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1 Rationality

Rationality, according to some, is an excess of reasonableness. We should be rational enough to
confront the problems of life, but there is no need to go whole hog. Indeed, doingso is something of
a vice. Isaac Levi,The Covenant of Reason(Cambridge University Press, 1997)

The disciplines of science and engineering are complementary. Science comes from
the Latin rootscientia, or knowledge, and engineering comes from the Latin root
ingenerare, which means to beget. While any one individual may fulfill multiple roles,
a scientistquaseeker of knowledge is concerned with the analysis of observed natural
phenomena, and an engineerquacreator of new entities is concerned with the synthesis
of artificial phenomena. Scientists seek to develop models that explain past behavior
and predict future behavior of the natural entities they observe. Engineers seek to de-
velop models that characterize desired behavior for the artificial entities they construct.
Science addresses the question of how things are; engineering addresses the question
of how things might be.
Although of ancient origin, science as an organized academic discipline has a history

spanning a few centuries. Engineering is also of ancient origin, but as an organized
academic discipline the span of its history is more appropriately measured by a few
decades. Science has refined its methods over the years to the point of great sophis-
tication. It is not surprising that engineering has, to a large extent, appropriated and
adapted for synthesis many of the principles and techniques originally developed to aid
scientific analysis.
One concept that has guided the development of scientific theories is the “principle

of least action,” advanced by Maupertuis1 as a means of systematizing Newtonian
mechanics. This principle expresses the intuitively pleasing notion that nature acts in a
way that gives the greatest effect with the least effort. It was championed by Euler, who
said: “Since the fabric of the world is themost perfect and was established by the wisest
Creator, nothing happens in this world in which some reason of maximum or minimum

1 Beeson (1992) cites Maupertuis (1740) as Maupertuis’ first steps toward the development of this principle.
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2 1 Rationality

would not come to light” (quoted in Polya (1954)).2 This principle has been adopted
by engineers with a fruitful vengeance. In particular, Wiener (1949) inaugurated a new
era of estimation theory with his work on optimal filtering, and von Neumann and
Morgenstern (1944) introduced a new structure for optimal multi-agent interactivity
with their seminal work on game theory. Indeed, wemight paraphrase Euler by saying:
“Nothing should be designed or built in this world in which some reason of maximum
or minimum would not come to light.” To obtain credibility, it is almost mandatory
that a design should display some instance of optimization, even if only approximately.
Otherwise, it is likely to be dismissed asad hoc.
However, analysis and synthesis are inverses.One seeks to take things apart, the other

to put things together. One seeks to simplify, the other to complicate. As the demands
for complexity of artificial phenomena increase, it is perhaps inevitable that principles
and methods of synthesis will arise that are not attributable to an analysis heritage –
in particular, to the principle of least action. This book proposes such a method. It is
motivated by the desire to develop an approach to the synthesis of artificial multi-agent
decision-making systems that is able to accommodate, in a seamless way, the interests
of both individuals and groups.
Perhaps the most important (and most difficult) social attribute to imitate is that

of coordinated behavior, whereby the members of a group of autonomous distributed
machines coordinate their actions to accomplish tasks that pursue the goals of both
the group and each of its members. It is importantto appreciate that such coordi-
nation usually cannot be done without conflict, but conflict need not degenerate to
competition, which can be destructive. Competition, however, is often a byproduct of
optimization, whereby each participant in a multi-agent endeavor seeks to achieve the
best outcome for itself, regardless of the consequences to other participants or to the
community.
Relaxing the demand for optimization as an idealmay open avenues for collaboration

and compromisewhen conflict arises by giving joint consideration to the interests of the
group and the individuals that compose the group, provided they are willing to accept
behavior that is “good enough.” This relaxation, however,must not lead to reliance upon
ad hocrules of behavior, and it should not categorically exclude optimal behavior. To be
useful for synthesis, an operational definition of what it means to be good enough must
be provided, both conceptually andmathematically. The intent of this book is two-fold:
(a) to offer a criterion for the synthesis of artificial decision-making systems that is
designed, from its inception, to model both collective and individual interests; and
(b) to provide amathematical structurewithin which to develop and apply this criterion.
Together, criterion and structure may provide the basis for an alternative view of the
design and synthesis of artificial autonomous systems.

2 Euler’s argument actually begs the question by using superlatives (most perfect, wisest) to justify other superla-
tives (maximum, minimum).



3 1.1 Games machines play

1.1 Games machines play

Much research is being devoted to the design and implementation of artificial social
systems. The envisioned applications of this technology include automated air-traffic
control, automated highway control, automated shop floor management, computer net-
work control, and so forth. In an environment of rapidly increasing computer power
and greatly increased scientific knowledge of human cognition, it is inevitable that
serious consideration will be given to designing artificial systems that function analo-
gously to humans. Many researchers in this field concentrate on four major metaphors:
(a) brain-like models (neural networks), (b) natural language models (fuzzy logic),
(c) biological evolutionarymodels (genetic algorithms), and(d) cognitionmodels (rule-
based systems). The assumption is that by designing according to thesemetaphors, ma-
chines can be made at least to imitate, if not replicate, human behavior. Such systems
are often claimed to be intelligent.
The word “intelligent” has been appropriated by many different groups and may

mean anything from nonmetaphorical cognition (for example, strong AI) to advertising
hype (for example, intelligent lawn mowers). Some of the definitions in use are quite
complex, some are circular, and some are self-serving. But when all else fails, we may
appeal to etymology, which owns the deed to the word; everyone else can only claim
squatters rights.Intelligent comes from the Latin rootsinter (between)+ legĕre (to
choose). Thus, it seems that an indispensable characteristic of intelligence in man or
machine is an ability to choose between alternatives.
Classifying “intelligent” systems in termsof anthropomorphicmetaphors categorizes

mainly their syntactical, rather than their semantic, attributes. Such classifications deal
primarily with the way knowledge is represented, rather than with the way decisions
are made. Whether knowledge is represented by neural connection weights, fuzzy set-
membership functions, genes, production rules, or differential equations, is a choice
that must be made according to the context of the problem and the preferences of
the system designer. The way knowledge is represented, however, does not dictate the
rational basis for the way choices are made, and therefore has little to do with that
indispensable attribute of intelligence.
A possible question, when designing a machine, is the issue of just where the actual

choosing mechanism lies – with the designer, who must supply the machine with all
of rules it is to follow, or with the machine itself, so that it possesses a degree of
true autonomy (self-governance). This book does not address that question. Instead,
it focuses primarily on the issue ofhow decisions might be made, rather thanwho
ultimately bears the responsibility for making them. Its concern is with the issue of how
to design artificial systems whose decision-making mechanisms are understandable to
and viewed as reasonable by the people who interface with such systems. This concern
leads directly to a study of rationality.
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This book investigates rationality models that may be used by men or machines.
A rational decision is one that conforms either to a set of general principles that govern
preferences or to a set of rules that govern behavior. These principles or rules are then
applied in a logical way to the situation of concern, resulting in actions which generate
consequences that are deemed to be acceptable to the decision maker. No single notion
of what is acceptable is sufficient for all situations, however, so there must be multi-
ple concepts of rationality. This chapter first reviews some of the commonly accepted
notions of rationality and describes some of the issues that arise with their implementa-
tion. This review is followed by a presentation of an alternative notion of rationality and
arguments for its appropriateness and utility. This alternative is not presented, however,
as a panacea for all situations. Rather, it is presented as a new formalism that has a place
alongside other established notions of rationality. In particular, this approach to rational
decision-making is applicable to multi-agent decision problems where cooperation is
essential and competition may be destructive.

1.2 Conventional notions

The study of human decision making is the traditional bailiwick of philosophy, eco-
nomics, and political science, and much of the discussion of this topic concentrates on
defining what it means to have a degree of conviction sufficient to impel one to take
action. Central to this traditional perspective is the concept of preference ordering.

Definition 1.1
Let the symbols “�” and “∼=” denote binary ordering relationships meaning “is at least
as good as” and “is equivalent to,” respectively. Atotal ordering of a collection of
optionsU = {u1, . . . ,un}, n ≥ 3, occurs if the following properties are satisfied:

Reflexivity: ∀ui ∈ U : ui � ui

Antisymmetry: ∀ui ,u j ∈ U : ui � u j & u j � ui ⇒ ui ∼= u j

Transitivity: ∀ui ,u j ,uk ∈ U : ui � u j , u j � uk ⇒ ui � uk

Linearity: ∀ui ,u j ∈ U : ui � u j or u j � ui

If the linearity property does not hold, the setU is said to bepartially ordered . �

Reflexivity means that every option is at least as good as itself, antisymmetry means
that ifui is at least as good asu j andu j is at least as good asui , then they are equivalent,
transitivity means that ifui is as least as good asu j andu j is at least as good asuk,
thenui is at least as good asuk, and linearity means that for everyui andu j pair, either
ui is at least as good asu j or u j is at least as good asui (or both).
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1.2.1 Substantive rationality

Once in possession of a preference ordering, a rational decision maker must employ
general principles that govern theway the orderings are to be used to formulate decision
rules. No single notion of what is acceptable is appropriate for all situations, but perhaps
the most well-known principle is the classical economics hypothesis of Bergson and
Samuelson, which asserts that individual interests are fundamental; that is, that social
welfare is a function of individual welfare (Bergson, 1938; Samuelson, 1948). This
hypothesis leads to the doctrine ofrational choice, which is that “each of the individ-
ual decision makers behaves as if he or she were solving a constrained maximization
problem” (Hogarth and Reder, 1986b, p. 3). This paradigm is the basis of much of con-
ventional decision theory that is used in economics, the social and behavioral sciences,
and engineering. It is based upon two fundamental premises.
P-1 Total ordering: the decision maker is in possession of a total preference ordering

for all of its possible choices under all conditions (in multi-agent settings, this
includes knowledge of the total orderings of all other participants).

P-2 The principle of individual rationality: a decision maker should make the best
possible decision for itself, that is, it should optimize with respect to its own total
preference ordering (in multi-agent settings, this ordering may be influenced by
the choices available to the other participants).

Definition 1.2
Decision makers who make choices according to the principle of individual ratio-
nality according to their own total preference ordering are said to besubstantively
rational . �

One of the most important accomplishments of classical decision theory is the es-
tablishment of conditions under which a total ordering of preferences can be quantified
in terms of a mathematical function. It is well known that, given the proper technical
properties (e.g., see Ferguson (1967)), there exists a real-valued function that agrees
with the total ordering of a set of options.

Definition 1.3
A utility φ on a set of optionsU is a real-valued function such that, for allui ,u j ∈ U ,
ui � u j if, and only if,φ(ui ) ≥ φ(u j ). �

Through utility theory, the qualitative ordering of preferences is made equivalent
to the quantitative ordering of the utility function. Since it may not be possible, due
to uncertainty, to ensure that any given option obtains, orderings are usually taken



6 1 Rationality

with respect to expected utility, that is, utility that has been averaged over all options
according to the probability distribution that characterizes them; that is,

π (u) = E[φ(u)] =
∫
U

φ(u)PC(du),

whereE[·] denotes mathematical expectation andPC is a probability measure charac-
terizing the random behavior associated with the setU . Thus, an equivalent notion for
substantive rationality (and the one that is usually used in practice) is to equate it with
maximizing expected utility (Simon, 1986).
Not only is substantive rationality the acknowledged standard for calculus/

probability-based knowledge representation and decision making, it is also thede facto
standard for the alternative approaches based on anthropomorphic metaphors. When
designing neural networks, algorithms are designed to calculate theoptimumweights,
fuzzy sets are defuzzified to a crisp set by choosing the element of the fuzzy set with the
highestdegreeof setmembership, genetic algorithmsaredesignedunder theprincipleof
survival of thefittest, and rule-based systems are designed according to the principle
that a decision maker will operate in its ownbestinterest according to what it knows.
There is a big difference in perspective between the activity of analyzing the way

rational decisionmakersmake decisions and the activity of synthesizing actual artificial
decision makers. It is one thing to postulate an explanatory story that justifies how
decision makers might arrive at solution, even though the story is not an explicit part
of the generative decision-making model and may be misleading. It is quite another
thing to synthesize artificial decision makers that actually live such a story by enacting
the decision-making logic that is postulated. Maximizing expectations tells us what we
may expect when rational entities function, but it does not give us procedures for their
operation. It may be instructive, but it is not constructive.
Nevertheless, substantive rationality serves as a convenient and useful paradigm for

the synthesis of artificial decision makers. This paradigm loses some of its appeal,
however, when dealing with decision-making societies. The major problem is that
maximizing expectations is strictly an individual operation. Group rationality is not a
logical consequence of individual rationality, and individual rationality does not easily
accommodate group interests (Luce and Raiffa, 1957).
Exclusive self-interest fosters competition and exploitation, and engenders attitudes

of distrust and cynicism. An exclusively self-interested decision maker would likely
assume that the other decision makers also will act in selfish ways. Such a decision
makermight therefore impute self-interested behavior to others thatwould be damaging
to itself, andmight responddefensively.While thismaybeappropriate in thepresenceof
serious conflict, many decision scenarios involve situationswhere coordinative activity,
even if it leads to increased vulnerability, may greatly enhance performance. Especially
when designing artificial decision-making communities, individual rationality may not
be an adequate principle with which to characterize desirable behavior in a group.



7 1.2 Conventional notions

The need to define adequate frameworks in which to synthesize rational decision-
making entities in both individual and social settings has led researchers to challenge the
traditional models based on individual rationality. One major criticism is the claim that
people do not usually conform to the strict doctrine of substantive rationality – they are
not utilitymaximizers (Mansbridge, 1990a; Sober and Wilson, 1998; Bazerman, 1983;
Bazerman and Neale, 1992; Rapoport and Orwant, 1962; Slote, 1989). It is not clear,
in the presence of uncertainty, that the best possible thing to do is always to choose
a decision that optimizes a single performance criterion. Although deliberately opting
for less than the best possible leaves one open to charges of capriciousness, indecision,
or foolhardiness, the incessant optimizer may be criticized as being restless, insatiable,
or intemperate.3 Just as moderation may tend to stabilize and temper cognitive behav-
ior, deliberately backing away from strict optimality may provide protection against
antisocial consequences. Moderation in the short run may turn out to be instrumentally
optimal in the long run.
Even in the light of these considerations, substantive rationality retains a strong

appeal, especially because it provides a systematic solution methodology, at least for
single decisionmakers. One of the practical benefits of optimization is that by choosing
beforehand to adopt the option that maximizes expected utility, the decision maker has
completed the actual decision making – all that is left is to solve or search for that
option (for this reason, much of what is commonly called decision theory may more
accurately be characterized as search theory). This fact can be exploited to implement
efficient search procedures, especially with concave and differentiable utility functions,
and is a computational benefit of such enormous value that one might be tempted to
adopt substantive rationality primarily because it offers a systematic and reliablemeans
of finding a solution.

1.2.2 Procedural rationality

If we were to abandon substantive rationality, what justifiable notion of reasonable-
ness could replace it? If we were to eschew optimization and its attendant computa-
tional mechanisms, how would solutions be systematically identified and computed?
These are significant questions, and there is no single good answer to them. There
is, however, a notion of rationality that has evolved more or less in parallel with
the notion of substantive rationality and that is relevant to psychology and computer
science.

Definition 1.4
Decision makers who make choices by following specific rules or procedures are said
to beprocedurally rational (Simon, 1986). �

3 As Epicurus put it: “Nothing is enough for the man to whom enough is too little.”
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For an operational definition of procedural rationality, we turn to Simon:

The judgment that certain behavior is “rational” or “reasonable” can be reached only by viewing the
behavior in the context of a set of premises or “givens.” These givens include the situation in which
the behavior takes place, the goals it is aimed at realizing, and the computational means available for
determining how the goals can be attained. (Simon, 1986, p. 26)

Under this notion, a decision maker should concentrate attention on the quality of the
processesbywhich choices aremade, rather than directly on the quality of the outcome.
Whereas, under substantive rationality, attention is focused onwhy decision makers
should do things, under procedural rationality attention is focused onhow decision
makers should do things. Substantive rationality tells us where to go, but not how to get
there; procedural rationality tells us how to get there, but not where to go. Substantive
rationality is viewed in terms of the outcomes it produces; procedural rationality is
viewed in terms of the methods it employs.
Procedures are often heuristic. They may involvead hocnotions of desirability, and

they may simply be rules of thumb for selective searching. They may incorporate the
same principles and information that could be used to form a substantively rational
decision, but rather than dictating a specific option, the criteria are used to guide the
decision maker by identifying patterns that are consistent with its context, goals, and
computational capabilities.4 A fascinating description of heuristics and their practical
application is found in Gigerenzer and Todd (1999). Heuristics are potentially very
powerful and can be applied to more complex and less well structured problems than
traditional utility maximization approaches. An example of a procedurally rational
decision-making approach is a so-calledexpert system, which is typically composed of
a number of rules that specify behavior in various local situations. Such systems are at
least initially defined by human experts or authorities.
The price for working with heuristics is that solutions cannot in any way be con-

strued as optimal – they are functional at best. In contrast to substantively rational
solutions, which enjoy an absolute guarantee of maximum success (assuming that the
model is adequate – we should not forget that “experts” defined these models as well),
procedurally rational solutions enjoy no such guarantee.
A major difference between substantive rationality and procedural rationality is the

capacity for self-criticism, that is, the capacity for the decision maker to evaluate its
own performance in terms of coherence and consistency. Self-criticism will be built
into substantive rationality if the criteria used to establish optimality can also be used

4 A well-known engineering example of the distinction between substantive rationality and procedural rationality
is found in estimation theory. The so-called Wiener filter (Wiener, 1949) is the substantively rational solution
that minimizes the mean-square estimation error of a time-invariant linear estimator. However, the performance
of theWiener filter is often approximated by a heuristic, called the LMS (least-mean-square) filter and developed
byWidrow (1971). Whereas theWiener filter is computed independently of the actual observations, theWidrow
filter is generated by the observations. The Wiener filter requires that all stochastic processes be stationary and
modeled to the second order; the Widrow filter relaxes those constraints. Both solutions are extremely useful in
their appropriate settings, but they differ fundamentally.
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to define the search procedure.5 By contrast, procedural rationality does not appear to
possess a self-policing capacity. The quality of the solution depends on the abilities of
the expert who defined the heuristic, and there may be no independent way to ascribe a
performance metric to the solution from the point of view of the heuristic. Of course, it
is possible to apply performance criteria to the solution once it has been identified, but
suchpost factumcriteria do not influence the choice, except possibly in conjunction
with a learningmechanism that couldmodify theheuristics for future application.While
it may be too strong to assert categorically that heuristics are incapable of self-criticism,
their ability to do so on a single trial is at least an open question.
Substantive rationality and procedural rationality represent two extremes. On the one

hand, substantive rationality requires the decision maker to possess a complete under-
standing of the environment, including knowledge of the total preference orderings of
itself and all other agents in the group. Any uncertainty regarding preferences must
be expressed in terms of expectations according to known probability distributions.
Furthermore, even given complete understanding, the decision maker must have at its
disposal sufficient computational power to identify an optimal solution. Substantive
rationality is highly structured, rigid, and demanding. On the other hand, procedural
rationality involves the use of heuristics whose origins are not always clear and defen-
sible, and it is difficult to predict with assurance how acceptable the outcome will be.
Procedural rationality is amorphous, plastic, and somewhat arbitrary.

1.2.3 Bounded rationality

Many researchers have wrestled with the problem of what to do when it is not possible
or expedient to obtain a substantively rational solution due to informational or compu-
tational limitations. Simon identified this predicament when he introduced the notion
of satisficing.6

Because real-world optimization, with or without computers, is impossible, the real economic actor
is in fact a satisficer, a person who accepts “good enough” alternatives, not because less is preferred
to more, but because there is nochoice. (Simon, 1996, p. 28)

To determine whether an alternative is “good enough,” there must be some way to
evaluate its quality. Simon’s approach is to determine quality according to the criteria
used for substantive rationality, and to evaluate quality against a standard (the aspiration
level) that is chosen more or less arbitrarily. Essentially, one continues searching for an
optimal choice until an option is identified that meets the decision maker’s aspiration
level, at which point the search may terminate.

5 This will be the case if the optimality existence proof is constructive. A non-constructive example, however, is
found in information theory. Shannon capacity is an upper bound on the rate of reliable information transmission,
but the proof that an optimal code exists does not provide a coding scheme to achieve capacity.

6 This term is actually of ancient origin (circa 1600) and is a Scottish variant of satisfy.
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The term “satisficing,” as used by Simon, comprises a blend of the two extremes
of substantive and procedural rationality and is a species of what he termedbounded
rationality . This concept involves the exigencies of practical decision making and
takes into consideration the informational and computational constraints that exist in
real-world situations.
There aremany excellent treatments of bounded rationality (see, e.g., Simon (1982a,

1982b, 1997) and Rubinstein (1998)). Appendix A provides a brief survey of the main-
stream of bounded rationality research. This research represents an important advance
in the theory of decision making; its importance is likely to increase as the scope of
decision-making grows. However, the research has a common theme, namely, that if a
decision maker could optimize, it surely should do so. Only the real-world constraints
on its capabilities prevent it from achieving the optimum. By necessity, it is forced to
compromise, but the notion of optimality remains intact. Bounded rationality is thus
an approximation to substantive rationality, and remains as faithful as possible to the
fundamental premises of that view.
I also employ the term “satisficing” to mean “good enough.” The difference between

the way Simon employs the term and the way I use it, however, is that satisficingà la
Simon is an approximation to being best (and is constrained from achieving this ideal
by practical limitations), whereas satisficing as I use it is treats being good enough as
the ideal (rather than an approximation).
This book is not about bounded rationality. Rather, I concentrate on evaluating the ap-

propriateness of substantive and procedural rationality paradigms as models for multi-
agent decision making, and provide an alternative notion of rationality. The concepts
of boundedness may be applied to this alternative notion in ways similar to how they
are currently applied to substantive rationality, but I do not develop those issues here.

1.3 Middle ground

Substantive rationality is the formalization of the common sense idea that one should
do the best thing possible and results in perhaps the strongest possible notion of what
should constitute a reasonable decision – the only admissible option is the one that is
superior to all alternatives. Procedural rationality is the formalization of the common
sense idea that, if something has worked in the past, it will likely work in the future and
results in perhaps the weakest possible notion of what should constitute a reasonable
decision – an option is admissible if it is the result of following a procedure that is
considered to be reliable. Bounded rationality is a blend of these two extreme views of
rational decision making that modifies the premises of substantive rationality because
of a lack of sufficient information to justify strict adherence to them.
Instead of merely blending the two extreme views of rational decision making, how-

ever, it may be useful to consider a concept of rationality that is not derived from either
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the doctrine of rational choice or heuristic procedures. Kreps seems to express a desire
along these lines when he observes that:

. . . the real accomplishment will come infinding an interestingmiddle ground between hyperrational
behaviour and too much dependence onad hocnotions of similarity and strategic expectations. When
and if such a middle ground is found, then we may have useful theories for dealing with situations in
which the rules are somewhat ambiguous. (Kreps, 1990, p. 184)

Is there really a middle ground, or is the lacuna between strict optimality and pure
heuristics bridgeable only by forming anad hochybrid of these extremes? If a non-
illusory middle ground does exist, it is evident that few have staked formal claims
to any of it. The literature involving substantive rationality (bounded or unbounded),
particularly in the disciplines of decision theory, game theory, optimal control theory,
and operations research, is overwhelmingly vast, reflecting many decades of serious
research and development. Likewise, procedural rationality, in the form of heuristics,
rule-based decision systems, and variousad hoctechniques, is well-represented in the
computer science, social science, and engineering literatures. Also, the literature on
bounded rationality as a modification or blend of these two extremes is growing at a
rapid pace.Work involving rationality paradigms that depart from these classical views,
however, is not in evidence.
One of the goals of this book is to search not only for middle ground but for new turf

upon which to build. In doing so, let us first examine a “road map” that may guide us
to fruitful terrain. The map consists of desirable attributes of the notion of rationality
we seek.
A-1 Adequacy: satisficing, or being “good enough,” is the fundamental desideratum of

rational decision makers. We cannot rationally choose an option, even when we
do not know of anything better, unless we know that it is good enough. Insisting
on the best and nothing but the best, however, can be an unachievable luxury.

A-2 Sociality: rationality must be defined for groups as well as for individuals in a
consistent and coherent way, such that both group and individual preferences are
accommodated. Group rationality should not be defined in terms of individual
rationality nor vice versa.

These attributes represent a general relaxing of substantive rationality. Liberation from
maximization may open the door to accommodating group as well as individual in-
terests, while still maintaining the integrity supplied by adherence to principles. The
attributes also bring rigor to procedural rationality, since they move away from purely
ad hocmethods and insist on the capacity for self-criticism.

1.3.1 Adequacy

Adequacy is a harder concept to deal with than optimality. Achieving the summit of a
mountain is a simple concept that does not depend upon the valley below. By contrast,
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getting high enough to see across the valley depends upon the valley as well as the
mountain. Optimality can be considered objective and is abstracted from context, but
adequacy is subjective, that is, it is context dependent. Abstractification is powerful.
It transforms a messy real-world situation into a clean mathematical expression that
permits the power of calculus and probability theory to be focused on finding a solution.
The advantages of abstractification are enormous and not lightly eschewed, and their
appeal has fundamentally changed the way decision-making is performed inmany con-
texts. But Zadeh, the father of fuzzy logic, suggests that always insisting on optimality
is shooting beyond the mark, and that a softer notion of what is reasonable must be
considered.

Not too long ago we were content with designing systems whichmerely met given specifications . . .
Today, we tend, perhaps, to make a fetish of optimality. If a system is not the “best” in one sense or
another, we do not feel satisfied. Indeed, we are apt to place too much confidence in a system that is,
in effect, optimal by definition . . .
At present, no completely satisfactory rule for selecting decision functions is available, and it is

not very likely that one will be found in the foreseeable future. Perhaps all that we can reasonably
expect is a rule which, in a somewhat equivocal manner, would delimit a set of “good” designs for a
system. (Zadeh, 1958)

A clear operational definition for what it means to be satisficing, or good enough,
must be a central component of the notion of rationality that we are seeking. Zadeh
reminds us that no such notion is likely to be a panacea, and any definition we offer
is subject to criticism and must be used with discretion. Indeed, decision making is
inherently equivocal, as uncertainty can never be completely eliminated.
To make progress in our search for what it means to be good enough, we must

be willing to relax the demand for strict optimality. We should not, however, aban-
don the criteria that are used to define optimality, but only the demand to focus at-
tention exclusively on the optimal solution. We certainly should not contradict the
notion of optimality by preferring options that are poor according to the optimality
criteria over those that comply with the criteria. The goal is to give place to a softer
notion of rationality that accommodates, in a formal way, the notion of being good
enough.
To maintain the criteria of optimality but yet not insist on optimality may seem

paradoxical. If we know what is best, what possible reason could there be for not
choosing it? At least a partial answer is that optimization is an ideal that serves to guide
our search for an acceptable choice, but not necessarily to dictate what the final choice
is. For example, when I drive to work my criterion is to get there in a timely manner,
but I do not need to take the quickest route to satisfy the criterion. Strict optimality does
not let me consider any but the very best route.
It is not irrational, in the view of some philosophers, for people not to optimize.

Slote, for example, argues that it is reasonable not only to settle for something that
is less than the best, but that such a situation may actually be preferred by a rational
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decision maker. That is, one may willfully and rationally eschew taking the action that
maximizes utility.

Defenders of satisficing claim that it sometimes makes sense not to pursue one’s own greatest good
or desire-fulfillment, but I think it can also be shown that it sometimes makes sense deliberately to
reject what isbetter for oneself in favor of what isgood and sufficientfor one’s purposes. Those
who choose in this way demonstrate a modesty of desire, a kind of moderation, that seems intuitively
understandable, and it is important to gain a better understanding of such moderation if we wish to
become clear, or clearer, about common-sense, intuitive rationality. (Slote, 1989, pp. 1–2; emphasis
in original)

The gist of Slote’s argument is that common sense rationality differs from optimiz-
ing views of rationality in a way analogous to the difference between common sense
morality and utilitarian views of deontology. According to this latter view, what one is
morally permitted to do, one is morally required to do. Similarly, substantive rational-
ity requires one to optimize if one is able to do so. Slote argues that, just as utilitarian
deontology prohibits decision makers from acting supererogatorily, that is, of doing
more than is required or expected, optimizing views of rationality prohibit one from
achieving less than one is capable of achieving. But common sense morality permits
supererogation, and common sense rationality permits moderation.
Although Slote criticizes optimization as a model for behavior, he does not provide

an explicit criterion for characterizing acceptable other-than-optimal activity. While an
explicit criterion may not be necessary in the human context, when designing artificial
agents, the designer must provide them with some operational mechanism to govern
their decision-making if they are to function in a coherent way. Perhaps the weakest
notion of rationality that would permit such activity is an operational notion of being
“good enough.”
One way to establish what it means to be good enough is to specify minimum re-

quirements and accept any option thatmeets them. This is the approach taken bySimon.
He advocates the construction of “aspiration levels” and to halt searching when they are
met (Simon, 1955). Although aspiration levels at least superficially establish minimum
requirements, this approach relies primarily upon experience-derived expectations.
If the aspiration is too low, something better may needlessly be sacrificed, and if it
is too high, there may be no solution. It is difficult to establish an adequate practically
attainable aspiration level without first exploring the limits of what is possible, that is,
without first identifying optimal solutions – the very activity that satisficing is intended
to circumvent.7 Furthermore, such an approach is susceptible to the charge that defining
“good enough” in terms of minimum requirements begs the question, because the only
way seemingly to define minimum requirements is that they are good enough.

7 The decision maker may, however, be able to adjust his or her aspirations according to experience (see Cyert
and March (1992)), in which case it may be possible to adopt aspiration levels that are near-optimal. Even so,
however, there may be no way to determine how far one is away from the optimal solution without searching
directly for it.
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For single-agent low-dimensional problems, specifying the aspirations may be non-
controversial. But,withmulti-agent systems, interdependencebetweendecisionmakers
can be complex, and aspiration levels can be conditional (what is satisfactory for me
may depend upon what is satisfactory for you).
Satisficing via aspiration levels involves making a tradeoff between the cost of con-

tinuing to search for a better solution than one currently has and the adequacy of the
solution already in hand. That is, for any option under consideration, the decisionmaker
makes a choice between accepting the option and stopping the search or rejecting the
option and continuing the search. Making decisions in this way is actually quite similar
to the way decisions are made under substantive rationality; it is only the stopping rule
that is different. Both approaches rank-order the options and stop when one is found
with acceptably high rank. With optimality, the ranking is relative to other options, and
searching stops when the highest-ranking option is found. With aspiration levels, the
ranking is done with respect to an externally supplied standard, and searching stops
when an option is found whose ranking exceeds this threshold.
What aspiration levels and optimization have in common is that the comparison oper-

ation isextrinsic, that is, the ranking of a given option is made with respect to attributes
that are not necessarily part of the option. In the case of optimization, comparisons
are made relative to other options. In the case of aspiration levels, comparisons are
made relative to an externally supplied standard. Under both paradigms, an option is
selected or rejected on the basis of how it compares to things external to itself. Also,
both rank-order comparisons and fixed-standard comparisons are global, in that each
option is categorized in the option space relative to all other options.
Total ordering, however, is not the only way to make comparisons, nor is it the most

fundamental way. A more primitive approach is to form dichotomies, that is, to define
two distinct (and perhaps conflicting) sets of attributes for each option and either to
select or reject the option on the basis of comparing these attributes. Such dichotomous
comparisons areintrinsic, since they do not necessarily reference anything not directly
relating to the option.
Whereas extrinsic decisions are of the form: either select Hamburger A or select

Hamburger B (presumably on the basis of appearance and cost), intrinsic decisions are
of the form: either select Hamburger A or reject Hamburger A, with a similar decision
required for Hamburger B. The difference is that, under the extrinsic model, one would
combine appearance and cost into a single utility that could be rank-ordered, but under
the intrinsic model, one forms the binary evaluation of appearance versus cost. If only
one of the hamburgers passes muster, the problem is resolved. If you conclude that
neither hamburger’s appearance is worthy of the cost, you are justified in rejecting
them both. If you think both are worthy but you must choose only one, then you either
may appeal to a more sophisticated (e.g., extrinsic) decision paradigm, or you may
include additional criteria and try again, or you may make a random choice between
the options. Suppose that Hamburger A costs more than Hamburger B, but is alsomuch
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larger and hasmore trimmings. By the intrinsic criteria, if you view both as being worth
the price, then whatever your final choice, you at least get a good hamburger – you get
your money’s worth.
Dichotomies are the fundamental building blocks of everyday personal choices.

Attached to virtually every nontrivial option are attributes that are desirable and at-
tributes that are not desirable. To increase quality, one usually expects to pay more.
To win a larger reward, one expects to take a greater risk. People are naturally wont to
evaluate the upside versus the downside, the pros versus the cons, the pluses versus
the minuses, the benefits versus the costs. One simply evaluates tradeoffs option by
option – putting the gains and the losses on the balance to see which way it tips.
The result of evaluating dichotomies in this way is that the benefits must be at least as
great as the costs. In this sense, such evaluations provide a distinct notion of being good
enough.

Definition 1.5
An option isintrinsically rational if the expected gains achieved by choosing it equal
or exceed the expected losses, provided the gains and losses can be expressed in com-
mensurable units. �

Definition 1.6
An option isintrinsically satisficing if it is intrinsically rational. �

Byseparating thepositive (gain) andnegative (loss) attributesof anoption, I explicitly
raise the issue of commensurability. It should be noted, however, that traditional utility
theory also involves the issue of commensurability at least implicitly, since utility
functions typically involvebothbenefitsandcosts,whichareoftensummedorotherwise
combined together to form a single utility function (for example, when forming a utility
function for automobiles, positive attributes might be performance and reliability and
negative attributes might be purchase and operating costs). Often such attributes can be
expressed in, say, monetary units, but this is not always the case. Nevertheless, decision
makers are usually able to formulate some rational notion of commensurability by
appropriating or inventing a system of units. The issue was put succinctly by Hardin:
“Comparing one good with another is, we usually say, impossible because goods are
incommensurable. Incommensurables cannot be compared. Theoretically, this may
be true; but in real life incommensurablesare commensurable. Only a criterion of
judgment and a system of weighing are needed” (Hardin, 1968, emphasis in original).
Since my formulation of rationality requires explicit comparisons of attributes, the
choice of units becomes a central issue and will be discussed in detail in subsequent
chapters.
Intrinsic rationality is aweaker notion thansubstantive rationality, but it ismore struc-

tured than procedural rationality. Whereas substantive rationality may be characterized
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as an attitude of “nothing but the best will do” and procedural rationality may be char-
acterized as an attitude of “it has always worked before,” intrinsic rationality may be
characterized as an attitude of “getting what you pay for.” Substantive rationality as-
sures optimality but is rigid. Procedural rationality is efficient but amorphous. Intrinsic
rationality is ameliorative and flexible. There can be only one substantively rational
option (or an equivalence class of them) for a given optimality criterion, and there can
be only one procedurally rational option for a given procedure,8 but there can be several
intrinsically rational options for a given satisficing criterion.
The quality of a substantively rational option will be superior to all alternatives,

according to the criteria used to define it. The quality of a procedurally rational option
may be difficult to assess, since no explicit criteria are required to define it. The quality
of intrinsically rational options may be uneven, since options that provide little benefit
but also little cost may be deemed satisficing. Thus, intrinsic satisficing can be quite
different from satisficing̀a laSimon.
My justification for using the term “satisficing” is that it is consistent with the

issue that motivated Simon’s original usage of the term – to identify options that are
good enough by directly comparing attributes of the options to a standard. This usage
differs only in the standard used for comparison. Whereas Simon’s standard is extrin-
sic (attributes are compared to an externally supplied aspiration level), my standard
is intrinsic (the positive and negative attributes of each option are compared to each
other). If minimum requirements are readily available, however, it is certainly possible
to define satisficing in a way that conforms to Simon’s original idea.

Definition 1.7
An option isextrinsically satisficing if it meets minimum standards that are already
supplied. �

Combining intrinsic and extrinsic satisficing is one way to remove some of the
unevenness of intrinsic satisficing.

Definition 1.8
An option issecurely satisficingif it is both intrinsically and extrinsically satisficing.

�

It will not be assumed that minimum standards can always be specified. But if
they are, it will be assumed that they employ a rationale that is compatible with that
used to define gains and losses. If minimum standards are not available, the decision
makermust still attempt to evaluate the unevenness of intrinsically satisficing solutions.

8 With heuristics such as satisficingà la Simon, however, there may be multiple options that satisfy an extrinsic
satisficing criterion, and the agent need not terminate its search after finding only one of them.
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This issue will be discussed in detail in Chapter 5. Throughout the remainder of this
book, the termsatisficingwill refer solely to intrinsic satisficing unless stated otherwise.
It will be assumed that gains and losses can be defined, and that these attributes can be
expressed in units that permit comparisons.

1.3.2 Sociality

Competition, which is the instinct of selfishness, is another word for dissipation of energy, while
combination is the secret of efficient production. (Edward Bellamy,Looking Backward(1888))

Self-interested human behavior is often considered to be an appropriate metaphor
in the design of protocols for artificial decision-making systems. With such protocols,
it is often taken for granted that each member of a community of decision makers
will try

. . . tomaximize its own goodwithout concern for the global good. Such self-interest naturally prevails
in negotiations among independent businesses or individuals . . .Therefore, the protocols must be
designed using anoncooperative, strategicperspective: the main question is what social outcomes
follow given a protocol whichguarantees that each agent’s desired local strategy is best for that
agent – and thus the agent will use it.(Sandholm, 1999, pp. 201, 202; emphasis in original)

When artificial decision makers are designed to function in a non-adversative envi-
ronment, it is not obvious that it is either natural or necessary to restrict attention to
noncooperative protocols. Decision makers who are exclusively focused on their own
self-interest will be driven to compete with any other decision maker whose interests
might possibly compromise their own. Certainly, conflict cannot be avoided in general,
but conflict can just as easily lead to collaboration as to competition. Rather than head-
to-head competition, Axelrod suggests that a superior approach is to look inward, rather
than outward, and evaluate one’s performance relative to one’s own capabilities, rather
than with respect to the performance of others.

Asking how well you are doing compared to how well the other player is doing is not a good standard
unless your goal is to destroy the other player. In most situations, such a goal is impossible to achieve,
or is likely to lead to such costly conflict as to be very dangerous to pursue. When you are not trying
to destroy the other player, comparing your score with the other’s score simply risks the development
of self-destructive envy. A better standard of comparison is how well you are doing relative to how
well someone else could be doing in your shoes. (Axelrod, 1984, p. 111)

This thesis is born out by the Axelrod Tournament (Axelrod, 1984), in which a
number of game theorists were invited to participate in an iterated Prisoner’s Dilemma9

9 ThePrisoner’sDilemma, to be discussed in detail in Section 8.1.3, involves twoplayerswhomayeither cooperate
or defect. If one player cooperates and the other defects, the one who defects receives the best payoff while the
one who cooperates receives the worst payoff. If both defect, they both receive the next-to-worst payoff, and if
both cooperate, they both receive the next-to-best payoff (which is assumed to be better than the next-to-worst
payoff).
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tournament. The winning strategy was Rapoport’stit-for-tat rule: start by cooperating,
then play what the other player played the previous round. What is interesting about
this rule is that it always loses in head-to-head competition, yet wins the overall best
average score in round-robin play. It succeeds by eliciting cooperation from the other
players, rather than trying to defeat them.
Cooperation often involvesaltruism, or the notion that the benefit of others is one’s

ultimate goal. This notion is in contrast toegoism, which is the doctrine that the ultimate
goal of every individual is to benefit only himself or herself. The issue of egoism
versus altruism as an explanation for human behavior has captured the interest of many
researchers (Sober and Wilson, 1998; Mansbridge, 1990a; Kohn, 1992). As expressed
by Sober and Wilson:

Why does psychological egoism have such a grip on our self-conception? Does our everyday expe-
rience provide conclusive evidence that it is true? Has the science of psychology demonstrated that
egoism is correct? Has Philosophy? All of these questions must be answered in the negative . . . The
influence that psychological egoism exerts far outreaches the evidence that has been mustered on its
behalf . . . Psychological egoism is hard to disprove, but it also is hard to prove. Even if a purely selfish
explanation can be imagined for every act of helping, this doesn’t mean that egoism is correct. After
all, human behavior also is consistent with the contrary hypothesis – that some of our ultimate goals
are altruistic. Psychologists have been working on this problem for decades and philosophers for
centuries. The result, we believe, is an impasse – the problem of psychological egoism and altruism
remains unsolved. (Sober and Wilson, 1998, pp. 2, 3)

Peirce, also, is skeptical of egoism as a viable explanation for human behavior:

Take, for example, the doctrine that man only acts selfishly – that is, from the consideration that acting
in one way will afford him more pleasure than acting in another. This rests on no fact in the world,
but it has had a wide acceptance as being the only reasonable theory. (Peirce, 1877)

It is not my intent to detail the arguments regarding egoism versus altruism as expla-
nations for human behavior; such an endeavor is best left to psychologists and philoso-
phers. But, if the issue is indeed an open question, then it would be prudent to refrain
from relying exclusively on a rationality model based solely on self-interest when de-
signing artificial entities that are to work harmoniously, and perhaps altruistically, with
each other and with humans.
One of the possible justifications for adopting self-interest as a dominant paradigm

for artificial decision-making systems is that it is a simple and convenient prin-
ciple upon which to build a mathematically based theory. It allows the decision
problem to be abstracted from its context and expressed in unambiguous mathe-
matical language. With this language, utilities can be defined and calculus can be
employed to facilitate the search for the optimal choice. The quintessential manifesta-
tion of this approach to decision making is von Neumann–Morgenstern game theory
(von Neumann and Morgenstern, 1944). (SeeAppendix B for a brief summary of game
theory basics.)
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Under their view, game theory is built on one basic principle: individual self-
interest – each player must maximize its own expected utility under the constraint
that other players do likewise. For two-person zero-sum games (see Definition B.6 in
Appendix B), individual self-interest is perhaps the only reasonable, non-vacuous prin-
ciple – what one player wins, the other loses. Game theory insists, however, that this
same principle applies to the general case. Thus, even in situations where there is the
opportunity for group as well as individual interest, only individually rational actions
are viable: if a joint (that is, for the group) solution is not individually rational for some
decision maker, that self-interested decision maker would not be a party to such a joint
action. This is a rigid stance for a decision maker to take, but game theory brooks no
compromises that violate individual rationality.
Since many decision problems involve cooperative behavior, decision theorists are

tempted to define notions of group preference as well as individual preference. The no-
tion of group preference admits multiple interpretations. Shubik describes two, neither
ofwhich is entirely satisfactory to game theorists (in subsequent chapters I offer a third):
“Group preferences may be regarded either as derived from individual preferences by
some process of aggregation or as a direct attribute of the group itself” (Shubik, 1982,
p. 109). Of course, not all group scenarios will admit a harmonious notion of group
preference. It is hard to imagine a harmonious concept of group preference for zero-sum
games, for example. But, when there are joint outcomes that are desirable for the group
to obtain, the notion of group interest cannot be ignored.
One way to aggregate a group preference from individual preferences is to de-

fine a “social-welfare” function that provides a total ordering of the group’s options.
The fundamental issue is whether or not, given arbitrary preference orderings for each
individual inagroup, therealwaysexistsawayof combining these individual preference
orderings to generate a consistent preference ordering for the group. In an landmark
result, Arrow (1951) showed that no social-welfare function exists that satisfies a set of
reasonable and desirable properties, each of which is consistent with the notion of self-
interested rationality and the retention of individual autonomy (this theorem, known as
Arrow’s impossibility theorem, is discussed in more detail in Section 7.3).
The Pareto principle provides a concept of social welfare as a direct attribute of the

group.

Definition 1.9
A joint (group) option is aPareto equilibrium if no single decisionmaker, by changing
its decision, can increase its level of satisfaction without lowering the satisfaction level
of at least one other decision maker. �

As Raiffa has noted, however, the Pareto equilibrium can be equivocal.

It seems reasonable, does it not, that the groupshouldchoose a Pareto-optimal act? Otherwise there
would be alternative acts that at least some would prefer and no one would “disprefer”. Not too long
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ago this principle seemed to me unassailable, the one solid cornerstone in an otherwise swampy area.
I am not so sure now, and I find myself in that uncomfortable position in which the more I think the
more confused I become.

One can argue that the group by its very existence should have a common bond of interest. If the
members disagree on fundamentals (here, on probabilities and on utilities) they ought to thrash these
out independently, arrive at a compromise probability distribution and a compromise utility function,
and use these in the usual Bayesian manner. (Raiffa, 1968, p. 233, emphasis in original)

Adopting this latter view would require the group to behave as asuperplayer, or, as
Raiffa puts it, the “organization incarnate,” who functions as a higher-level decision
maker. Shubik refers to the practice of ascribing preferences to a group as a subtle
“anthropomorphic trap” of making a shaky analogy between individual and group
psychology. He argues that, “It may be meaningful . . . to saythat a group ‘chooses’
or ‘decides’ something. It is rather less likely to be meaningful to say that the group
‘wants’ or ‘prefers’ something” (Shubik, 1982, p. 124). Shubik criticizes the view of
the group as a superplayer capable of ascribing preferences according to some sort of
group-levelwelfare function as being too narrow in scope to “contendwith the pressures
of individual and factional self-interest.” Although Raiffa also rejects the notion of a
superplayer, he still feels “a bit uncomfortable . . .somehow the group entity is more
than the totality of its members” (Raiffa, 1968, p. 237).
Arrow expresses a similar discomfort: “All the writers from Bergson on agree on

avoiding the notion of a social good not defined in terms of the values of individuals.
But where Bergson seeks to locate social values in welfare judgments by individuals, I
prefer to locate them in the actions taken by society through its rules for making social
decisions” (Arrow, 1951, p. 106). Although Arrow does not tell us how such rules
should be defined or, once defined, how they should be implemented, his statement
nevertheless expresses the notion that societies may possess structure that is more
complicated than can be expressed via individual values.
Perhaps the source of this discomfort is that, while individual rationality may be

appropriate for environments of perfect competition, it loses much of its power in more
general sociological settings. As Arrow noted, the use of the individual rationality
paradigm is “ritualistic, not essential” (Arrow, 1986).What is essential, however, is that
any useful model of society accommodate the various relationships that exist between
the agents. But achieving this goal should not require artifices such as the aggregation
of individual interests or the creation of a superplayer.10While such approachesmay be
recommended by some as ways to account for group interests, they may also manifest
the limits of the substantive rationality paradigm.
Nevertheless, game theory, which relies exclusively upon self-interest, has been

a great success story for economics and has served to validate the assumption of

10 Margolis (1990) advocates a “dual-utilities” approach, comprising a social utility and a private utility, with the
decisionmaker allocating resources to achieve a balance between the two utilities. Margolis’ approach eschews
the substantive rationality premise, and is very much in the same spirit as the approach I develop in subsequent
chapters.
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substantive rationality in many applications. This success, however, does not imply
that self-interest is the only principle that will lead to credible models of economic
behavior, it does not imply the impossibility of accommodating both group and indi-
vidual interests in somemeaningfulway, and it doesnot imply that individual rationality
is an appropriate principle upon which to base a theory of artificial decision-making
entities.
Game theory provides a systematic way of analyzing behavior where the conse-

quences of one player’s actions depend on the actions taken by other players. Even
single-agent decision problems can be viewed profitably as games against nature, for
example. Themost common solution concepts of game theory are dominance andNash
equilibria.

Definition 1.10
A joint option is adominant equilibrium if each individual option is best for the
corresponding player, no matter what options the other players choose. �

Definition 1.11
A joint option is aNash equilibrium if, were any single decision maker to change its
decision, it would reduce its level of satisfaction. �

Adominant equilibrium corresponds to the ideal situation of all players being able si-
multaneously tomaximize their own satisfaction. This is a rare situation, even for games
where coordination is possible. Nash equilibrium is a much more useful concept, but
not all games possess pure (that is, non-random) Nash equilibria. Nash (1950) estab-
lished, however, that if random play is permitted where each player makes decisions
according to a probability rule (a mixed strategy), then at least one Nash equilibrium
can be found for a finite-player, finite-action game.
In contrast to Pareto equilibria, Nash equilibria is a strictly selfish concept, hence is

not amenable to cooperative play. But an individually rational player would have no
incentive to agree to a Pareto equilibrium if that solution did not assure at least as much
satisfaction as the player could be guaranteed of receiving were it to ignore completely
the interests of the other players.

Definition 1.12
Theminimumguaranteed benefit that a player can be assured of achieving is itssecurity
level. �

Furthermore, a subgroup of players would have no incentive to agree to a joint
solution unless the total benefit to the subgroup were at least as great as the minimum
that could be guaranteed to the subgroup – its security level – if it acted as a unit
(assuming transferable utilities which may be be reapportioned via side payments).



22 1 Rationality

The core of an N-person game is the set of all solutions that are Pareto equilibria
and at the same time provide each individual and each possible subgroup with at least
their security levels (the concept of the core is discussed in more detail in Section 7.1).
Unfortunately, the core is empty for many interesting and nontrivial games.
An empty core exposes the ultimate ramifications of a decision methodology based

strictly on the maximization of individual expectations. There may be no way to meet
all of the requirements that are imposed by strict adherence to the dictates of individual
rationality. There are many ways to justify solutions that are not in the core, such
as accounting for bargaining power based on what a decision maker calculates that it
contributes to a coalition by joining it (e.g., the Shapley value), or by forming coalitions
on the basis of no player having a justified objection against any other member of the
coalition (e.g., the bargaining set).
I do not criticize the rationale for these refinements to the theory, nor do I criticize

the various extra-game-theoretical considerations that may govern the formation of
coalitions, such as friendship, habits, fairness, etc. I simply point out that to achieve a
reasonable solution it may be necessary to go beyond the strict notion of maximizing
individual expectations and employ ancillary assumptions that temper the attitudes and
abilities of the decision makers. There are many such ingenious and insightful solution
concepts but, as Shubik notes,

Each solution probes some particular aspect of rational individuals in mutual interaction. But all of
them have had to make serious compromises. Inevitably, it seems, sharp predictions or prescriptions
can only be had at the expense of severely specialized assumptionsabout the customs or institutions
of the society being modeled. The many intuitively desirable properties that a solution ought to have,
taken together, prove to be logically incompatible. (Shubik, 1982, p. 2)

This observation cuts to the heart of the situation: under von Neumann–Morgenstern
game theory, any considerations of customs and peculiarities of the collective that are
not explicitly modeled by the individual utility functions are extra-game-theoretic and
must be accommodated by some sort of add-on logic. Much of the ingenuity and insight
associated with game theory may lie in devising ways to force these considerations into
the framework of individual rationality. While this practice may be appropriate for the
analysisof human behavior, it is less appropriate for thesynthesisof artificial decision-
making entities, since any such idiosyncratic attributes must be an explicit part of
the decision logic, not merely apost factumexplanation for anomalous behavior.
I suggest, however, that the problem is more fundamental than simply accounting
for idiosyncrasies.
The critical issue, in my view, has to do with the structure of the utility functions.

Before articulating this point, let me first briefly summarize utility theory as it is em-
ployed in mathematical games. Utility theory was developed as a mathematical way to
encode individual preference orderings. It is built on a set of axioms that describe how
a “rational man” would express his preference between two alternatives in a consistent
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Table 1.1: Payoff array for a two-player game with
two strategies each

X2

X1 s21 s22

s11 (π1(s11, s21), π2(s11, s21)) (π1(s11, s22), π2(s11, s22))
s12 (π1(s12, s21), π2(s12, s21)) (π1(s12, s22), π2(s12, s22))

way.11 An expected utility function is a mathematical expression that is consistent with
the preferences and conforms to the axioms. Since, in a game-theoretic context, an
individual’s preferences are generally dependent upon the payoffs (expected utilities)
that obtain as a result of the individual’s strategies and of the strategies available to
others, an individual’s expected utility function must be a function not only of the
individual’s own strategies, but of the strategies of all other individuals. For example,
consider a game involving two players, denotedX1 andX2, such that each player has
a strategy set consisting of two elements, that is,X1’s set of strategies isS1 = {s11,s12}
andX2’s set of strategies isS2 = {s21, s22} (for this single-play game, strategies are syn-
onymous with options).X1’s expected utility function would be a functionπ1(s1 j , s2k),
j, k = 1,2. Similarly,X2’s expected utility function is of the formπ2(s1 j , s2k). Thus,
each individual computes its expected utility as a function of both its own strategies and
the strategies of the other players. These expected utilities may then be juxtaposed into
a payoff array, and solution concepts may be devised to define equilibrium strategies,
that is, strategies that are acceptable for all players. Table 1.1 illustrates the payoff array
for a two-player game with two strategies each.
The important thing to note about this structure is thatit is not until the expected

utilities are juxtaposed into an array so that the expected utility values for all players
can be compared that the actual “game” aspects of the situation emerges.It is the
juxtaposition that reveals possibilities for conflict or coordination. These possibilities
are not explicitly reflected in the individual expected utility functions by themselves.
In other words, although the individual’s expected utility is a function of other players’
strategies,it is not a function of other players’ preferences.This structure is completely
consistent with exclusive self-interest, where all a player cares about is its personal
benefit as a function of its own and other players’ strategies, without any regard for
the benefit to the others. Under this paradigm, the only way the preferences of others
factor into an individual’s decision-making deliberations is to constrain behavior to
limit the amount of damage they can do to oneself. Pareto equilibria notwithstanding,
a true notion of group rationality is not a logical consequence of individual rationality.

11 This is not to say that the axioms cannot be generalized to deal with group preferences, but the theory has not
been developed that way.
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Table 1.2: Payoff matrix in ordinal form
for the Battle of the Sexes game

S

H D B

D (4, 3) (2, 2)
B (1, 1) (3, 4)

Key: 4= best; 3= next best; 2= next worst;
1= worst

Luce and Raiffa summarize the situation succinctly:

. . . general game theory seems to be in part a sociological theory which does not include any soci-
ological assumptions. . . it may be toomuch to ask that any sociology be derived from the single
assumption of individual rationality. (Luce and Raiffa, 1957, p. 196)

Often, the most articulate advocates of a theory are also its most insightful critics.
Yet, such criticism is not often voiced, even by advocates of game theory as a model
of human behavior. For example, consider the well-known Prisoner’s Dilemma game
(see Section 8.1.3). This game is of interest because possibilities for both cooperation
and conflict are present, yet under the paradigm of individual rationality, only the joint
conflict solution (the Nash equilibrium) is rational.
The Prisoner’s Dilemma gamemay be an appropriatemodel of behavior when (a) the

opportunity for exploitation exists, (b) cooperation, though possible, incurs great risk,
and (c) defection, even though it offers diminished rewards, protects the participant
from catastrophe. Many social situations, however, possess a strong cooperative flavor
with very little incentive for exploitation. One prototypical game that captures this
feature is the Battle of the Sexes game (Bacharach, 1976) to be discussed in detail in
Section 8.1.2. This is a game involving a man and a woman who plan to meet in town
for a social function. She (S) prefers to go to the ballet (B), while he (H ) prefers the
dog races (D). Each also prefers to be with the other, however, regardless of venue.
The classical way to formulate this game is via a payoff matrix, as given in Table 1.2 in
ordinal form, with the payoff pairs representing the benefits toH andS, respectively.
Rather than competing, these players wish to cooperate, but they must make their

decisions without benefit of communication. Both players lose if they make different
choices, but the choices are not all of equal value to the players. This game has two
Nash equilibria, (D, D) and (B, B).
One of the perplexing aspects of this game is that it does not pay to be altruistic

(deferring to the venuepreferred by the other), since, if both participants did, theywould
each receive the worst outcome. Nor does it pay for both to be selfish (demanding the
venue preferred by oneself) – that guarantees the next worst outcome for each player.
The best and next-best outcomes obtain if one player is selfish and the other altruistic.
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It seems that a way to account for the preferences of others when specifying one’s
own preferences would be helpful, but there is no obvious way to do this within the
conventional structure.
Taylor (1987) addresses the issue of accounting for the interests of others by intro-

ducing a formal notion of altruism that involves transforming the game to a new game
according to a utility array whose entries account for the payoffs to others as well as to
oneself. Taylor suggests that the utility functions be expressed as a weighted average
of the payoffs to oneself and to others. By adjusting the weights, a player is able to take
into consideration the payoffs of others.
Taylor’s form of altruism does not distinguish between the state ofactually relin-

quishingone’s own self-interest and the state ofbeing willing to relinquishone’s own
self-interest under the appropriate circumstances. To relinquish unconditionally one’s
own self-interest is a condition ofcategoricalaltruism – a decision maker uncondi-
tionally modifies its preferences to accommodate the preferences of others. A purely
altruistic playerwould completely replace its preferenceswith the preferences of others.
A state of being willing to modify one’s preferences to accommodate others if the need
arises is a state ofsituationalaltruism. Here, a decision maker is willing to accommo-
date, at least to some degree, the preferences of others in lieu of its own preferences
if doing so would actually benefit the other, but otherwise retains its own preferences
intact and avoids needless sacrifice.
Categorical altruism may be too much to expect from a decision maker who has its

own goals to pursue. However, the same decision maker may be willing to engage,
at least to a limited degree, in a form of situational altruism. Whereas it is one thing
for an individual to modify its behavior if it is sure that doing so will benefit another
individual (situational), it is quite another thing for an individual to modify its behavior
regardless of its effect on the other (categorical). In the Battle of the Sexes, IfH knew
that S had a very strong aversion toD (even thoughS would be willing to put up
with those extremely unpleasant surroundings simply to be withH and thus receive
her second-best payoff),H might then preferB to D. But if S did not have a strong
aversion toD thenH would stick to his preference forD over B (in Section 8.1.2
I introduce situational altruism into this game).
This example seems to illustrate Arrow’s claim that, when the assumption of perfect

competition fails, “the very concept of [individual] rationality becomes threatened,
because perceptions of others and, in particular, of their rationality become part of
one’s own rationality” (Arrow, 1986). Arrow has put his finger on a critical weakness
of individual rationality: it does not provide a way to incorporate another’s rationality
into one’s own rationality without seriously compromising one’s own rationality.
I do not assert that, under the theoretical framework of conventional game theory, it is
impossible to formulate theoretical models of social behavior that go beyond individual
interests and accommodate situationally altruistic tendencies while at the same time
preserving individual preferences. However, the extant literature does not provide such
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a theory. I assert that it will be difficult to develop such a theory that remains compatible
with the principle of individual rationality.
There are many ways to introduce categorical altruism into the design of artificial

decision makers. One approach is to modify the decision maker’s utility function to
become a function of the group’s payoff. In effect, the player is “brainwashed” into sub-
stitutinggroup interests for its personal interests. Then,whenactingaccording to its sup-
posed self-interest, it is actually accommodating the group (Wolpert and Tumer, 2001).
A somewhat similar, though less radical, approach is taken by Glass and Grosz (2000)
and Cooper et al. (1996), who attempt to instill a social consciousness into agents, re-
warding them for good social behavior by adjusting their utility functionswith “brownie
points” and “warm glow” utilities for doing the “right thing.”
It is certainly possible for human altruists to interpret their sacrifice as, ultimately,

a benefit to themselves for having made another’s good their own (motivated, pos-
sibly, by such “pure” altruistic attributes as duty and love, or perhaps by “impure”
altruistic attributes such as the sense of power that derives from having helped another
(Mansbridge, 1990b)), but it seems less appropriate to ascribe such anthropomorphic
interpretations (or motives) to artificial decision-making entities. While, granting that
it is possible for a decision maker to suppress its own preferences in deference to
others by redefining its own expected utility to be maximized, doing so is little more
than a device for co-opting individual rationality into a form that can be interpreted
as unselfish. Such a device only simulates attributes of cooperation, unselfishness, and
altruism while maintaining a regime that is competitive, exploitive, and avaricious.
Altruism, springing from whatever motive in man or machine, may often be accommo-
dated in multi-agent relationships, but it does not follow that it can be accommodated
within a regime that recognizes self-interest as the primary basis for rational decision
making.
Social choice theory is another multi-agent formalism that has been widely studied.

Like game theory, this theory has beendeveloped largely on the foundation of individual
rationality. For example, Harsanyi defines a social welfare function as a positive linear
combination of individual utilities where each individual utility in this combination is
a mapping of group options to individual utility. Each player then proceeds according
to the substantively rational paradigm by maximizing its expected utility subject to any
constraints that are relevant (Harsanyi, 1977).
Thesocialwelfare functionmodifies thedecisionmaker’s stance fromaconsideration

of purely selfish preferences to a consideration of what are termedmoral (or social)
preferences, and givesweight to the interests of each participant. However, the sequence
of mappings from group options to individual utilities and then from individual utilities
to a group utility provides a very constrained linkage between one decision maker’s
preferences (for itself or for the group) and another decision maker’s utilities and
may not deal adequately with the rich diversity of interconnections that can exist in
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multi-agent groups. Furthermore, suchmappings constitute unconditional (categorical)
changes to the individual’s utilities.
One of the characteristics of perhaps all societies, except for those that are either

completely anarchic or completely dictatorial, is that group and individual preferences
are woven together in a complex fabric that is virtually impossible to decompose into
constituent pieces that function independently. Exclusive self-interest simply does not
capture the richness and complexity of functional societies. On the other hand, to
relinquish fundamental control over individual preferences and focus primarily on the
preferences of the group as a whole may not be feasible, since individuals can be
asked to make unreasonable sacrifices that place them in extremely disadvantageous
situations. This suggests that functional societiesmust achieve some sort of equilibrium
that is flexible enough to accommodate the preferences of both the individual and the
group. Such an approach would be consistent with Levi’s dictum that

. . . principles of coherent or consistent choice, belief, desire, etc. will have to be weak enough to
accommodate a wide spectrum of potential changes in point of view. We may not be able to avoid
some fixed principles, but they should be as weak as we can make them while still accommodating
the demand for a systematic account. (Levi, 1997, p. 24)

Achieving, or at least approximating, equilibria involving both group and individual
preferences is an essential condition for a system of autonomous artificial decision
makers if theyare tobe representativeof humangroups.Obtainingsuchastate, however,
requires a generalized notion of utility that seamlessly combines group and individual
interests, even though it is individuals, and individuals only, who make the decisions.
Such a utility theorymust therefore be based on a notion of preference that allows group
preferences to influence individual preferences and thereby to influence individual
actions.
Accommodating group preferences must not leave the individual open to an unin-

tentional or unacceptable degree of self-sacrifice. Thus, there must be a clear means of
evaluation so that the individual can control the amount of compromise it is willing to
consider. In other words, the individual must possess a means for self-control.
Heuristics offer no such capability. Under procedural rationality, once an individual

adopts a rule that accommodates any form of compromise that exposes it to self-
sacrifice, it becomes difficult to control the extent of its commitment without knowing
beforehand the strategies of the other participants.
If one is willing to consider an option that is not strictly in its own best interest, one

must be able to add some friction to the slippery slope of compromise. One way to do
this is to adopt a satisficing stance, where satisficing is applied to the group as well
as to the individual. Whereas optimization is strictly an individual concept, satisficing
can be a social, as well as an individual, concept. For any group of decision makers,
if the group and each of its members is willing to compromise sufficiently, there will
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exist a joint option that is good enough for the group as a whole and good enough for
each member of the group according to their individual standards (this claim is made
explicit in Section 7.2). This does not mean, of course, that the decision makers are
obligated to accept this compromise option. It means only that it exists.
The remainder of this book explores the concept of intrinsic rationality, instantiated

at both the individual and group levels, as ameans of achieving an equilibriumof shared
preferences and acceptable compromises. Intrinsic satisficing requires the specification
of two general types of preferences – gains and losses. For a single-agent decision, it is
conceptually straightforward to place each of the relevant attributes into one of these
categories.When dealing with more than one decisionmaker, however, the interactions
between them are not so readily categorized. Relationships are interconnected and
conditional: one decision maker’s gains and losses may affect other decision maker’s
gains and losses. Furthermore, the interconnections that exist between players must
be at the level of preference interconnections, rather than action interconnections, as
they are usually expressed in conventional game theory. The method of characterizing
these preferencesmust be exhaustive, so that all possible relationships betweendecision
makers can be represented, but at the same time it must be parsimonious, so that it is
not more complex than it needs to be.
The central message of this book is that exclusive self-interest, coupled with strict

optimality, is indeed an “excess of reasonableness.” Self-interest is not the bedrock
of rationality. Decision making, especially in group settings, can be ameliorated by
relaxing the demands for optimization in its various forms (global maximization, con-
strained maximization, minimax, and even such “boundedly rational” approaches such
as Simon’s aspiration-level satisficing).




