
Chapter 3

A survey of steganographic techniques

Neil F. Johnson and Stefan C. Katzenbeisser

Many different steganographic methods have been proposed during the last few
years; most of them can be seen as substitution systems. Such methods try to
substitute redundant parts of a signal with a secret message (as presented in Section
2.3); their main disadvantage is the relative weakness against cover modifications.
Recently, the development of new robust watermarking techniques led to advances
in the construction of robust and secure steganography systems. Therefore, some
of the methods presented here are strongly related to watermarking techniques of
Chapter 6.

There are several approaches in classifying steganographic systems. One could
categorize them according to the type of covers used for secret communication. A
classification according to the cover modifications applied in the embedding process
is another possibility. We want to follow the second approach and group stegano-
graphic methods in six categories, although in some cases an exact classification is
not possible:

Substitution systems substitute redundant parts of a cover with a secret
message;
Transform domain techniques embed secret information in a transform
space of the signal (e.g., in the frequency domain);
Spread spectrum techniques adopt ideas from spread spectrum commu-
nication;

43

44 Information hiding techniques for steganography and digital watermarking

Statistical methods encode information by changing several statistical prop-
erties of a cover and use hypothesis testing in the extraction process;
Distortion techniques store information by signal distortion and measure
the deviation from the original cover in the decoding step;
Cover generation methods encode information in the way a cover for secret
communication is created.

In the following sections these six categories will be discussed.

3.1 PRELIMINARY DEFINITIONS

Throughout the following sections we want to refer to the cover used in the embed-
ding step as c. We will further assume (without loss of generality) that any cover
can be represented by a sequence of numbers ci of length `(c) (i.e., 1 ≤ i ≤ `(c)). In
the case of digital sound this could be just the sequence of samples over time; in the
case of a digital image, a sequence can be obtained by vectorizing the image (i.e.,
by lining up all pixels in a left-to-right and top-to-bottom order). Possible values
of ci are {0, 1} in the case of binary images or integers greater than 0 and less than
256 in the case of quantized images or sound. We will denote the stego-object by s
which is again a sequence si of length `(c).

Sometimes we have to index all cover-elements ci; we will use the symbol j
for such an index. If the index is itself indexed by some set, we use the notation
ji. When we refer to the jith cover-element we mean cji

. We will refer to a stego-
key as k; the structure of k will be explained separately in each steganographic
application. The secret message will be denoted by m, the length of m by `(m),
and the bits forming m by mi, 1 ≤ i ≤ `(m). Unless otherwise stated, we assume
that mi ∈ {0, 1}.

A color value is normally a three-component vector in a color space (a set of
possible colors), see [1]. A well-known color space is RGB. Since the colors red,
green, and blue are additive primaries , every color can be specified as a weighted
sum of a red, green, and a blue component. A vector in RGB space describes the
intensities of these components. Another space, known as YCbCr, distinguishes
between a luminance (Y) and two chrominance (Cb,Cr) components. Whereas the
Y component accounts for the brightness of a color, Cb and Cr distinguish between
the color grades. A color vector in RGB can be converted to YCbCr using the
transform:

Y = 0.299 R + 0.587 G + 0.114 B

Cb = 0.5 + (B − Y)/2 (3.1)

Cr = 0.5 + (R − Y)/1.6

A survey of steganographic techniques 45

An image C is a discrete function assigning a color vector (of any color space) c(x, y)
to every pixel (x, y).

3.2 SUBSTITUTION SYSTEMS AND BITPLANE TOOLS

A number of methods exist for hiding information in various media. These meth-
ods range from LSB coding—also known as bitplane or noise insertion tools—
manipulation of image or compression algorithms to modification of image proper-
ties such as luminance. Basic substitution systems try to encode secret information
by substituting insignificant parts of the cover by secret message bits; the receiver
can extract the information if he has knowledge of the positions where secret in-
formation has been embedded. Since only minor modifications are made in the
embedding process, the sender assumes that they will not be noticed by a passive
attacker.

3.2.1 Least significant bit substitution

Bitplane tools encompass methods that apply LSB insertion and noise manipulation.
These approaches are common in steganography and are relatively easy to apply
in image and audio [2–6]. A surprising amount of information can be hidden with
little, if any, perceptible impact to the carriers [5, 7, 8].

Sample tools used in this group include StegoDos [9], S-Tools [10], Mandelsteg
[11], EzStego [12], Hide and Seek [13], Hide4PGP [14], White Noise Storm [15], and
Steganos [16]. The image formats typically used in such steganography methods
are lossless and the data can be directly manipulated and recovered. Some of these
programs apply compression and encryption in addition to steganography services.
These services provide better security of the hidden data. Even so, the bitplane
methods are rather brittle and vulnerable to corruption due to small changes to the
carrier.

The embedding process consists of choosing a subset {j1, . . . , j`(m)} of cover-
elements and performing the substitution operation cji

� mi on them, which ex-
changes the LSB of cji

by mi (mi can either be 1 or 0). One could also imagine a
substitution operation which changes more than one bit of the cover, for instance
by storing two message bits in the two least significant bits of one cover-element.
In the extraction process, the LSB of the selected cover-elements are extracted and
lined up to reconstruct the secret message. This basic scheme is presented in Algo-
rithms 3.1 and 3.2. One problem remains to be solved: in which way should the cji

be chosen?
In order to be able to decode the secret message, the receiver must have access

to the sequence of element indices used in the embedding process. In the simplest

46 Information hiding techniques for steganography and digital watermarking

Algorithm 3.1 Embedding process: least significant bit substitution

for i = 1, . . . , `(c) do
si ← ci

end for
for i = 1 . . . , `(m) do

compute index ji where to store ith message bit
sji
← cji

� mi

end for

Algorithm 3.2 Extraction process: least significant bit substitution

for i = 1, . . . , `(M) do
compute index ji where the ith message bit is stored
mi ← LSB(cij)

end for

case, the sender uses all cover-elements for information transfer, starting at the
first element. Since the secret message will normally have less bits than `(c), the
embedding process will be finished long before the end of the cover. In this case,
the sender can leave all other cover elements unchanged. This can, however, lead to
a serious security problem: the first part of the cover will have different statistical
properties than the second part, where no modifications have been made. To over-
come this problem, for instance the public domain program PGMStealth enlarges
the secret message with random bits—so that `(c) = `(m)—in an attempt to create
an equal change in randomness at the beginning and the end of the cover. The
embedding process thus changes far more elements than the transmission of the
secret would require. Therefore the probability that an attacker will suspect secret
communication increases.

A more sophisticated approach is the use of a pseudorandom number generator
to spread the secret message over the cover in a rather random manner; a popular
approach is the random interval method (e.g., [3]). If both communication partners
share a stego-key k usable as a seed for a random number generator, they can create
a random sequence k1, . . . , k`(m) and use the elements with indices

j1 = k1

ji = ji−1 + ki, i ≥ 2 (3.2)

for information transfer. Thus, the distance between two embedded bits is deter-
mined pseudorandomly. Since the receiver has access to the seed k and knowledge
of the pseudorandom number generator, he can reconstruct ki and therefore the
entire sequence of element indices ji. This technique—which is especially efficient

A survey of steganographic techniques 47

Algorithm 3.3 Embedding process: random interval method

for i = 1 . . . , `(c) do
si ← ci

end for
generate random sequence ki using seed k
n← k1

for i = 1, . . . , `(m) do
sn ← cn � mi

n← n + ki

end for

Algorithm 3.4 Extraction process: random interval method

generate random sequence ki using seed k
n← k1

for i = 1, . . . , `(m) do
mi ← LSB(cn)
n← n + ki

end for

in the case of stream covers—is illustrated in Algorithms 3.3 and 3.4, which are
special cases of the general framework presented in Algorithms 3.1 and 3.2.

3.2.2 Pseudorandom permutations

If all cover bits can be accessed in the embedding process (i.e., if c is a random
access cover), the secret message bits can be distributed randomly over the whole
cover. This technique further increases the complexity for an attacker, since it is
not guaranteed that subsequent message bits are embedded in the same order.

In a first attempt Alice could create (using a pseudorandom number gener-
ator) a sequence j1, . . . , j`(m) of element indices and store the kth message bit in
the element with index jk. Note that one index could appear more than once in
the sequence, since we have not restricted the output of the pseudorandom number
generator in any way. We call such a case “collision.” If a collision occurs, Alice will
possibly try to insert more than one message bit into one cover-element, thereby
corrupting some of them. If the message is quite short compared with the number
of cover-elements, she hopes that the probability of collisions is negligible and that
corrupted bits could be reconstructed using an error-correcting code. This is, how-

48 Information hiding techniques for steganography and digital watermarking

ever, only the case for quite short secret messages. The probability p of at least one
collision can be estimated1 by (provided that `(m)� `(c)):

p ≈ 1− exp

(
−`(m)[`(m)− 1]

2`(c)

)

For constant `(c), p converges rapidly to 1 as `(m) increases. If, for example, a
digital image with 600×600 pixels is used as cover and about 200 pixels are selected
in the embedding process, p is approximately 5%. On the other hand, if 600 pixels
are used for information transfer, p increases to about 40%. We can conclude that
only for very short messages the probability of collisions is negligible; if the message
size increases, collisions must definitely be taken into account.

To overcome the problem of collisions, Alice could keep track of all cover-
bits which have already been used for communication in a set B. If during the
embedding process one specific cover-element has not been used prior, she adds its
index to B and continues to use it. If, however, the index of the cover-element is
already contained in B, she discards the element and chooses another cover-element
pseudorandomly. At the receiver side, Bob applies a similar technique.

Another method has been proposed by Aura [18]; he uses the basic substitution
scheme of Algorithms 3.1 and 3.2 and calculates the index ji via a pseudorandom
permutation of the set {1, . . . , `(c)}. Suppose the number `(c) can be expressed as
a product of two numbers, X and Y (recall that this is always the case for digital
images), and hK is an arbitrary cryptographically secure hash function depending
on a key k. Let k1, k2 and k3 be three secret keys. It can then be shown [19, 20]
that Algorithm 3.5 outputs a different number ji for each input i (1 ≤ i ≤ XY),
(i.e., it produces a pseudorandom permutation of the set {1, . . . , `(c)}), provided
that the algorithm is evaluated with input i = 1, . . . , `(c).

Alice first splits the stego-key k into three pieces k1, k2 and k3. In the embed-
ding process she stores the ith message bit in the element with index ji, which is
computed according to Algorithm 3.5. Collisions do not occur, since Algorithm 3.5
does not produce duplicate element indices. If Bob has access to the three keys k1,
k2 and k3, he is able to reconstruct the positions where Alice embedded the secret

1 The problem of calculating p is an instance of the so-called birthday paradox: an urn is filled
with n balls, numbered from 1 to n. Suppose that m balls are drawn from the urn with
replacement and their numbers are listed. The probability P (n, m) that at least one ball is
drawn twice, provided that m = O(

√
n), is given by [17]

P (n, m) = 1−
m−1∏
i=0

(
1− i

n

)
→ 1− exp

(
−m(m− 1)

2n
+ O

(
1√
n

))

A survey of steganographic techniques 49

Algorithm 3.5 Computing the index ji using pseudorandom permutations

v ← i div X
u← i modX
v ← (v + hk1(u)) modY
u← (u + hk2(v)) modX
v ← (v + hk3(u)) modY
ji ← vX + u

message bits. However, Aura’s method needs a considerable amount of computation
time, since the chosen hash function must be evaluated 3`(m) times.

3.2.3 Image downgrading and covert channels

In 1992, Kurak and McHugh [5] reported on a security threat in high-security
operating systems. Their fear was that a steganographic technique, called image
downgrading, could be used to exchange images covertly. Image downgrading is a
special case of a substitution system in which images act both as secret messages
and covers. Given a cover-image and a secret image of equal dimensions, the sender
exchanges the four least significant bits of the cover’s grayscale (or color) values
with the four most significant bits of the secret image. The receiver extracts the
four least significant bits out of the stego-image, thereby gaining access to the most
significant bits of the secret image. While the degradation of the cover is not visually
noticeable in many cases, 4 bits are sufficient to transmit a rough approximation of
the secret image.

In multilevel-secure operating systems, subjects (processes, users) and objects
(files, databases, etc.) are assigned a specific security level; for example, see the
famous Bell-LaPadula [21] model. Subjects are normally only allowed to access
objects with a lower security level (“no read up”), whereas they are only able to write
onto objects with a higher level (“no write down”). Whereas the reason for the first
restriction is obvious, the second attempts to prohibit users from making confident
information available to subjects with a lower security classification. Information
downgrading can be used to declassify or downgrade information (hence the name)
by embedding classified information into objects with a substantially lower security
classification and thus subvert the principle of “no write down.” Chapter 4 will look
at possible counterstrategies.

50 Information hiding techniques for steganography and digital watermarking

3.2.4 Cover-regions and parity bits

We will call any nonempty subset of {c1, . . . , c`(c)} a cover-region. By dividing the
cover in several disjoint regions, it is possible to store one bit of information in a
whole cover-region rather than in a single element. A parity bit of a region I can
be calculated by

p(I) =
∑
j∈I

LSB(cj) mod 2 (3.3)

In the embedding step, `(m) disjoint cover-regions Ii (1 ≤ i ≤ `(m)) are selected,
each encodes one secret bit mi in the parity bit p(Ii). If the parity bit of one cover-
region Ii does not match with the secret bit mi to encode, one LSB of the values
in Ii is flipped. This will result in p(Ii) = mi. In the decoding process, the parity
bits of all selected regions are calculated and lined up to reconstruct the message.
Again, the cover-regions can be constructed pseudorandomly using the stego-key as
a seed.

Although the method is not more robust than simple bit substitution, it is
conjectured to be more powerful in many cases. First, the sender can choose which
element should be modified in the cover-region; he can do it in a way that changes
the cover statistics least. Furthermore, the probability p∗0 that the parity bit of
a cover-region consisting of N randomly chosen elements is zero, is approximately
1/2, nearly independent of the probability p0 that the LSB of one randomly selected
cover-element is zero, since

p∗0 =

bN/2c∑
i=0

(
N

2i

)
(1− p0)

2ipN−2i
0

=
pN

0

2

[(
1 +

1− p0

p0

)N

+

(
1− 1− p0

p0

)N
]

=
1

2

(
1 + (2p0 − 1)N

)
(3.4)

Equation (3.4) follows from the fact that p(I) = 0 if and only if there is an even
number of pixels in the cover-region which have least significant bit 1. Since (2p0−
1)N → 0 if 0 < p0 < 1, we can conclude that p∗0 rapidly approaches 1/2 as N
increases, regardless of p0. This indicates that the effect of the embedding process
on the cover can be reduced by increasing N .

A survey of steganographic techniques 51

3.2.5 Palette-based images

In a palette-based image only a subset of colors from a specific color space can
be used to colorize the image. Every palette-based image format consists of two
parts: a palette specifying N colors as a list of indexed pairs (i, ci), assigning a color
vector ci to every index i, and the actual image data which assign a palette index
to every pixel rather than the color value itself. If only a small number of color
values are used throughout the image, this approach greatly reduces the file size.
Two of the most popular formats are the graphics interchange format (GIF) and the
BMP bitmap format. However, due to the availability of sophisticated compression
techniques, their use declines.

Generally, there are two ways to encode information in a palette-based image:
either the palette or the image data can be manipulated. The LSB of the color
vectors could be used for information transfer, just like the substitution methods
presented in the last subsections. Alternatively, since the palette does not need to
be sorted in any way, information can be encoded in the way the colors are stored
in the palette. Since there are N ! different ways to sort the palette, there is enough
capacity to encode a small message. However, all methods which use the order of a
palette to store information, are not robust, since an attacker can simply sort the
entries in a different way and destroy the secret message (he thereby does not even
modify the picture visibly).

Alternatively, information can be encoded in the image data. Since neighbor-
ing palette color values need not be perceptually similar, the approach of simply
changing the LSB of some image data fails. Some steganographic applications (e.g.,
the program EzStego) therefore sort the palette so that neighboring colors are per-
ceptually similar before they start the embedding process. Color values can, for
instance, be stored according to their Euclidian distance in RGB space:

d =
√

R2 + G2 + B2 (3.5)

Since the human visual system is more sensitive to changes in the luminance of
a color, another (probably better) approach would be sorting the palette entries
according to their luminance component, see (3.1). After the palette is sorted, the
LSB of color indices can safely be altered.

Fridrich [22] proposes using a slightly different technique which does not need
the palette to be sorted: for every pixel, the set of closest colors (in the Euclidian
norm) is calculated. Starting with the closest color, the sender proceeds to find the
next-closest color until a color is found where its parity (R+G+B mod2) matches
with the secret bit to encode. Once such a color is found, the pixel is changed to
this new color.

Yet another steganographic application reduces the total number of color values

52 Information hiding techniques for steganography and digital watermarking

in a picture to bN/2c using some dithering method, and doubles the entire palette;
thereby all doubled entries are slightly modified. After this preprocessing stage,
each color value of the dithered image corresponds to two palette entries, from which
one is chosen according to a secret message bit (e.g., Mandelsteg [11], S-Tools [10],
Hide4PGP [14], and Hide and Seek [13] apply variations of this method).

3.2.6 Quantization and dithering

Dithering and quantization of digital images can be used for embedding secret in-
formation. Matsui and Tanaka [23] presented two steganographic systems which
operate on quantized images. We briefly review quantization in the context of pre-
dictive coding here. In predictive coding, the intensity of each pixel is predicted
based on the pixel values in a specific neighborhood; the prediction may be a lin-
ear or nonlinear function of the surrounding pixel values. In its simplest form, the
difference ei between adjacent pixels xi and xi+1 is calculated and fed into a quan-
tizer Q which outputs a discrete approximation ∆i of the difference signal xi−xi−1

(i.e., ∆i = Q(xi − xi−1)). Thus, in each quantization step a quantization error
is introduced. For highly correlated signals we can expect ∆i to be close to zero,
so an entropy coder—which tries to create a minimum-redundancy code given a
stochastic model of the data to be transmitted—will be efficient. At the receiver
side the difference signal is dequantized and added to the last signal sample in order
to construct an estimate for the sequence xi.

For steganographic purposes the quantization error in a predictive coding
scheme can be utilized; specifically, we adjust the difference signal ∆i so that it
transmits additional information. In this scheme, the stego-key consists of a table
which assigns a specific bit to every possible value of ∆i; for instance, the following
assignment could be made:

∆i -4 -3 -2 -1 0 1 2 3 4
0 1 0 1 1 1 0 0 1

In order to store the ith message bit in the cover-signal, the quantized difference
signal ∆i is computed. If ∆i does not match (according to the secret table) with the
secret bit to be encoded, ∆i is replaced by the nearest ∆j where the associated bit
equals the secret message bit. The resulting values ∆i are then fed into the entropy
coder. At the receiver side, the message is decoded according to the difference signal
∆i and the stego-key.

Secret information can also be inserted into a signal during a dithering process;
see [23] and Baharav and Shaked [24] for details.

A survey of steganographic techniques 53

Algorithm 3.6 Zhao and Koch’s algorithm for data embedding in binary images

for i = 1, . . . , `(M) do
do forever

pseudorandomly select a new image block Bj

/* Test, if block Bi is valid */
if P1(Bj) > R1 + 3λ or P1(Bj) < R0 − 3λ then continue
if (ci = 1 and P1(Bj) < R0) or (ci = 0 and P1(Bj) > R1) then

mark block Bj as unusable, i.e. modify block so that
either P1(Bj) < R0 − 3λ or P1(Bj) > R1 + 3λ

continue
endif
break

enddo
/* Embed secret message bit in Bj */
if ci = 1 then

modify Bj so that P1(Bj) ≥ R1 and P1(Bj) ≤ R1 + λ
else

modify Bj so that P0(Bj) ≤ R0 and P0(Bj) ≥ R0 − λ
end if

end for

3.2.7 Information hiding in binary images

Binary images—like digitized fax data—contain redundancies in the way black and
white pixels are distributed. Although the implementation of a simple substitution
scheme is possible (e.g., certain pixels could be set to black or white depending on
a specific message bit), these systems are highly susceptible to transmission errors
and are therefore not robust.

One information hiding scheme which uses the number of black pixels in a
specific image region to encode secret information was presented by Zhao and Koch
[25]. A binary image is divided into rectangular image blocks Bi; let P0(Bi) be
the percentage of black pixels in the image block Bi and P1(Bi) the percentage
of white pixels, respectively. Basically, one block embeds a 1, if P1(Bi) > 50%
and a 0, if P0(Bi) > 50%. In the embedding process the color of some pixels is
changed so that the desired relation holds. Modifications are carried out at those
pixels whose neighbors have the opposite color; in sharply contrasted binary images,
modifications are carried out at the boundaries of black and white pixels. These
rules assure that the modifications are not generally noticeable.

In order to make the entire system robust to transmission errors and other

54 Information hiding techniques for steganography and digital watermarking

Algorithm 3.7 Extraction process (Zhao and Koch)

for i = 1, . . . , `(M) do
do forever

pseudorandomly select image block Bj

if P1(Bj) > R1 + 3λ or P1(Bj) < R0 − 3λ then continue
break

enddo
if P1(Bj) > 50% then

mi ← 1
else

mi ← 0
end if

end for

image modifications, we have to adapt the embedding process. If it is possible
that some pixels change color during the transmission process, it could be the
case that for instance P1(Bi) drops from 50.6% to 49.5%, thereby destroying the
embedded information. Therefore two threshold values R1 > 50% and R0 < 50%
and a robustness parameter λ, which specifies the percentage of pixels which can
change color during transmission, are introduced. The sender assures during the
embedding process that either P1(Bi) ∈ [R1, R1+λ] or P0(Bi) ∈ [R0−λ, R0] instead
of P1(Bi) > 50% and P0(Bi) < 50%. If too many pixels must be changed in order
to achieve that goal, the block is marked as “invalid”: P1(Bi) is modified to fulfill
one of the two conditions

P1(Bi) < R0(Bi)− 3λ

P1(Bi) > R1(Bi) + 3λ

and another block is pseudorandomly chosen for bit i. In the decoding process,
invalid blocks are skipped. Otherwise, the information is decoded according to
P1(Bi). The embedding and extraction algorithms are outlined in Algorithms 3.6
and 3.7.

A different embedding scheme, presented by Matsui and Tanaka [23], uses
the lossless compression system which is used to encode information in a facsimile
document. According to a recommendation of the former Comité Consultatif Inter-
national Télégraphique et Téléphonique (which is now the International Telecom-
munication Union) [26], fax images can be coded using a combination of run length
(RL) and Huffman encoding. RL techniques utilize the fact that in a binary image
successive pixels have the same color with high probability. Figure 3.1 shows one
scan line from a fax document; we will indicate positions with changing colors with

A survey of steganographic techniques 55

a a a a a2 4310

Figure 3.1 One scan line of a binary image.

ai. Instead of coding the color of every pixel explicitly, RL methods code the posi-
tions of color changes (ai) together with the number RL(ai, ai+1) of successive pixels
with the same color starting at ai. Our hypothetical scan line of Figure 3.1 would be
coded by 〈a0, 3〉, 〈a1, 5〉, 〈a2, 4〉, 〈a3, 2〉, 〈a4, 1〉. We can thus describe a binary image
as a sequence of RL elements 〈ai, RL(ai, ai+1)〉.

Information can be embedded into a binary, run-length encoded image by modi-
fying the least significant bit of RL(ai, ai+1). In the encoding process we modify
the run lengths of the binary picture so that RL(ai, ai+1) is even, if the ith secret
message bit mi is zero. If, however, RL(ai, ai+1) is odd, mi is one. This can be
achieved, for example, by the following manner: if mi is zero but RL(ai, ai+1) is
odd, we move the position of ai+1 one pixel to the left. On the other hand, we
move ai+1 one pixel to the right, if mi = 1 and RL(ai, ai+1) is even. This insertion
technique, however, leads to problems if the run-length RL(ai, ai+1) is one. If the
run-length needs to be changed in the embedding process, it could be lost. We
therefore have to assure that such a situation will never happen; for example, all
RL elements with run-length one could be dropped before starting the embedding
process.

3.2.8 Unused or reserved space in computer systems

Taking advantage of unused or reserved space to hold covert information provides
a means of hiding information without perceptually degrading the carrier. For
example: the way operating systems store files typically results in unused space that
appears to be allocated to a file. For example, under Windows 95 operating system,
drives formatted as FAT16 (MS-DOS compatible) without compression typically use
cluster sizes of 322 kilobytes (Kb). This means that the minimum space allocated
to a file is 32 Kb. If a file is 1 Kb in size, then an additional 31 Kb is “wasted.” This
“extra” space can be used to hide information without showing up in the directory.
Unused space in file headers of image and audio can also be used to hold “extra”
information.

2 This depends on the size of the hard drive.

56 Information hiding techniques for steganography and digital watermarking

Another method of hiding information in file systems is to create a hidden
partition. These partitions are not seen if the system is started normally. However,
in many cases, running a disk configuration utility (such as DOS’s FDISK) exposes
the hidden partition. These concepts have been expanded in a novel proposal of a
steganographic file system [27, 28]. If the user knows the file name and password,
access is granted to the file; otherwise, no evidence of the file exists in the system.

Protocols in the OSI network model have characteristics that can be used to
hide information [29]. TCP/IP packets used to transport information across the
Internet have unused space in the packet headers. The TCP packet header has six
unused (reserved) bits and the IP packet header has two reserved bits. Thousands
of packets are transmitted with each communication channel, which provides an ex-
cellent covert communication channel if unchecked. The ease in use and abundant
availability of steganography tools has law enforcement concerned in trafficking of il-
licit material via Web page images, audio, and other files being transmitted through
the Internet. Methods of message detection and understanding the thresholds of
current technology are necessary to uncover such activities (see Chapter 4).

3.3 TRANSFORM DOMAIN TECHNIQUES

We have seen that LSB modification techniques are easy ways to embed information,
but they are highly vulnerable to even small cover modifications. An attacker can
simply apply signal processing techniques in order to destroy the secret information
entirely. In many cases even the small changes resulting out of lossy compression
systems yield to total information loss.

It has been noted early in the development of steganographic systems that
embedding information in the frequency domain of a signal can be much more robust
than embedding rules operating in the time domain. Most robust steganographic
systems known today actually operate in some sort of transform domain.

Transform domain methods hide messages in significant areas of the cover image
which makes them more robust to attacks, such as compression, cropping, and
some image processing, than the LSB approach. However, while they are more
robust to various kinds of signal processing, they remain imperceptible to the human
sensory system. Many transform domain variations exist. One method is to use the
discrete cosine transformation (DCT) [30–33] as a vehicle to embed information in
images; another would be the use of wavelet transforms [34]. Transformations can be
applied over the entire image [30], to blocks throughout the image [35, 36], or other
variations. However, a trade-off exists between the amount of information added to
the image and the robustness obtained [7, 37]. Many transform domain methods

A survey of steganographic techniques 57

are independent to image format and may survive conversion between lossless and
lossy formats.

Before we describe transform domain steganographic methods, we will briefly
review the Fourier and cosine transforms which can be used to map a signal into
the frequency domain. The discrete Fourier transform (DFT) of a sequence s of
length N is defined to be

S(k) = F{s} =

N−1∑
n=0

s(n) exp

(
−2inπk

N

)
(3.6)

where i =
√−1 is the imaginary unit. The inverse Fourier transform is given by

s(k) = F−1{S} =
N−1∑
n=0

S(n) exp

(
2inπk

N

)
(3.7)

Another useful transform is the DCT, given by

S(k) = D{s} =
C(k)

2

N∑
j=0

s(j) cos

(
(2j + 1)kπ

2N

)

s(k) = D−1{S} =
N∑

j=0

C(j)

2
s(j) cos

(
(2j + 1)kπ

2N

)
(3.8)

where C(u) = 1/
√

2 if u = 0 and C(u) = 1 otherwise. The DCT has the primary
advantage that D{s} is a sequence of real numbers, provided that the sequence s is
real. In digital image processing, the two-dimensional version of the DCT is used:

S(u, v) =
2

N
C(u)C(v)

N−1∑
x=0

N−1∑
y=0

s(x, y) cos

(
πu(2x + 1)

2N

)
cos

(
πv(2y + 1)

2N

)

s(x, y) =
2

N

N−1∑
u=0

N−1∑
v=0

C(u)C(v)S(u, v) cos

(
πu(2x + 1)

2N

)
cos

(
πv(2y + 1)

2N

)

The two-dimensional DCT is the “heart” of the most popular lossy digital image
compression system used today: the JPEG system [38, 39] (see Figure 3.2). JPEG
first converts the image to be compressed into the YCbCr color space and breaks up
each color plane into 8×8 blocks of pixels. Then, all blocks are DCT transformed.
In a quantization step all DCT coefficients are divided by some predefined quan-
tization values (see Table 3.1) and rounded to the nearest integer (according to a
quality factor, the quantization values can be scaled by a constant). The purpose of
this process is to modulate the influence of the different spectral components on the

58 Information hiding techniques for steganography and digital watermarking

Source image
8x8 blocks

JPEG compression interface

DCT Quantizer
Huffman-

coder

Quantization
table Table

Compressed
image

Figure 3.2 Outline of the JPEG image compression algorithm.

(u,v) 0 1 2 3 4 5 6 7
0 16 11 10 16 24 40 51 61
1 12 12 14 19 26 58 60 55
2 14 13 16 24 40 57 69 56
3 14 17 22 29 51 87 80 62
4 18 22 37 56 68 109 103 77
5 24 35 55 64 81 104 113 92
6 49 64 78 87 103 121 120 101
7 72 92 95 98 112 100 103 99

Table 3.1 Quantization values used in the JPEG compression scheme (luminance components).

image. In particular, the influence of the highest DCT coefficients is reduced: they
are likely to be dominated by noise and are not expected to contribute significant
details to the picture. The resulting quantized DCT coefficients are compressed
using an entropy coder (e.g., Huffman [40] or arithmetic coding). In the JPEG
decoding step all DCT coefficients are dequantized (i.e., multiplied with the quan-
tization values which had been used in the encoding step). Afterwards an inverse
DCT is performed to reconstruct the data. The restored picture will be close to
(but not identical with) the original one; but if the quantization values were set
properly, there should be no noticeable difference for a human observer.

3.3.1 Steganography in the DCT domain

One popular method of encoding secret information in the frequency domain is
modulating the relative size of two (or more) DCT coefficients within one image

A survey of steganographic techniques 59

Algorithm 3.8 DCT–Steg encoding process

for i = 1, . . . , `(M) do
choose one cover-block bi

Bi = D{bi}
if mi = 0 then

if Bi(u1, v1) > Bi(u2, v2) then
swap Bi(u1, v1) and Bi(u2, v2)

end if
else

if Bi(u1, v1) < Bi(u2, v2) then
swap Bi(u1, v1) and Bi(u2, v2)

end if
end if
adjust both values so that |Bi(u1, v1)− Bi(u2, v2)| > x
b′i = D−1{Bi}

end for
create stego-image out of all b′i

block. We will describe a system which uses digital images as covers and which is
similar to a technique proposed by Zhao and Koch [25].

During the encoding process, the sender splits the cover-image in 8×8 pixel
blocks; each block encodes exactly one secret message bit. The embedding process
starts with selecting a pseudorandom block bi which will be used to code the ith
message bit. Let Bi = D{bi} be the DCT-transformed image block.

Before the communication starts, both sender and receiver have to agree on
the location of two DCT coefficients, which will be used in the embedding process;
let us denote these two indices by (u1, v1) and (u2, v2). The two coefficients should
correspond to cosine functions with middle frequencies; this ensures that the infor-
mation is stored in significant parts of the signal (hence the embedded information
will not be completely damaged by JPEG compression). Furthermore, we can as-
sume that the embedding process will not degenerate the cover heavily, because it is
widely believed that DCT coefficients of middle frequencies have similar magnitudes
[41]. Since the constructed system should be robust against JPEG compression, we
choose the DCT coefficients in such a way that the quantization values associated
with them in the JPEG compression algorithm are equal. According to Table 3.1
the coefficients (4,1) and (3,2) or (1,2) and (3,0) are good candidates.

One block encodes a “1,” if Bi(u1, v1) > Bi(u2, v2), otherwise a “0.” In the
encoding step, the two coefficients are swapped if their relative size does not match
with the bit to be encoded. Since the JPEG compression can (in the quantiza-

60 Information hiding techniques for steganography and digital watermarking

Algorithm 3.9 DCT–Steg decoding process

for i = 1, . . . , `(M) do
get cover-block bi associated with bit i
Bi = D{bi}
if Bi(u1, v1) ≤ Bi(u2, v2) then

mi = 0
else

mi = 1
end if

end for

tion step) affect the relative sizes of the coefficients, the algorithm ensures that
|Bi(u1, v1) − Bi(u2, v2)| > x for some x > 0, by adding random values to both
coefficients. The higher x is, the more robust the algorithm will be against JPEG
compression, however, at the expense of image quality. The sender then performs
an inverse DCT to map the coefficients back into the space domain. To decode the
picture, all available blocks are DCT-transformed. By comparing the two coeffi-
cients of every block, the information can be restored. Embedding and extraction
algorithms are outlined in Algorithms 3.8 and 3.9.

If the constant x and the location of the used DCT coefficients are chosen
properly, the embedding process will not degenerate the cover visibly. We can expect
this method to be robust against JPEG compression, since in the quantization
process both coefficients are divided by the same quantization values. Their relative
size will therefore only be affected in the rounding step.

Perhaps the most important drawback of the system presented above is the
fact that Algorithm 3.8 does not discard image blocks where the desired relation of
the DCT coefficients cannot be enforced without severely damaging the image data
contained in this specific block.

Zhao and Koch [25, 31] proposed a similar system which does not suffer from
this drawback. They operate on quantized DCT coefficients and use the relations of
three coefficients in a block to store the information. The sender DCT transforms
the image block bi and performs a quantization step to get BQ

i . One block encodes
a “1,” if BQ

i (u1, v1) > BQ
i (u3, v3) + D and BQ

i (u2, v2) > BQ
i (u3, v3) + D. On the

other hand, a “0” is encoded, if BQ
i (u1, v1) + D < BQ

i (u3, v3) and BQ
i (u2, v2) + D <

BQ
i (u3, v3). The parameter D accounts for the minimum distance between two

coefficients for representing an embedded bit; normally D = 1. The higher D is,
the more robust the method will be against image processing techniques. Again,
the three selected coefficients should be situated in the middle of the spectrum.

In the encoding step, the relations between these three coefficients are changed

A survey of steganographic techniques 61

so that they represent one bit of the secret information. If the modifications required
to code one secret bit are too large, then the block is not used for information
transfer and marked as “invalid.” This is the case, if the difference between the
largest and the smallest coefficient is greater than some constant value MD . The
higher MD is, the more blocks can be used for communication. In order to allow a
correct decoding, the quantized DCT coefficients of an invalid block are changed so
that they fulfill one of the two conditions

BQ
i (u1, v1) ≤ BQ

i (u3, v3) ≤ BQ
i (u2, v2) (3.9)

or

BQ
i (u2, v2) ≤ BQ

i (u3, v3) ≤ BQ
i (u1, v1) (3.10)

Afterwards the block is dequantized and the inverse DCT is applied.
The receiver can restore the information by applying DCT and quantizing the

block. If the three selected coefficients fulfill one of the conditions (3.9) or (3.10), the
block is ignored. Otherwise the encoded information can be restored by comparing
BQ

i (u1, v1), BQ
i (u2, v2), and BQ

i (u3, v3). The authors claim that this embedding
method is robust against JPEG compression (with quality factors as low as 50%),
since all changes are made after the “lossy” quantization step.

3.3.2 Hiding information in digital sound: phase coding

Embedding secret messages in digital sound is generally more difficult than em-
bedding information in digital images. Moore [42] noted that the human auditory
system is extremely sensitive; perturbations in a sound file can be detected as low as
one part in 10 million. Although the limit of perceptible noise increases as the noise
level of the cover increases, the maximum allowable noise level is generally quite
low. It is however known that the human auditory system is much less sensitive
to the phase components of sound; this fact has been exploited in numerous digital
audio compression systems.

In phase coding [2], a digital datum is represented by a phase shift in the phase
spectrum of the carrier signal; the carrier signal c is split into a series of N short
sequences, ci(n) of length `(m), a DFT is applied, and a matrix of the phases φi(k)
and Fourier transform magnitudes Ai(k) is created. Recall that

Ai(k) =
√

Re[F{ci}(k)]2 + Im[F{ci}(k)]2 (3.11)

and

φi(k) = arctan
Im[F{ci}(k)]

Re[F{ci}(k)]
(3.12)

62 Information hiding techniques for steganography and digital watermarking

Since phase shifts between consecutive signal segments can easily be detected, their
phase differences need to be preserved in the stego-signal. The embedding process
thus inserts a secret message only in the phase vector of the first signal segment:

φ̃0(k) =

{
π/2 if mk = 0
−π/2 if mk = 1

(3.13)

and creates a new phase matrix using the original phase differences

φ̃1(k) = φ̃0(k) + [φ1(k)− φ0(k)]

. . .

φ̃N(k) = φ̃N−1(k) + [φN(k)− φN−1(k)] (3.14)

The sender then uses the new phase matrix φ̃i(k) and the original matrix of Fourier
transform magnitudes Ai(k) to construct the stego-signal using the inverse Fourier
transform. Since φ0(k) is modified, the absolute phases of all following segments are
changed, while their relative differences are preserved. Before the secret information
can be restored, some sort of synchronization must take place. Given the knowledge
of the sequence length `(m), the receiver is able to calculate the DFT and to detect
the phases φ0(k).

3.3.3 Echo hiding

Echo hiding [4] attempts to hide information in a discrete signal f(t) by introducing
an echo f(t−∆t) in the stego-signal c(t):

c(t) = f(t) + αf(t−∆t) (3.15)

Information is encoded in the signal by modifying the delay ∆t between the signal
and the echo. In the encoding step, the sender chooses either ∆t or ∆t′; in the first
case, a “0” is encoded in the signal c(t), in the latter case a “1.” The delay times ∆t
or ∆t′ are chosen in a way that the echo signal is not audible for a human observer.

The basic echo hiding scheme can only embed one bit in a signal; therefore a
cover signal is divided into `(m) blocks prior to the encoding process. Consecutive
blocks should be separated by a random number of unused samples so that the
detection and extraction of the secret message bits is harder. In each block one
secret bit is embedded according to (3.15); in the last step all signal blocks are
concatenated.

Before the secret message can be extracted out of the stego-signal, some sort
of synchronization must take place; the receiver must be able to reconstruct the
`(m) signal blocks the sender used to embed one secret message bit. Each signal

A survey of steganographic techniques 63

segment can then be decoded via the autocorrelation function of the signal’s cep-
strum. Gruhl et al. [4] show that the autocorrelation function shows a spike at the
delay time ∆t. For a further investigation of echo hiding see Section 7.5.1.

Chang and Moskowitz [43] analyze several methods usable for information hid-
ing in digital sound, among them low-bit coding (LSB), phase coding, spread spec-
trum techniques (see Section 3.4), and echo hiding. Low-bit coding techniques are
not robust, but have the highest data transmission rate. Phase coding provides
robustness against resampling of the carrier signal, but has a very low data trans-
mission rate since secret information is encoded only in the first signal segment. On
the contrary, spread spectrum and echo hiding perform better in many cases.

3.3.4 Information hiding and data compression

In some cases, information hiding algorithms are incorporated in data compression
systems; one can think of a videoconferencing system which allows messages to be
hidden in the video stream while it is being recorded. Most research work focussed
on information hiding schemes for lossy video or image compression systems, but
it should be noted that lossless compression systems can also be used for secret in-
formation transfer; Cachin [44] showed how to construct an asymptotically optimal
steganographic system by modifying Willems [45] “repetition times” compression
algorithm.

Numerous steganographic systems for compressed video or images have been
proposed. In the simplest technique, applied by the tool Jpeg-Jsteg [46], informa-
tion is hidden in the way DCT coefficients in the JPEG compression system (see
Section 3.3) are rounded. Since the DCT normally outputs noninteger sequences for
integer inputs, the JPEG system must quantize DCT coefficients before the encod-
ing process. Information is hidden by rounding the coefficients either up or down
according to the secret message bits. Although such a system is not robust, detec-
tion of the cover modifications seems to be difficult. Westfeld and Wolf [47] describe
a similar technique. Their system operates on quantized, DCT-encoded blocks of
video frames. After distinguishing blocks which are suitable for secret transmission
from unusable blocks, the modulo-2 sum of the DCT coefficients of the block is
changed in a way that it transmits secret information (see [47] for details). More
sophisticated methods combine video compression schemes with spread spectrum.
As an example, Hartung and Girod [48, 49] presented an information-hiding scheme
operating on precompressed video using their spread spectrum watermarking system
(see Section 6.4.1).

64 Information hiding techniques for steganography and digital watermarking

3.4 SPREAD SPECTRUM AND INFORMATION HIDING

Spread spectrum (SS) communication technologies have been developed since the
1950s in an attempt to provide means of low-probability-of-intercept and antijam-
ming communications. Pickholtz et al. [50] define spread spectrum techniques as
“means of transmission in which the signal occupies a bandwidth in excess of the
minimum necessary to send the information; the band spread is accomplished by
means of a code which is independent of the data, and a synchronized reception with
the code at the receiver is used for despreading and subsequent data recovery.” Al-
though the power of the signal to be transmitted can be large, the signal-to-noise
ratio in every frequency band will be small. Even if parts of the signal could be
removed in several frequency bands, enough information should be present in the
other bands to recover the signal. Thus, SS makes it difficult to detect and/or re-
move a signal. This situation is very similar to a steganography system which tries
to spread a secret message over a cover in order to make it impossible to perceive.
Since spreaded signals tend to be difficult to remove, embedding methods based on
SS should provide a considerable level of robustness. Since the landmark paper by
Tirkel et al. [51], spread spectrum methods are of increasing importance in the field
of information hiding.

In information hiding, two special variants of SS are generally used: direct-
sequence and frequency-hopping schemes. In direct-sequence schemes, the secret
signal is spread by a constant called chip rate, modulated with a pseudorandom
signal and added to the cover. On the other hand, in frequency-hopping schemes
the frequency of the carrier signal is altered in a way that it hops rapidly from one
frequency to the another. SS are widely used in the context of watermarking, as
will be shown in Section 6.4.1. One particularly interesting direct-sequence water-
marking algorithm, invented by Hartung and Girod [48, 49], which could also be
used for steganographic purposes, will be described in Section 6.4.1.

Due to the similarity of SS watermarking and steganography algorithms, we will
limit the discussion in this chapter to presenting a mathematical model describing
the application of spread spectrum techniques in information hiding and discuss a
system called SSIS as a case study.

3.4.1 A spread spectrum model

Smith and Comiskey [52] presented a general framework for spread spectrum
steganography. Their approach originally used N × M grayscale images as cov-
ers; however, the work can easily be extended to all cover sets on which a scalar
product can be defined. We will assume that Alice and Bob share a set of (at

A survey of steganographic techniques 65

least) `(m) orthogonal N × M images φi as a stego-key. Alice first generates a
stego-message E(x, y) by building the weighted sum

E(x, y) =
∑

i

miφi(x, y) (3.16)

The images φi are orthogonal to each other,

〈φi, φj〉 =

N∑
x=1

M∑
y=1

φi(x, y)φj(x, y) = Giδi,j (3.17)

where Gi =
∑N

x=1

∑M
y=1 φ2

i (x, y) and δi,j is the Kronecker delta function. Alice then
encodes the secret information E in a cover C by building the element-wise sum of
both images, creating the stego-cover S:

S(x, y) = C(x, y) + E(x, y) (3.18)

In the ideal case, C is orthogonal to all φi, (so 〈C, φi〉 = 0) and Bob can extract
the ith message bit mi by projecting the stego-image S onto the ith basis image φi:

〈S, φi〉 = 〈C, φi〉+
〈∑

j

mjφj, φi

〉

=
∑

j

mj 〈φj, φi〉

= Gimi (3.19)

Therefore, the secret information can be recovered by calculating mi = 〈S, φi〉 /Gi.
Note that the original cover C is not needed in the decoding phase. In practice,
however, C will not be completely orthogonal to all images φi, so an error term
〈C, φi〉 = ∆Ci has to be introduced in (3.19):

〈S, φi〉 = ∆Ci + Gimi (3.20)

We will now show that under reasonable assumptions the expected value of ∆Ci

is zero. Let both C and φi be two independent NM-dimensional random variables.
If we assume that all basis images were created using a zero-mean random process
and they are independent from the messages to be transmitted, then

E[∆Ci] =

N∑
i=1

M∑
j=1

E[C(x, y)]E[φi(x, y)] = 0 (3.21)

Thus, the expected value of the error term in (3.20) is zero under these assumptions.

66 Information hiding techniques for steganography and digital watermarking

The decoding operation therefore consists of reconstructing a secret message by
projecting the stego-image S onto all functions φi yielding an approximative value

si = 〈S, φi〉 = ∆Ci + Gimi (3.22)

Subject to the conditions stated above, the expected value of ∆Ci is zero, so si ≈
Gimi. The final task is to reconstruct mi from si. If we encode secret messages as
strings of −1 and 1 instead of simply using binary strings, the values of mi can be
reconstructed using the sign function, provided that Gi � 0:

mi = sign(si) =

−1 if si < 0
0 if si = 0
1 if si > 0

(3.23)

In the case of mi = 0 the encoded information has been lost. In some severe circum-
stances the quantity |∆Ci| could become so large (recall that we have only proved
that the expected value is zero) that the recovery of one bit is not possible. How-
ever, this case will not happen often and can be coped with by the implementation
of an error-correcting code.

The main advantage of using spread spectrum techniques in steganography
is the relative robustness to image modifications. Since the encoded information
is spread over a wide frequency band it is quite difficult to remove it completely
without entirely destroying the cover. In practice, modifications of the stego-cover
will increase the value of ∆Ci. These modifications will not be harmful to the
embedded message, unless |∆Ci| > |Gimi|.

3.4.2 SSIS: a case study

Marvel et al. [53] presented a steganographic system called SSIS which we will
discuss here briefly as a case study. SSIS uses a spread spectrum technique as
an embedding function; this mechanism can be described as follows. Before the
embedding process, the secret message is encrypted using a conventional symmet-
ric encryption scheme, thereby using a secret key k1. Furthermore, the encrypted
secret message will be encoded via a low-rate error-correcting code (such as a Reed-
Solomon code). This step will increase the robustness of the overall steganographic
application. The resulting encoded message is then modulated by a pseudoran-
dom sequence produced by a pseudorandom number generator using k2 as seed.
The resulting (random-looking) signal is then input into an interleaver (which uses
k3 as seed) and added to the cover. In a last step, the resulting stego-image is
appropriately quantized.

At the receiver side the embedding process is reversed. Since one design goal
of SSIS was to provide a blind steganographic system—thus, a system in which

A survey of steganographic techniques 67

the original image is not needed in the decoding process—an estimate of the orig-
inal image is obtained using an image-restoration technique such as an adaptive
Wiener filter. Subtracting the stego-image from the cover-image estimate yields an
estimate for the modulated and spread stego-message. The resulting bits are then
deinterleaved and demodulated (using k3 and k2). Due to the poor performance
of the Wiener filter, the reconstructed secret message will contain incorrect bits;
the stego-system can thus be seen as a form of transmission on a noisy channel.
However, the use of an error-correcting code can help to recover corrupted message
bits. In a last step, the secret message is decrypted.

3.5 STATISTICAL STEGANOGRAPHY

Statistical steganography techniques utilize the existence of “1-bit” steganographic
schemes, which embed one bit of information in a digital carrier. This is done
by modifying the cover in such a way that some statistical characteristics change
significantly if a “1” is transmitted. Otherwise the cover is left unchanged. So the
receiver must be able to distinguish unmodified covers from modified ones.

In order to construct a `(m)-bit stego-system from multiple “1-bit” stego-
systems, a cover is divided into `(m) disjoint blocks B1, . . . , B`(m). A secret bit,
mi, is inserted into the ith block by placing a “1” into Bi if mi = 1. Otherwise,
the block is not changed in the embedding process. The detection of a specific bit
is done via a test function which distinguishes modified blocks from unmodified
blocks:

f(Bi) =

{
1 block Bi was modified in the embedding process
0 otherwise

(3.24)

The function f can be interpreted as a hypothesis-testing function; we test the null-
hypothesis “block Bi was not modified” against the alternative hypothesis “block
Bi was modified.” Therefore, we call the whole class of such steganography systems
statistical steganography. The receiver successively applies f to all cover-blocks Bi

in order to restore every bit of the secret message.
The main question which remains to be solved is how such a function f in (3.24)

can be constructed. If we interpret f as a hypothesis-testing function, we can use
the theory of hypothesis testing from mathematical statistics. Let us assume we
can find a formula h(Bi), which depends on some elements of the cover-block Bi,
and we know the distribution of h(Bi) in the unmodified block (i.e., the hypothesis
holds in this case). We can then use standard procedures to test if h(Bi) equals or
exceeds a specific value. If we manage to alter h(Bi) in the embedding process in a
way that its expected value is 0 if the block Bi was not modified, and its expected

68 Information hiding techniques for steganography and digital watermarking

value is much greater otherwise, we could test whether h(Bi) equals zero under the
given distribution of h(Bi).

Statistical steganographic techniques are, however, difficult to apply in many
cases. First, a good test statistic h(Bi) must be found which allows distinction
between modified and unmodified cover-blocks. Additionally, the distribution of
h(Bi) must be known for a “normal” cover; in most cases, this is quite a difficult
task. In practical implementations many (quite questionable) assumptions are made
in order to determine a closed formula for this distribution.

As an example, we want to construct a statistical steganography algorithm out
of Pitas’ watermarking system [54], which is similar to the Patchwork approach of

Bender et al. [2]. Suppose every cover-block Bi is a rectangular set of pixels p
(i)
n,m.

Furthermore, let S = {s(i)
n,m} be a rectangular pseudorandom binary pattern of equal

size, where the number of ones in S equals the number of zeros. We will assume
that both the sender and receiver have access to S, which represents the stego-key
in this application. The sender first splits the image block Bi into two sets, Ci and
Di, of equal size (i.e., he puts all pixels with indices (n, m) into set C where the
corresponding key bit sn,m equals zero):

Ci = {p(i)
n,m ∈ Bi|sn,m = 1}

Di = {p(i)
n,m ∈ Bi|sn,m = 0} (3.25)

The sender then adds a value k > 0 to all pixels in the subset Ci but leaves all
pixels in Di unchanged. In the last step, Ci and Di are merged to form the marked
image block B̃i.

In order to extract the mark, the receiver reconstructs the sets Ci and Di. If
the block contains a mark, all values in Ci will be larger than the corresponding
values in the embedding step; thus we test the difference of the means of sets Ci

and Di. If we assume that all pixels in both Ci and Di are independent identically
distributed random variables with an arbitrary distribution, the test statistic

qi =
Ci −Di

σ̂i
(3.26)

with

σ̂i =

√
Var[Ci] + Var[Di]

|S|/2
(3.27)

where Ci denotes the mean over all pixels in the set Ci and Var[Ci] the estimated
variance of the random variables in Ci, will follow a N(0, 1) normal distribution
asymptotically due to the central limit theorem. If a mark is embedded in the

A survey of steganographic techniques 69

image block B̃i, the expected value of q will be greater than zero. The receiver is
thus able to reconstruct the ith secret message bit by testing whether the statistic
qi of block Bi equals zero under the N(0, 1) distribution.

3.6 DISTORTION TECHNIQUES

In contrast to substitution systems, distortion techniques require the knowledge of
the original cover in the decoding process. Alice applies a sequence of modifications
to a cover in order to get a stego-object; she chooses this sequence of modifications
in such a way that it corresponds to a specific secret message she wants to trans-
mit. Bob measures the differences to the original cover in order to reconstruct the
sequence of modifications applied by Alice, which corresponds to the secret message.

In many applications, such systems are not useful, since the receiver must have
access to the original covers. If Wendy also has access to them, she can easily
detect the cover modifications and has evidence for a secret communication. If the
embedding and extraction functions are public and do not depend on a stego-key, it
is also possible for Wendy to reconstruct secret messages entirely. Throughout this
section we will therefore assume that original covers can be distributed through a
secure channel.

An early approach to hiding information is in text. Most text-based hiding
methods are of distortion type (i.e., the arrangement of words or the layout of a
document may reveal information). One technique is by modulating the positions
of lines and words, which will be detailed in the next subsection. Adding spaces
and “invisible” characters to text provides a method to pass hidden information.
HTML files are good candidates for including extra spaces, tabs, and linebreaks.
Web browsers ignore these “extra” spaces and lines, and they go unnoticed until
the source of the Web page is revealed.

3.6.1 Encoding information in formatted text

Considerable effort has been made to construct data-embedding methods for for-
matted text, which is interpreted as a binary image. Maxemchuk et al. [55–58]
presented text-based steganographic schemes which use the distance between con-
secutive lines of text or between consecutive words to transmit secret information.
It should be noted, however, that any steganographic system which uses the text
format to transmit information can easily be broken by retyping the document.

In line-space encoding, the positions of lines in the document are moved up
or down according to secret message bits, whereas other lines are kept stationary
for the purpose of synchronization (in the original implementation, information was
transmitted in every second line). One secret message bit is encoded in one line that

70 Information hiding techniques for steganography and digital watermarking

This is just an example
This is just an example
This is just an example

Figure 3.3 Encoding information in interword spaces (the vertical lines are provided for refer-
ence). Data is embedded in the first and third sentences.

is moved; if a line is moved up, a 1 is encoded, otherwise a 0. When decoding a secret
message, centroid detection can be used; the centroid is defined to be the center of
mass of the line about a horizontal axis. Let us denote with ∆R+ the distance
between the centroids of a shifted line and the next stationary synchronization line
above, with ∆R− the distance of centroids between the shifted line and the next
stationary line below, and with ∆X+ and ∆X− the corresponding centroid distances
in the unmodified document. The distance above one line was increased, if

∆R+ + ∆R−
∆R+ −∆R−

>
∆X+ + ∆X−
∆X+ −∆X−

(3.28)

Similarly, if

∆R+ + ∆R−
∆R+ −∆R−

<
∆X+ + ∆X−
∆X+ −∆X−

(3.29)

the distance above the line was decreased. Note that if the page was scaled by a
constant factor during reproduction, this factor cancels out because of the fraction
in (3.28) and (3.29). Similarly, changes in vertical print density should affect all cen-
troids in approximately the same way. These properties make line-space encoding
techniques resistant to most distortion attacks. For an analysis of this embedding
technique see [57].

Another possible embedding scheme in formatted text is word-space encoding,
illustrated in Figure 3.3. According to a secret message bit, horizontal spaces be-
tween selected words of the carrier are altered. Theoretically, it is possible to alter
every space between two words; the only limitation is that the sum of all movements
in one specific line equals zero so that the line keeps properly aligned.

3.6.2 Distortion of digital images

Distortion techniques can easily be applied to digital images. Using a similar ap-
proach as in substitution systems, the sender first chooses `(m) different cover-pixels
he wants to use for information transfer. Such a selection can again be done using
pseudorandom number generators or pseudorandom permutations. To encode a 0
in one pixel, the sender leaves the pixel unchanged; to encode a 1, he adds a random

A survey of steganographic techniques 71

value ∆x to the pixel’s color. Although this approach is similar to a substitution
system, there is one significant difference: the LSB of the selected color values do
not necessarily equal secret message bits. In particular, no cover modifications are
needed when coding a 0. Furthermore, ∆x can be chosen in a way that better
preserves the cover’s statistical properties. The receiver compares all `(m) selected
pixels of the stego-object with the corresponding pixels of the original cover. If the
ith pixel differs, the ith message bit is a 1, otherwise a 0.

Many variants of the above method could be implemented: similar to the parity
bit method presented in Section 3.2.4, the parity bit of a certain image region can
be altered or left unchanged in order to encode a 1 or a 0. Furthermore, image
processing techniques could be applied to certain image regions so that they are not
visible to an observer.

Another image distortion technique, data embedding , has been introduced by
Sandford et al. [59, 60]. In contrast to all distortion techniques discussed so far, data
embedding tries to modify the order of appearance of redundant data in the cover
rather than to change values themselves; the embedding process therefore maintains
a “pair list” (i.e., a list of pairs of samples whose difference is smaller than a specific
threshold). The receiver can reverse the embedding process if he has access to the
pair list. This list can be seen as an analogon to a key in cryptography; it normally
cannot be restored out of the cover by the receiver (see [59] for details).

3.7 COVER GENERATION TECHNIQUES

In contrast to all embedding methods presented above, where secret information is
added to a specific cover by applying an embedding algorithm, some steganographic
applications generate a digital object only for the purpose of being a cover for secret
communication.

3.7.1 Mimic functions

Due to the explosion of information traffic it can be assumed that it is impossible
for a human being to observe all communications around the world; as noted in the
conclusion of Chapter 2, such a task can only be done using automated supervision
systems which are therefore of increasing importance. These systems check com-
munication by examining keywords and the statistical profile of a message. It is
possible, for instance, to distinguish unencrypted from encrypted messages automat-
ically because of their different statistical properties. Mimic functions, proposed by
Wayner [61], can be used to hide the identity of a message by changing its statistical
profile in a way that it matches the profile of any innocent looking text.

72 Information hiding techniques for steganography and digital watermarking

It is well known that the English language possesses several statistical prop-
erties. For instance the distribution of characters is not uniform (see for in-
stance the appendix of [62] for the frequency distributions of English di- and tri-
grams). This fact has been exploited in numerous data-compression techniques
(e.g., the Huffman coding scheme [40]). Given an alphabet Σ and a probability
distribution A, the Huffman coding scheme can be used to produce a minimum-
redundancy compression function fA : Σ → {0, 1}∗, where ∗ denotes the Kleene-
Star (Σ∗ =

⋃
i≥0{x1 · · ·xi|x1, . . . , xi ∈ Σ}). A mimic function g : Σ∗ → Σ∗ that

converts a message whose characters show a probability distribution A to a mes-
sage which approximately mimics the statistical profile B, can be constructed using
two Huffman compression functions:

g(x) = f−1
B (fA(x)) (3.30)

Thus, the file x is first compressed using a Huffman scheme with distribution A.
This process will create a file of binary strings which can be interpreted as output
of a Huffman compression scheme (with distribution B) of a different file. This
file can be reconstructed by applying the inverse Huffman compression function
f−1

B to the file of binary strings and will act as a stego-object. Since both fA

and fB are one-to-one, the constructed mimic function will be one-to-one. Wayner
showed that this function is optimal in the sense that if fA is a theoretically optimal
Huffman compression function and x is a file of random bits, then f−1

A (x) is the best
approximation of the statistical profile A which is one-to-one.

Instead of using distributions of single characters, Huffman coding schemes
can be constructed to compress n characters at one time, based on the frequency
distribution of n-grams. However, the size of the compression tree created by the
Huffman schemes grows exponentially with n. Wayner instead proposed to exploit
the intercharacter dependencies by creating Huffman compression functions for ev-
ery string t of length n − 1 to encode probabilities for each character which may
follow t in the file. A mimic function can be constructed out of the collection of
these Huffman compression functions (see [61] for details).

3.7.2 Automated generation of English texts

However, mimic functions can only be used to fool machines. Since the stego-objects
are created only according to statistical profiles, the semantic component is entirely
ignored. To a human observer the created texts look completely meaningless and
are full of grammatical and typographical errors.

To overcome this problem, the use of context-free grammars (CFG) has been
proposed; for a theoretical overview of CFG see [63]. Let G = 〈V, Σ, Π, S〉 be a CFG,
where V is the set of variables, Σ the set of terminal symbols, Π ⊆ V×(V ∪ Σ)∗

A survey of steganographic techniques 73

the set of productions and S ∈ V the start symbol. The productions can be seen
as a substitution rule; they convert a variable into a string containing terminal or
variable symbols. A string s ∈ Σ∗ which is defined to be a sequence of termi-
nal symbols is said to be generated by G (formally: s ∈ L(G)) if s can be pro-
duced successively from the start symbol S by substituting variables by sequences
of terminal or variable symbols according to Π. For example, from the grammar
〈{S, A, B, C}, {A, . . . , Z, a . . . , z}, Π, S〉 with

Π = { S → Alice B, S → Bob B, S → Eve B, S → I A,
A → am working, A → am lazy, A → am tired,
B → is C, B → can cook,
C → reading, C → sleeping, C → working}

the sentences I am lazy, Alice is reading, etc. can be derived. If for every
string s ∈ L(G) there exists exactly one way s can be generated from the start
symbol, the grammar is said to be unambiguous.

Unambiguous grammars can be used as a steganographic tool. Wayner [61,
64] proposed an extension to the technique of mimic functions. Given a set of
productions, we assign a probability to each possible production for variable Vi. In
our example above, we could choose

Π = { S →0.5 Alice B, S →0.3 Bob B, S →0.1 Eve B, S →0.1 I A,
A →0.3 am working, A →0.4 am lazy, A →0.3 am tired,
B →0.5 is C, B →0.5 can cook,
C →0.5 reading, C →0.1 sleeping, C →0.4 working}

Let ΠVi
= {πi,1, . . . , πi,n} be the set of all productions associated with variable

Vi. The sender then constructs a Huffman compression function fΠi
for every set

Πi. In Figure 3.4 possible Huffman trees for ΠS and ΠA are shown. Huffman
compression functions can easily be derived out of these trees; for example the
production “Eve B” will be encoded as 110, “A am tired” as 11, etc.

For steganographic purposes, the inverse Huffman compression functions will
be used. In the encoding step, the sender derives one specific string out of the CFG
which will act as the stego-object. Starting from the start symbol S, the leftmost
variable Vi is changed by a production. This production is determined by the secret
message and the Huffman compression function for ΠVi

. Specifically, the Huffman
tree is traversed according to the next bits of the secret message until a node of the
tree is reached. The start symbol is then substituted by the production which can
be found at this node of the tree. This process is iterated (i.e., the leftmost variable
is exchanged by a production which is determined by its Huffman tree and the next

74 Information hiding techniques for steganography and digital watermarking

10

S A

1

1

I AEve B

Alice B

Bob B

0

0

1

1

0

0

am tiredam working

am lazy

Figure 3.4 Huffman compression functions for ΠS and ΠA.

few message bits), until all message bits are used and the string consists only of
terminal symbols. Continuing the previous example, suppose the secret message is
11110. In the first step we traverse the Huffman tree for ΠS and eventually reach
the node “I A” by consuming the first three secret message bits. Thus, the start
symbol S is replaced by “I A.” We now traverse the Huffman tree ΠA and find the
replacement “am working” by consuming another two secret message bits. Thus,
since the derived string consists of terminal symbols only and all secret message
bits were used, the stego-object representing 11110 is the sentence I am working.

In the decoding process, the cover is parsed in order to reconstruct the pro-
ductions which have been used in the embedding step; this can be accomplished by
the use of a parse tree for the given CFG, see [65]. Since the productions uniquely
determine the secret message and the underlying grammar is unambiguous, the
receiver is able to reconstruct the stego-message.

A similar system has been proposed by Chapman and Davida [66]. Their system
consists of two functions, NICETEXT and SCRAMBLE. Given a large dictionary
of words, categorized by different types, and a style source, which describes how
words of different types can be used to form a meaningful sentence, NICETEXT
transforms secret message bits into sentences by selecting words out of the dictionary
which conform to a sentence structure given in the style source. SCRAMBLE
reconstructs the secret message if the dictionary which has been used is known.
Style sources can either be created from sample natural-language sentences or be
generated using CFG.

A survey of steganographic techniques 75

3.8 CONCLUSION

In this chapter we gave an overview of different steganographic methods which have
been proposed in the literature during the last few years. Many flexible and simple
methods exist for embedding information in noisy communication channels.

However, covers and messages tend to have unique patterns a steganalyst could
exploit. Most of the simple techniques can be broken by careful analysis of the
statistical properties of the channel’s noise. Images and many other signals were
subject to quantization, filters, transformations, format converters, etc. Most of
these techniques left some sort of “fingerprints” in the data. All these problems
must be addressed when designing a steganographic system; methods which use
these properties to break secret communication will be outlined in the next chapter.

REFERENCES

[1] Foley, J., et al., Computer Graphics, Principles and Practice, Reading, MA: Addison
Wesley, 1990.

[2] Bender, W., D. Gruhl, and N. Morimoto, “Techniques for data hiding,” IBM Systems
Journal , vol. 35, no. 3/4, 1996, pp. 131–336.

[3] Möller, S., A. Pfitzmann, and I. Stirand, “Computer Based Steganography: How It
Works and Why Therefore Any Restrictions on Cryptography Are Nonsense, At Best,”
in Information Hiding: First International Workshop, Proceedings, vol. 1174 of Lecture
Notes in Computer Science, Springer, 1996, pp. 7–21.

[4] Gruhl, D., A. Lu, and W. Bender, “Echo Hiding,” in Information Hiding: First Interna-
tional Workshop, Proceedings, vol. 1174 of Lecture Notes in Computer Science, Springer,
1996, pp. 295–316.

[5] Kurak, C., and J. McHughes, “A Cautionary Note On Image Downgrading,” in IEEE
Computer Security Applications Conference 1992, Proceedings, IEEE Press, 1992, pp.
153–159.

[6] van Schyndel, R. G., A. Tirkel, and C. F. Osborne, “A Digital Watermark,” in Pro-
ceedings of the IEEE International Conference on Image Processing, vol. 2, 1994, pp.
86–90.

[7] Johnson, N. F., and S. Jajodia, “Exploring Steganography: Seeing the Unseen,” IEEE
Computer , vol. 31, no. 2, 1998, pp. 26–34.

[8] Gerzon, M. A., and P. G. Graven, “A High-Rate Buried-Data Channel for Audio CD,”
Journal of the Audio Engineering Society, vol. 43, no. 1/2, 1995, pp. 3–22.

[9] “StegoDos—Black Wolf’s Picture Encoder v0.90B,” <ftp://ftp.csua.berkeley.edu/
pub/cypherpunks/steganography/stegodos.zip>, 1993.

[10] Brown, A., “S-Tools for Windows,” <ftp://idea.sec.dsi.unimi.it/pub/security/
crypt/code/s-tools4.zip>, 1996.

[11] Hastur, H., “Mandelsteg,” <ftp://idea.sec.dsi.unimi.it/pub/security/crypt/
code/steg.tar.Z>, 1994.

[12] Machado, R., “EzStego, Stego Online, Stego,” <http://www.stego.com>, 1997.

76 Information hiding techniques for steganography and digital watermarking

[13] Maroney, C., “Hide and Seek,” <ftp://ftp.csua.berkeley.edu/pub/cypherpunks/
steganography/hdsk41b.zip>, <http://www.rugeley.demon.co.uk/security/
hdsk50.zip>, 1994–1997.

[14] Repp, H., “Hide4PGP,” <http://www.rugeley.demon.co.uk/security/hide4pgp.
zip>, 1996.

[15] Arachelian, R., “White Noise Storm,” <ftp://ftp.csua.berkeley.edu/pub/
cypherpunks/steganography/wns210.zip>, 1994.

[16] Hansmann, F., “Steganos, Deus Ex Machina Communications,” <http://www.
steganography.com/>, 1996.

[17] Menezes, A. J., P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied Cryptog-
raphy, Boca Raton: CRC Press, 1996.

[18] Aura, T., “Practical Invisibility in Digital Communication,” in Information Hiding: First
International Workshop, Proceedings, vol. 1174 of Lecture Notes in Computer Science,
Springer, 1996, pp. 265–278.

[19] Luby, M., and C. Rackoff, “How to Construct Pseudorandom Permutations from Pseu-
dorandom Functions,” SIAM Journal on Computation, vol. 17, no. 2, 1988, pp. 373–386.

[20] Naor, M., and O. Reingold, “On the Construction of Pseudorandom Permutations: Luby-
Rackoff Revisited,” Journal of Cryptology, vol. 12, no. 1, 1999, pp. 29–66.

[21] Bell, D. E., and L. J. LaPadula, “Secure Computer Systems: Mathematical Founda-
tions,” Mitre Report ESD-TR-73-278 (Vol. I–III), Mitre Corporation, Bedford, MA,
Apr. 1974.

[22] Fridrich, J., “A New Steganographic Method for Palette-Based Images,” in Proceedings
of the IS&T PICS conference, Savannah, Georgia, Apr. 1998, pp. 285–289.

[23] Matsui, K., and K. Tanaka, “Video-Steganography: How to Secretly Embed a Signature
in a Picture,” IMA Intellectual Property Project Proceedings, vol. 1, no. 1, 1994, pp. 187–
205.

[24] Baharav, Z., and D. Shaked, “Watermarking of Dither Halftoned Images,” in Proceedings
of the SPIE 3657, Security and Watermarking of Multimedia Content , 1999, pp. 307–316.

[25] Zhao, J., and E. Koch, “Embedding Robust Labels into Images for Copyright Protec-
tion,” in Proceedings of the International Conference on Intellectual Property Rights
for Information, Knowledge and New Techniques, München, Wien: Oldenbourg Verlag,
1995, pp. 242–251.

[26] “CCITT Recommendation T6: Facsimile Coding Schemes and Coding Control Functions
for Group 4 Facsimile Apparatus for Document Transmission,” 1984.

[27] Anderson, R. J., R. Needham, and A. Shamir, “The Steganographic File System,” in
Proceedings of the Second International Workshop on Information Hiding, vol. 1525 of
Lecture Notes in Computer Science, Springer, 1998, pp. 73–82.

[28] “ScramDisk: Free Hard Drive Encryption For Windows 95 & 98,” <http://www.
scramdisk.clara.net>, 1998.

[29] Handel, T. G., and M. T. Sandford, “Data Hiding in the OSI Network Model,” in
Information Hiding: First International Workshop, Proceedings, vol. 1174 of Lecture
Notes in Computer Science, Springer, 1996, pp. 23–38.

[30] Cox, I., et al., “A Secure, Robust Watermark for Multimedia,” in Information Hid-
ing: First International Workshop, Proceedings, vol. 1174 of Lecture Notes in Computer
Science, Springer, 1996, pp. 185–206.

[31] Koch, E., and J. Zhao, “Towards Robust and Hidden Image Copyright Labeling,” in
IEEE Workshop on Nonlinear Signal and Image Processing, Jun. 1995, pp. 452–455.

A survey of steganographic techniques 77

[32] Koch, E., J. Rindfrey, and J. Zhao, “Copyright Protection for Multimedia Data,” in
Proceedings of the International Conference on Digital Media and Electronic Publishing,
Leeds, UK, Dec. 1994.

[33] Ó Runaidh, J. J. K., F. M. Boland, and O. Sinnen, “Watermarking Digital Images for
Copyright Protection,” in Electronic Imaging and the Visual Arts, Proceedings, Feb.
1996.

[34] Xia, X., C. G. Boncelet, and G. R. Arce, “A Multiresolution Watermark for Digital
Images,” in Proceedings of the IEEE International Conference on Image Processing
(ICIP’97), 1997.

[35] Rhodas, G. B., “Method and Apparatus Responsive to a Code Signal Conveyed Through
a Graphic Image,” U.S. Patent 5,710,834, 1998.

[36] Swanson, M. D., B. Zhu, and A. H. Tewfik, “Transparent Robust Image Watermarking,”
in Proceedings of the IEEE International Conference on Image Processing, vol. 3, 1996,
pp. 211–214.

[37] Langelaar, G., J. van der Lubbe, and R. Lagendijk, “Robust Labeling Methods for Copy
Protection of Images,” in Proceedings of the SPIE vol. 3022, Storage and Retrieval for
Image and Video Databases V , 1997, pp. 298–309.

[38] Pennebaker, W. B., and J. L. Mitchell, JPEG Still Image Compression Standard , New
York: Van Nostrand Reinhold, 1993.

[39] Wallace, G. K., “The JPEG Still Picture Compression Standard,” Communications of
the ACM , vol. 34, no. 4, 1991, pp. 30–44.

[40] Huffman, D. A., “A Method for the Construction of Minimum-Redundancy Codes,”
Proceedings of the IRE , vol. 40, no. 10, 1952, pp. 1098–1101.

[41] Smoot, S., and L. A. Rowe, “DCT Coefficient Distributions,” in Proceedings of the SPIE
2657, Human Vision and Electronic Imaging , 1996, pp. 403–411.

[42] Moore, B. C. J., An Introduction to the Psychology of Hearing, London: Academic Press,
1989.

[43] Chang, L., and I. S. Moskowitz, “Critical Analysis of Security in Voice Hiding Tech-
niques,” in Proceedings of the International Conference on Information and Communi-
cations Security, vol. 1334 of Lecture Notes in Computer Science, Springer, 1997, pp.
203–216.

[44] Cachin, C., “An Information-Theoretic Model for Steganography,” in Proceedings of the
Second International Workshop on Information Hiding, vol. 1525 of Lecture Notes in
Computer Science, Springer, 1998, pp. 306–318.

[45] Willems, F. M., “Universal Data Compression and Repetition Times,” IEEE Transac-
tions on Information Theory, 1989, pp. 337–343.

[46] Upham, D., “Jpeg-Jsteg, modification of the independent JPEG group’s JPEG software
(release 4) for 1-bit steganography in JFIF output files,” <ftp://ftp.funet.fi/pub/
crypt/steganography/>, 1992–1997.

[47] Westfeld, A., and G. Wolf, “Steganography in a Video Conferencing System,” in Proceed-
ings of the Second International Workshop on Information Hiding, vol. 1525 of Lecture
Notes in Computer Science, Springer, 1998, pp. 32–47.

[48] Hartung, F., and B. Girod, “Copyright Protection in Video Delivery Networks by
Watermarking of Pre-Compressed Video,” in Multimedia Applications, Services and
Techniques—ECMAST 97 , vol. 1242 of Lecture Notes in Computer Science, Springer,
1997, pp. 423–436.

[49] Hartung, F., and B. Girod, “Watermarking of Uncompressed and Compressed Video,”

78 Information hiding techniques for steganography and digital watermarking

Signal Processing , vol. 66, no. 3, 1998, pp. 283–301.
[50] Pickholtz, R. L., D. L. Schilling, and L. B. Milstein, “Theory of Spread-Spectrum

Communications—A Tutorial,” IEEE Transactions on Communications, vol. 30, no. 5,
1982, pp. 855–884.

[51] Tirkel, A. Z., G. A. Rankin, and R. van Schyndel, “Electronic Watermark,” in Digi-
tal Image Computing, Technology and Applications—DICTA 93, Macquarie University,
1993, pp. 666–673.

[52] Smith, J., and B. Comiskey, “Modulation and Information Hiding in Images,” in Infor-
mation Hiding: First International Workshop, Proceedings, vol. 1174 of Lecture Notes
in Computer Science, Springer, 1996, pp. 207–227.

[53] Marvel, L. M., C. G. Bonclet, and C. T. Retter, “Reliable Blind Information Hiding for
Images,” in Proceedings of the Second International Workshop on Information Hiding,
vol. 1525 of Lecture Notes in Computer Science, Springer, 1998, pp. 48–61.

[54] Pitas, I., “A Method for Signature Casting on Digital Images,” in International Confer-
ence on Image Processing, vol. 3, IEEE Press, 1996, pp. 215–218.

[55] Maxemchuk, N. F., “Electronic Document Distribution,” AT&T Technical Journal ,
September/October 1994, pp. 73–80.

[56] Low, S. H., et al., “Document Marking and Identification Using Both Line and Word
Shifting,” in Proceedings of Infocom’95 , 1995, pp. 853–860.

[57] Low, S. H., N. F. Maxemchuk, and A. M. Lapone, “Document Identification for Copyright
Protection Using Centroid Detection,” IEEE Transactions on Communications, vol. 46,
no. 3, 1998, pp. 372–383.

[58] Low, S. H., and N. F. Maxemchuk, “Performance Comparison of Two Text Marking
Methods,” IEEE Journal on Selected Areas in Communications, vol. 16, no. 4, 1998,
pp. 561–572.

[59] Sandford, M. T., J. N. Bradley, and T. G. Handel, “Data Embedding Method,” in
Proceedings of the SPIE 2615, Integration Issues in Large Commercial Media Delivery
Systems, 1996, pp. 226–259.

[60] Sandford, M. T., T. G. Handel, and J. M. Ettinger, “Data Embedding in Degenerate
Hosts,” Technical Report LA-95-4446UR, Los Alamos National Laboratory, 1996.

[61] Wayner, P., “Mimic Functions,” Cryptologia, vol. XVI/3, 1992, pp. 193–214.
[62] “Basic Cryptanalysis,” Headquarters Department of the Army, Field Manual NO 34-40-

2, <ftp://ftp.ox.ac.uk/cryptanalysis/basic_cryptanalysis.ps.tar.gz>.
[63] Hopcroft, J. E., and J. D. Ullman, Introduction to Automata Theory, Languages and

Computation, Reading, MA: Addison Wesley, 1979.
[64] Wayner, P., “Strong Theoretical Steganography,” Cryptologia, vol. XIX/3, 1995, pp. 285–

299.
[65] Aho, A., R. Sethi, and J. Ullman, Compilers: Principles, Techniques and Tools, Reading

(MA): Addison Wesley, 1986.
[66] Chapman, M., and G. Davida, “Hiding the Hidden: A Software System for Concealing

Ciphertext as Innocuous Text,” in Proceedings of the International Conference on Infor-
mation and Communications Security, vol. 1334 of Lecture Notes in Computer Science,
Springer, 1997, pp. 335–345.

	3 A survey of steganographic techniques 43
	3.1 PRELIMINARY DEFINITIONS 44
	3.2 SUBSTITUTION SYSTEMS AND BITPLANE TOOLS 45
	3.3 TRANSFORM DOMAIN TECHNIQUES 56
	3.4 SPREAD SPECTRUM AND INFORMATION HIDING 64
	3.5 STATISTICAL STEGANOGRAPHY 67
	3.6 DISTORTION TECHNIQUES 69
	3.7 COVER GENERATION TECHNIQUES 71
	3.8 CONCLUSION 75
	REFERENCES 75

