities
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values in the model ( Functions  in  Fig.    9  ) with respect to arbitrary 
parameters ( Variables  in  Fig.    9  ) and are calculated numerically 
using finite differences (i.e., not using a matrix method from elas-
ticities,  see   Note    30  ).  

 Generic sensitivities can also be calculated for time courses, 
but we will start with a steady-state example. Make sure that  Sub-
task method  is set to Steady State. In the  Function  select  Concen-
tration Fluxes of Reactions , meaning that we want to calculate how 
the steady-state reactions fluxes (measured in concentration units) 
are affected by parameter changes. Next the parameters of inter-
est need to be selected in  Variables . For this example, select  All 
Parameter Values  that will calculate the sensitivities with respect to 
all kinetic parameters in the model. After pressing the  Run  button 
results will appear in its window, and we shall discuss the  Scaled  
tab ( Fig.    10  ). Once again, the rows correspond to the reactions 
(as in the flux control coefficients table) and the columns cor-
respond to the kinetic parameters of the model. Since there are 
usually several parameters for each reaction, this table does not fit 
entirely on the screen and the scroll bar needs to be used.  

 A comparison of this table with that of  Fig.    8   reveals that col-
umns 3 and 6 here are identical to columns 1 and 2 of  Fig.    8  . This 
is expected because the sensitivities of fluxes toward  v  max  param-
eters can be shown to be the same as flux the control coefficients 
(unless there are enzyme–enzyme interactions). However, we can 
see from the sensitivities that some of the inhibition constants 
(e.g., column 1) also strongly affect the fluxes. 

  Fig. 9.    Generic sensitivities window       .
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 The generic sensitivities feature allows the calculation of many 
other kinds of sensitivities as well. For example, the sensitivity of a 
simulation result with respect to the initial concentrations could 
also be calculated. It is also possible to calculate second-order 
sensitivities ( sensitivities of sensitivities, see   ref.   21)  which can help 
determining whether sensitivity analysis results are valid over a 
larger parameter range.   

    Optimization is the search for maximum or minimum values of 
some function (the  objective function; see   Note    31  ). In biochem-
ical modeling, optimization can be used to find conditions in 
which the model behaves in some desired way  (13,   22) . Because 
biochemical models are composed of nonlinear functions, their 
variables may have several minima or maxima, thus the problem 
is usually of  global optimization  where one wants to find the larg-
est of all maxima or the smallest of all minima. Global optimi-
zation problems are hard to solve and it is well known that no 
single algorithm is best for all problems  (23) . Thus COPASI is 
equipped with a diversity of optimization algorithms that follow 
very different strategies ( see   Table    1  ), and in general one should 
search the best solution with more than one algorithm (and at 
least one should be a global optimizer).  

 To demonstrate an application of optimization we will con-
tinue analyzing the model of sucrose accumulation in sugar cane 
 (20) , which is model 23 in BioModels. Remember that accu-
mulation of sucrose is measured by the steady-state flux of reac-
tion  v11  but there is also a certain amount of sucrose hydrolysis, 
reaction  v9 , that decreases the efficiency of accumulation. So one 
important question is what conditions lead to a low proportion 
of sucrose hydrolysis relative to accumulation. This can be seen as 
a typical optimization problem, where we are interested in mini-
mizing the ratio of fluxes  J   v9  / J   v11   – our objective function. In all 

3.4. Tuning Models 
with Optimization 
Methods

  Fig. 10.    Results of generic sensitivity analysis       .
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optimization problems, it must also be specified which param-
eters of the model are allowed to change in order to meet the 
objective. In this particular example, let us imagine that we could 
manipulate the steady-state level of the enzymes of reactions  v1 , 
 v2 ,  v3 ,  v4 , and  v5  (e.g., by overexpression or by interfering with 
the upstream regulatory sequences of their genes). The question 
then becomes what would be the best combination of the levels 
of these enzymes to achieve the lowest possible ratio  J   v9   / J   v11  . The 
parameters that are allowed to change are then the  Vmax  of the 
five reactions. 

 In COPASI, the optimization task is found under  Multiple Tasks  
and then  Optimization  in the tree on the left. The application of 

  Table 1 
  Optimization algorithms available in COPASI Version 4.4 (Build 26)    

 Algorithm  Strategy  Type  References 

 Evolutionary
 programming 

 Evolutionary algorithm with adaptive mutation rate 
without recombination 

 Global   (24)  

 Evolution strategy 
(SRES) 

 Evolutionary algorithm with numerical 
recombination, selection by stochastic ranking 

 Global   (25)  

 Genetic algorithm  Evolutionary algorithm with floating-point encoding 
and tournament selection 

 Global   (26)  

 Genetic algorithm 
SR 

 Variant of Genetic algorithm where selection is by 
stochastic ranking 

 Global   (25,   26  )

 Hooke and Jeeves  Direct search algorithm based on pattern search  Local   (27)  

 Levenberg–
Marquardt 

 Gradient-based, adaptive combination of steepest 
descent and Newton method 

 Local   (28–  30)  

 Nelder–Mead  Direct search method based on geometric heuristics  Local   (31)  

 Particle swarm  Inspired on social insect search strategies; works with 
population of candidate solutions like evolutionary 
algorithms 

 Global   (32)  

 Praxis  Direct search method based on the alternate direction 
(minimize one dimension at each time) 

 Local   (33)  

 Random search  Random search with uniform distribution (a shotgun 
approach) 

 Global 

 Simulated 
annealing 

 Monte Carlo method that mimics the process of 
crystal formation (biased random search with 
Boltzmann distribution) 

 Global   (34)  

 Steepest descent  Gradient method based on first derivatives (estimated 
by finite differences) 

 Local 

 Truncated Newton  Based on Newton method (uses second derivatives)  Local   (35)  
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optimization to biochemical modeling consists typically of three 
parts (1) the objective function, (2) the adjustable parameters, 
and (3) the search algorithm. This is mirrored in COPASI’s inter-
face as seen on  Fig.    11  . First, the objective function must be set 
by entering the mathematical expression  J   v9  / J   v11  , this is done by 
selecting the required model entities from a menu that is acti-
vated by pressing the small button with the COPASI icon (at the 
right) ( see   Note    15  ).  J   v9   appears as <(v9).Flux>, then you have 
to enter the division sign from the keyboard, and finally select 
 J   v9   which appears as <(v11).Flux> ( see   Note    32  ). If you wanted 
to instead maximize this expression you should precede it by a 
minus sign (so that you minimize its symmetric).  

 Next you need to select the adjustable parameters, i.e., 
those that are allowed to change. To add one parameter to the 
list press the  New  button (the one with a blank page) and then 
the button with the COPASI icon to select the actual parameter. 
COPASI provides a shortcut to add all parameters: select the first 

  Fig. 11.    Optimization window, with an objective function definition at the top, a list of adjustable parameters at the center, 
and an optimization algorithm at the bottom       .
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one by expanding  Reactions , then  Reaction parameters  and then 
 v1  where you select  Vmax1 ; but then rather than just accepting 
that, expand the other reactions of interest one by one, and while 
pressing the CTRL key (or the APPLE key on Macs) also select 
also  Vmax2, Vmax3 ,  Vmax4 , and  Vmax5.  When you finish, all 
five parameters will be listed. You will realize that they are listed 
inside the interval between −infinity and +infinity, which is quite 
large indeed, but in general we want tighter limits. Let us say 
that it is feasible to downregulate the enzyme concentrations to 
50% and to overexpress it by 400% in this example. To change all 
of the boundaries together select all five rows, then remove the 
check on  − inf and type  − 50% on the box; similarly, remove the 
check on +inf and type  + 400% on the box below, after changing 
the cursor to another field, the limits of each parameter will have 
changed to the appropriate values ( see   Note    33  ). The start values 
are by default those that are specified in the model section but 
they could be changed; yet we shall leave them as they are now 
( see   Note    34  ). Please note that if the start value of a parameter 
is outside the boundaries specified, COPASI will force it to the 
nearest boundary during the optimization. 

 Finally, one needs to select the method of optimization 
desired. For our first attempt let us use the  Truncated Newton  
method and press  Run  which will quickly finish. Then move on 
to the  Results  section (on the left tree, below Optimization). 
This will show that the objective function value obtained was 
0.000593843 ( see   Note    35  ), and below you will see listed the 
values of  Vmax  for each of the reactions. You will realize that 
 Vmax1  and  Vmax2  are close to the upper limit specified (indeed 
as argued in  ref.  20) , and  Vmax3 ,  Vmax4 , and  Vmax5  are near 
the minimum specified. This means that we would need to over-
express the first two enzymes and downregulate the remaining 
three. The reader may wonder about this solution, particularly if 
compared with the network diagram in  Fig.    1   of  ref.   20 , one clue 
is given by the concentrations achieved in this solution, which 
you can inspect if you switch to the tab named  Species  (at the top 
of the right pane). Both Fructose and Glucose are very highly 
concentrated (almost 1 molar for Fructose) – it seems that the 
best way to minimize hydrolysis of sucrose and maximize its stor-
age is to maintain a very high concentration of the products of 
the hydrolysis. However, this solution may not be achievable in 
practice due to the high concentrations of the intermediates. 

 After considering the results of the previous analysis, it 
becomes interesting to ask the same question but now not allow-
ing the concentrations of Glucose and Fructose go above 100 
mM. This is a new set of requirements of the method named  con-
straints  as they attempt to force the solution to a more restricted 
domain. To enter constraints, return to the  Optimization  page, 
and select the tab named  Constraints  in the center of the page. 
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Then let us add the constraints like we added the adjustable 
parameters, pressing  New  and then the COPASI icon, and then 
expand  Species  and  Transient concentrations  and select  Fru  and 
 Glc . Set the lower limit to 0 and the upper to 100. Now press 
 Run  again and inspect the result, which is now a ratio of fluxes of 
0.0679853 (about 100× higher than the previous solution), and 
the concentration of Fru is 89 and Glc is 99. 

 Now select a different method of optimization, for exam-
ple  Particle swarm  and set the  Iteration Limit  to 50 (the default 
of 2,000 is way too long for this problem) and run again. This 
method takes longer, and you will see a window appear with a 
progress dialog, which shows the number of function evaluations 
and the current value of the objective function. At the end it is 
possible that a window appear with several warnings, if so please 
 see   Note    36  . In the end, it will show an objective function value of 
0.0584978 or somewhere close to that. Run this a few times and 
note that the result differs each time; this is because the algorithm 
is stochastic and it does not always necessarily converge to the 
same value ( see   Note    37  ). Note that now the concentrations of 
Fru and Glc are within 0.1% of the upper limit of 100. This shows 
the great utility of optimization methods in biochemical mod-
eling, and the MCA/sensitivity approach would never be able to 
answer this constrained problem. With optimization we can solve 
practical problems with realistic constraints (not just calculations 
based on infinitesimal changes). It is also very reassuring to realize 
that the modeler is entirely driving the process  by the definition of 
objective functions and constrains , which are a means of directing 
the computations to solve specific problems. Optimization is an 
excellent way to explore the space of behavior of complex multidi-
mensional models, such as those of biological systems.  

    Biochemical models depend on many parameters, but quite fre-
quently the values of these parameters are unknown and have to 
be estimated from some data. Parameter estimation is a special case 
of an optimization problem, in which one attempts to find values 
for a set of model parameters that minimize the distance between 
the model behavior (simulation results) and the data. COPASI 
provides specific parameter estimation functionality that is based 
on the optimization methods described in  Subheading    3.4  . 

 COPASI measures the distance between model and data 
using an expression that is derived from a least-squares approach 
 (36) . The objective function used is:

 ( )−∑ ∑ ∑
2

( ) Y ( ) ,k,i k,i, j k,i, ji j k
O p = Xw p

   
(3)     

 where  X   i,j,k   is the experimental value of variable  i  at measurement 
 j  within experiment  k  and the corresponding simulated data 
point is given by  Y   k,i,j  ( p ) where  p  is the vector of parameter values

3.5. Parameter 
Estimation
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used for the simulation. It is important that the data for the dif-
ferent variables be of comparable magnitudes so each group of 
values for each variable in each experiment is multiplied by a 
weight   w    k,i   ( see   Note    38  ). 

    To illustrate parameter estimation we shall use the MAP kinase 
cascade model of Kholodenko  (8)  which is model 10 in BioMod-
els. You will also need some experimental data, and a file (MAPK-
data.txt) is provided at   http://www.comp-sys-bio.org/tiki-index.
php?page=CopasiModels.     You must download this file and store 
it in the same folder where you have put the SBML file with the 
model that was downloaded from BioModels. The data contained 
in this file are for “measurements” of the single-phosphorylated 
form of MAPK and of the phosphorylated MAPKK at various 
time points ( see   Note    39  ). The problem then consists of adjust-
ing the  V  max  parameters of a few reactions in order for the model 
to be as close to the data as possible.  

    As implied in the objective function above ( Eq.  3), COPASI 
allows fitting the model to multiple experiments simultaneously. 
The software also allows using steady-state and time-course data, 
which can even be used together (i.e., some experiments be time 
courses while others are steady-state observations). The experi-
mental data must be provided in ASCII data files with columns of 
data delimited by tabs or commas; each column will be mapped 
to a model entity. Since COPASI knows nothing about your data 
files, there is a necessary step of creating a mapping between the 
data columns and model entities. To make this mapping easier we 
suggest that the data file should include a row of column head-
ings. Additionally, if there are several experiments in a single file, 
these experiments should be separated by an empty line (allowing 
COPASI to detect the beginning and end of each experiment’s 
data automatically). Each column of an experiment data file must 
be classified as one of the types listed in  Table    2  . Even if some 
columns are not needed, they must be classified as  ignored . It is 
important that all columns of type  independent  and  dependent  are 
actually mapped to the actual model entities they correspond to .   

 At this point it is best to proceed with the MAPK example and 
you should examine the structure of the data file with a plain text 
editor, for example Notepad on Windows (a spreadsheet will also 
work, as long as you do not overwrite the file). Then import the 
SBML file in COPASI and select  Multiple Tasks  and  Parameter 
Estimation . The complete specification of the data file format is 
done in a dialog box ( Fig.    12  ) that is invoked with the  Experimen-
tal Data  button. To add the data file press the  New  button (blank 
page) that is above the box named  File . Select the MAPKdata.txt 
file that you have previously downloaded, and then COPASI will 
automatically recognize that there is one experiment in this file 

3.5.1. Example

3.5.2. Experimental Data
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that it names  Experiment  (you can change this if you like) and that 
it goes from line 1 to line 11, including the header in line 1. You 
must indicate that these data are from a time course, so select the 
appropriate check box on the  Experiment Type . The table at the 
bottom of this dialog box indicates the columns found in the data 
file for the current experiment, and under the heading  Column 
Name  it reproduces the titles in the header (line 1 of the file). 
The first column has been identified as type  Time  because of its 
title, the remaining two are set to the default type  ignored.  Since 
these columns contain the measurements of the concentrations of 
MAPKKK-P and MAPK-P you have to set their type to  dependent.  
When you do that, a new dialog appears for you to point to the 
actual model entity that this column represents, select  Species  and 
then  Transient Concentrations  and chose the appropriate one ( see  
 Note    40  ). Repeat the process with the other column; when you 
finish the dialog box should look the same as  Fig.    12  .  

 Note that COPASI has already determined values for the 
weights (  w    k   , i   in  Eq. ); the brackets indicate that they were calcu-
lated rather than set by you. However, you are free to change any 
weight by editing them and removing the brackets (but note that 
they should always be positive numbers smaller or equal to 1). 

  Table 2 
  Classification of data types for mapping experimental data to the model entities    

 Data type  Meaning 

  Independent   Independent model items are those which need to be set before the experiment 
takes place. Possible model elements are initial concentrations but could also 
be kinetic parameters. Note that in time-course experiments only the first row 
of independent data columns is used (since it refers to the initial state of the 
system). Columns of this type must be associated with elements of the model 

  Time   This column type is only available for time-course experiments and is a special case 
of an independent model item. Obviously one and only one column of this type 
may exist in each time course experiment. COPASI will attempt to automatically 
identify this column if there are column headers but it may fail and in such a 
case you must set this type for the appropriate column 

  Dependent   The dependent data are those that were measured in the experiment and are enti-
ties in the model that are variables (i.e., determined from the solution of equa-
tions rather than set by the modeler). These are the target data that COPASI 
attempts to match, and are the data specified in the objective function ( Eq.  3). 
Columns of this type must be associated with the actual model elements that 
they correspond to 

  Ignored   These are columns of data that the user does not want to include in the problem. 
Columns marked in this way are not taken into account in the parameter fitting 
task. This is useful to ignore potential irrelevant columns of data files. This set-
ting is also useful to “switch-off” using one data column when desired 
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It is important to realize that changing the weights affects the 
ability of the software to perform the fit, and particularly bad 
choices might entirely prevent success of the fit. COPASI con-
tains three different methods to calculate these weights ( mean , 
 mean square , and  standard deviation , respectively), as depicted 
in  Eqs. 4–6 :

 
w 1 / ,j,k j,k= X

  (4) 

 
w 21 / ,j,k j,k= X

   
(5)

  

 ( )−21 / ,j,k j,k j,k j,k= X X Xw
  . 

(6)   

 The  mean  and  mean square  methods ( Eqs. 4  and  5 ) assure 
that data columns with small values contribute in the same order 
of magnitude to the objective function as columns containing 
large values. The  standard deviation  method ( Eq. 6 ) sets larger 
weight to columns that have little fluctuations.  

    Obviously the exercise of parameter estimation requires one to 
select the parameters that are to be estimated. Typically these are 
initial values (concentrations, volumes, etc.) or parameters of the 
kinetic functions of the reactions (or arbitrary ODE if there are 
any in the model). The selection of these parameters and their 
boundaries is specified in exactly the same way as for optimization 
( see   Subheading    3.5.2  ). 

3.5.3. Estimated 
Parameters and 
Constraints

  Fig. 12.    Experimental data definition window       .
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 Sometimes it is necessary to estimate a parameter differently 
for each experiment, meaning that the software should estimate 
one value per experiment rather than a single value that best fits 
 all  experiments (which is the default). For example this is needed 
when one has executed replicate experiments but where one is 
not confident that the initial concentration of a chemical species 
is the same in all experiments. COPASI is able to deal with this, 
allowing the user to restrict the effect of a parameter to a subset 
of the experiments listed (obviously this only matters when there 
are several experiments, but this not the case in the present exam-
ple). The button labeled  Duplicate for each experiment  is there for 
this purpose and will multiply the parameters selected when it is 
pressed to as many new parameters as there are experiments. 

 It is also possible to define constraints, just like in the opti-
mization task. But beware that adding any arbitrary constraints 
may well render a problem unsolvable if the constraints cannot 
be fulfilled. Remember that the main constraints you want for the 
model is that it fits the data, so the use of constraints in parameter 
estimation should be taken with care or avoided if possible. 

 For the present example of the MAPK model, select the reac-
tion limiting rates  V1 ,  V2 ,  V5 ,  V6 ,  V9 , and  V10  and set their 
limits to be  − 90% and +90% of their original values, in the same 
way as in the optimization example above.  

    At this point the parameter estimation problem has been com-
pletely specified and the actual fitting task can proceed using 
any of the optimization methods available ( see   Table    1  ). Before 
running the task it is advisable to define a plot to monitor the 
progress of the fit and another one to examine results. It is also 
important to save the file in COPASI format (in case you want 
to come back to it later, since the SBML file does not contain 
instructions for the parameter estimation). To create the plots 
mentioned press the button  Output Assistant  which lists a series 
of plots and reports that are commonly useful. You can select the 
plot named  Progress of Fit  and press  Create , which will generate a 
plot of the values of  Eq.  3 vs. the number of function evaluations 
( see   Note    41  ). The second plot of interest is called  Parameter 
Estimation Results per Experiment  and it consists of the experi-
mental values of the variables (i.e., contained in the data file) 
plotted against the values of their corresponding simulated value. 
The plot also contains the weighted residuals of each data point 
(i.e., the terms calculated inside the summation in  Eq. 3 ). 

 After defining the plots, save the file, select an optimization 
method, and press  Run . For this example select the Levenberg–
Marquardt method and run it with the default values. After a short 
while the method will have finished and you will have plots like 
those of  Fig.    13  . You should also examine the results by selecting 
the  Results  page (below  Parameter Estimation  on the left). There 
you will see the statistics for the sum of squares, though be aware 

3.5.4. Fitting the Data



 Computational Modeling of Biochemical Networks Using COPASI 47

that these are problem dependent and you should not compare 
sums of squares between different problems (not even the same 
problem with different data sets). More useful are the statistics 
for the estimated parameters on the second tab, where you will 
likely see that the coefficients of variation of the estimated param-
eter values are smaller than 35%, which is very good given the 
presence of noise in the data. You can also examine the parameter 
correlation matrix that provides information about dependencies 
between parameter estimates.    

    Along with the traditional ODE approach, COPASI is also equipped 
to carry out stochastic simulations based on the theoretical frame-
work derived by Gillespie  (4) . The  Time Course  task can easily be 
executed with the algorithm of Gibson and Bruck  (37)  ( see   Note  
  42  ) and this is as simple as selecting the Gibson–Bruck method 
from a pull-down menu ( Fig.    14  ). This is particularly appealing to 
those who normally carry out simulations with the ODE approach 
but sometimes have a need to switch to the stochastic approach. Of 
course, this also means that COPASI is equally useful for modelers 
who mostly use the stochastic approach.  

3.6. Stochastic 
Simulation

  Fig. 13.    Results of fitting model parameters to a data set. The plot on the top overlays the experimental data ( crosses ) 
over the model behavior after fitting ( lines ). The plot at the bottom displays the progress of the sum of squares ( Eq. 3 ) as 
the optimization algorithm progressed (note the logarithmic scale of the  Y -axis)       .
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 Let us consider an example using a model of calcium oscillations 
by Goldbeter  (38) , which is model 98 in BioModels. After import-
ing the SBML, go to the  Time Course  task. It is useful to define a 
trajectory plot of the number of particles against time, which can 
be done via the  Output Assistant : chose either the second option 
( Particle Numbers, Volumes, and Global Quantity Values ) which will 
have a scale of numbers of particles, or the first option which will 
output the corresponding concentrations to the computed particle 
numbers in the course of the simulation.  Figure    15   shows the out-
come of a stochastic simulation for the calcium model.  

 There are several issues that have to be considered to carry out 
successful stochastic simulations. The first consideration is that in 
this approach reversible reactions must be handled as two sepa-
rate irreversible reactions (the forward and reverse directions). In 
ODE-based simulations, the forward and backward reaction rates 
are usually aggregated and thus can cancel each other out (result-
ing in a null rate); in stochastic simulations each single reaction 
event has to be considered separately and even if there is no net 
rate, the actual cycling rate will be explicitly represented. In order 
to facilitate the conversion of ODE-based models to the stochastic
representation, COPASI provides a feature that, at the modeler’s 
request, converts all reversible reactions to the corresponding 
individual forward and backward reactions ( Fig.    16  ). This useful 
tool adjusts the model automatically – the reaction scheme and the 
kinetics – and is able to work for a wide range of kinetic rate laws, 
such as mass action and standard enzymatic kinetics. Nevertheless, 
there are certain cases when it is not able to dissect rate laws into 
two separate irreversible kinetic functions. These cases can be very 

  Fig. 14.    Switching to a stochastic simulation approach in the  Time Course  window       .
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complex rate laws or rate laws that are actually not appropriate 
(e.g., an expression that is never negative, thus that is not really 
reversible). When COPASI cannot automatically convert all reac-
tions, the user will have to adjust the model her/himself.  

  Fig. 15.    Trajectory of calcium oscillations using the stochastic simulation algorithm       .

  Fig. 16.    Menu option to convert a model to be composed only of irreversible reactions       .
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 Often, models are specified without considering the specific 
volume of the compartment. But for stochastic simulations the 
volume of the systems is crucial: the volume should not be too 
big so that the computed particle numbers are not too high and 
within numerical possibilities of a computer ( see   Note    43  ). This 
should pose no problem, since it is the purpose of these stochastic 
simulations to deal with systems that have relatively low particle 
number. Thus, it is important that the volume of the system be 
defined in the compartment description in such a way that the 
particle numbers are not too high. 

 Another consideration is whether or not the assumptions 
implied in the rate law of a specific reaction still holds in the pres-
ence of low particle numbers. Thus, when stochastically simulating 
a reaction network which has been described by a set of ODEs 
all reaction rates have to be converted to a corresponding reaction 
probability. This is rather simple and straightforward in the case of 
mass action kinetics  (3) . However, enzyme kinetic rate laws repre-
sent the overall rate of a series of elementary mass action reactions 
(binding of substrate to enzyme, isomerizations, etc.). An important 
question is then whether it is justifiable to use such a rate expression 
in stochastic simulations. Several authors  (39,   40)  have shown that 
as long as the initial assumptions for the assumed kinetics hold (e.g., 
excess substrate, fast reversible enzyme–substrate complex forma-
tion, etc.), it is indeed justifiable to assume the enzymatic reaction 
to constitute one single step with a corresponding rate law. The 
modeler must then ensure that the initial assumptions still hold. 

 Stochastic simulations are computationally expensive. If a large 
system is considered which contains some species with high particle 
numbers and some others with low particle numbers then the use 
of a hybrid method should be taken into consideration. In COPASI 
there are currently (version 4.4 Build 26) two hybrid methods 
implemented. These methods dynamically divide the system into 
two subsystems: one of them contains reactions with participants 
that occur in large quantities and is simulated by numeric integra-
tions of ODE; the other one contains reactions that have no par-
ticipants in large quantities and is stochastically simulated ( see   Note  
  44  ). In many cases, this approach will speed up the simulation. The 
two hybrid methods differ only in their numerical integration 
algorithm – one uses Runge–Kutta, the other uses LSODA. 

 Since repeated runs of the stochastic simulation will differ 
considerably, as long as the stochastic influence is noticeable, it 
is advisable to execute many runs in order to sample a distribu-
tion. This can be easily done by using the  Repeat  function of 
the  Parameter scan  task in COPASI already discussed in a previ-
ous section ( Fig.    17  ). If a plot of particle numbers over time 
has been defined, this repeated run will result in multiple time 
courses being overlaid in a single plot. However, this is not very 
useful when the dynamics is complex as in the example of calcium 
oscillations. In these cases, it is best to define a histogram ( Fig.    18  ) 
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  Fig. 17.    Using the  Parameter scan  window to repeat the same stochastic trajectory several times       .

  Fig. 18.    Defining a histogram plot of a species concentration       .
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to display the cumulative concentration distribution, which is a 
better way to summarize stochastic simulations ( Fig.    19  ).      

    

    1.    A modifier is a chemical species that affects the rate of reaction 
but which, unlike substrates or products, is not transformed 
by the reaction itself. A special case of modifier is the enzyme 
that catalyzes the reaction, but this class also includes inhibi-
tors and activators.  

   2.    But often not for enzymes, for which the rates usually depend 
linearly on their concentration – the exception is when there 
are enzyme–enzyme interactions.  

   3.    It is well known that these equations are often stiff, meaning 
that they contain very fast and very slow components and this 
poses a significant numerical problem. Beware of software that 
does not include ODE integrators (or solvers) that are able 
to cope with stiff ODEs. Methods such as forward Euler or 
Runge–Kutta are  not  appropriate when stiffness is present in 
the equations and can lead to completely spurious solutions 
because they accumulate truncation error. COPASI uses the 
LSODA method which is adaptive and is stable under stiff 
conditions.  

4. Notes

  Fig. 19.    Histogram of calcium concentration for ten runs of the stochastic simulation algorithm       .
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   4.    COPASI can use any of the following three strategies: Newton 
method, ODE integration forward in time or integration 
backward in time. If all three are chosen, it first tries the 
Newton method and if this does not converge, it then inte-
grates in time for a while and then tries the Newton method 
again – this is repeated ten times, each time integrating even 
further ahead (10× what was done earlier). If at the end a 
steady state is not found it will then go back to the original 
starting point and apply the same strategy but now integrat-
ing backward in time. Backward integration, if successful, 
will find an unstable steady state. The user has control over 
this strategy by selecting the parameters “Use Newton,” 
“Use Integration,” and “Use Back Integration.”  

   5.    A commercial license is also available for purchase allow-
ing use of COPASI for applications that are for commercial 
profit. Go to   http://www.copasi.org/commercial     for further 
details.  

   6.    Distribution filenames are in the format: Copasi-XX-YYYYYY.
ZZZ where XX is the build number, YYYYYY is a reference 
to the operating system ( WIN32  for Windows,  Darwin  for 
OS X,  Linux ,  SunOS  for Solaris, and src for the source code), 
and ZZZ is the appropriate extension for the type of file, 
which depends on the operating system.  

   7.    Alternatively you can  browse  the database and find the model 
that way. However, such a method will become essentially 
unworkable as the database grows.  

   8.    This means the model is in SBML level 2 version 1; in the 
future the BioModels database may supply the model in 
another level/version of SBML so the title of this link may 
become something like SBML Lx Vy for level x and version y.  

   9.    To download this file you should right click the link and 
then select an option that allows saving the link to disk (like 
 save link as … in Firefox). If you simply click the link your 
browser will likely show a blank page with some sentences 
and then a (long) list of parameter names. This is actually 
part of the model and appears because the browser is trying 
to interpret the XML encoding as if it was HTML.  

   10.    Additionally there is also an initial value for time, this is only 
important in the case when some rate equations reference time 
explicitly (nonautonomous models). In that case, the value of 
time at the start of the simulation is important and the mod-
eler may need it to be some value different from zero.  

   11.    There is also a selection for the interpretation of rate equa-
tions, as there are differences between the ODE and the sto-
chastic approaches. Note that this selection only indicates 
whether the kinetics used are  meant  for one or the other 
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approach, not that the approach will be used. In fact, this 
feature exists so that COPASI can automatically adapt the 
rate equations to the required approach.  

   12.    There must be one space between each chemical species 
name, otherwise COPASI will interpret the whole string as 
one species name. This is because the character “+” is allowed 
in species names, thus the space is needed to delimit species 
names from symbols that are not part of the species name.  

   13.     Substrate  and  product  are obvious;  modifier  is any chemical 
species that is not transformed by the reaction (inhibitors, 
activators, and the enzyme if represented explicitly);  volume  
is the volume of any compartment;  time  is obvious; and 
 parameter  is anything else that does not fit any of the other 
categories.  

   14.    You should not mark as reversible a rate law that can only 
produce positive values; to be reversible a rate law must be 
able to take negative values (i.e., flux in the opposite direc-
tion). Conversely, an irreversible rate law should not be able 
to produce negative values.  

   15.    In COPASI, the buttons that are marked with the program’s 
icon are always used to select model entities.  

   16.     Multiple task  groups a set of computational analyses that 
require running multiple simulations at each time.  

   17.    This  output from subtask  button would need to be checked 
if the task was a time course and we wanted the whole time 
course to be plotted rather than just the final value (although 
there are also circumstances where that could be desirable 
thus the choice given to the user).  

   18.    It is best to scan in logarithmic space when the parameter 
varies by more than one order of magnitude, otherwise most 
of the samples will lie in the upper order of magnitude.  

   19.    The order of the scan items in the stack is important for the 
way in which the plot is constructed, but otherwise produces 
the same results since it generates a regular grid and executes 
the task at each grid position. The order of the stacks only 
affects the order in which the grid positions are visited.  

   20.    Obviously a flux mode can only be reversible if  all  reactions 
that compose it are also reversible.  

   21.    An astute biochemist will realize that there is a carbon and 
two oxygens missing on the substrate side of this equation, 
and obviously there should be a CO 2  in that side of the equa-
tion. This is missing because the modeler made the decision 
of not including CO 2  in the model (it should be in the Phos-
phogluconate dehydrogenase reaction). Since the eryth-
rocyte is not known for fixating CO 2  then the mode must 
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operate in the reverse direction, i.e., production of PRPP 
from glucose. In this case, since the mode is reversible it 
means that one would not know this fact from the stoichi-
ometry alone.  

   22.    A chemical moiety is a set of atoms bound in a fixed struc-
ture which are part of molecules, which in a chemical context 
are referred to as “chemical groups.”  

   23.    This means that the dependent species is not calculated from 
a differential equation, but rather from this mass conserva-
tion relation. Thus each mass conservation relation reduces 
the number of ODE by one.  

   24.    Formalisms of MCA have also been derived for time-depend-
ent states  (41,   42)  but they are rather complicated and some 
of the coefficients therein are hard to conceptualize, so it is 
not usually applied.  

   25.    Since COPASI only uses the MCA steady-state formalism, 
the software first needs to find a steady state before doing 
the MCA calculations. It is a good idea to investigate the 
steady state(s) of a model before running MCA, especially 
regarding the stability of a steady state. While it is technically 
possible to calculate the MCA for an unstable steady state it 
is of little practical value.  

   26.    The value of 1% change is here used only for illustration as a 
“small” change, the coefficients are actually defined only for 
infinitesimal changes and all the theory is based on that.  

   27.    Since the framework of MCA is based on linearizations and 
reaction kinetics are generally nonlinear, the values of the 
elasticities depend on the actual concentrations of the chemical 
species, so they have to be calculated for specific cases.  

   28.    While it is possible in theory to carry out a large multidimen-
sional scan, the computational time of that exercise would be 
prohibitive and is beyond simple improvements in computer 
efficiency (it is an  NP- complete problem) and thus is essen-
tially impossible for models larger than four or five variables.  

   29.    Control coefficients are actually a special case of response 
coefficients that have unit elasticity.  

   30.    This in practice consists of finding the steady state, then 
changing one of the parameter values slightly, and then 
calculating the new steady state and using ratios to estimate 
the differentials (the change applied is very small).  

   31.    Maximizing a function is the same as minimizing the sym-
metric function.  

   32.    There are two types of fluxes in COPASI which only differ 
by scale: “concentration flux” is expressed in concentration 
per unit time, while “particle flux” is expressed in numbers 



56 Mendes et al.

of particles per unit time. In this case you should select “con-
centration flux.” However, what is important is that both be 
of the same type, since this is a ratio.  

   33.    It is also possible to chose another parameter for the upper 
or lower bounds, in which case we just need to specify which 
one with the usual button with the COPASI icon (to the left 
of the text field). In fact, it is even possible to choose another 
 estimated  parameter (i.e., one on the list to adjust) as long as 
that parameter appears in the list before it is used as a bound-
ary value.  

   34.    You may manually override the initial value by highlighting 
the parameter and then entering a number in the box labeled 
Start Value or use the tool button labeled as “…” to chose 
other options, such as random values within the interval.  

   35.    Your numbers may be slightly different due to different pre-
cision of different computer architectures, but it should be a 
number in this range.  

   36.    Possibly there were several warnings of the type “CTrajecto-
ryMethod  (12) : Internal step limit exceeded,” which mean 
that for some parameter values COPASI could have failed to 
find a steady state through integration of the ODEs (due to 
the equations being too stiff). This is not a problem since it 
may have solved the steady state with the Newton–Raphson 
method. Even if it indeed failed completely to find a steady 
state for some parameter combinations, the method will 
have still converged, as you can judge by the final result. 
This is one advantage of population-based algorithms: they 
still work even when the objective function is not continuous 
(which is what it would look like if the numerical solution 
could not be obtained).  

   37.    The likelihood that it gets to the same result increases with 
the length that the algorithm is left running; if you run it 
with the default 2,000 iterations, it will likely always con-
verge to the same value, but it will run for a much longer 
time of course.  

   38.    These weights are scaling factors; they are not dependent on 
the quality of the experimental measurement like a standard 
deviation.  

   39.    These data were actually created with a slightly modified ver-
sion of the model where some parameters were changed, a 
time course was simulated and then noise was added to the 
values of MAPK-P and MAPKKK-P.  

   40.    This is why it is useful to have column headers because 
COPASI displays them and you can remember what this col-
umn is. This is particularly important if you have a data file 
with many columns.  
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   41.    A function evaluation is the complete calculation needed 
to simulate the data that needs to match the experimental 
data. Therefore it consists of calculating all time courses and 
steady states corresponding to each experiment.  

   42.    Gibson and Bruck’s next reaction method  (37)  is a more effi-
cient version of the original Gillespie first reaction method. 
It achieves better performance by an intelligent use of data 
structures. For example it stores dependencies between the 
reactions in dependency graphs and this avoids redundant 
recalculations of the reaction propensities.  

   43.    Stochastic simulations determine the time interval between 
reactions, and this time is dependent on the number of parti-
cles. If there are too many particles the interval between any 
two reactions is extremely small, meaning that it would just 
take too long to simulate any time interval of interest (i.e., at 
least milliseconds).  

   44.    The division between the subsystems is done with respect 
to the participating particle numbers and there is a control 
variable that corresponds to this threshold value which can 
be adjusted by the user.          
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