# The Geometry of Physics 

## An Introduction

Second Edition

## Theodore Frankel

University of California, San Diego

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS
The Edinburgh Building, Cambridge CB2 2RU, UK
40 West 20th Street, New York, NY 10011-4211, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
Ruiz de Alarcón 13, 28014 Madrid, Spain
Dock House, The Waterfront, Cape Town 8001, South Africa
http://www.cambridge.org
(C) Cambridge University Press 2004

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2004

Printed in the United States of America

Typeface Times Roman 10.5/13 pt. System $\mathrm{IATEX}_{\mathrm{E}} 2_{\varepsilon} \quad$ [TB]
A catalog record for this book is available from the British Library.
Library of Congress Cataloging in Publication data
Frankel, Theodore, 1929-
The geometry of physics : an introduction / Theodore Frankel.- 2nd ed.
p. cm.

Includes bibliographical references and index.
ISBN 0-521-53927-7 (pbk.)

1. Geometry, Differential. 2. Mathematical physics. I. Title.

QC20.7 D52F73 2003
530.15' 636-dc21 2003044030

ISBN 0521833302 hardback
ISBN 0521539277 paperback

## Contents

Preface to the Second Edition ..... page xix
Preface to the Revised Printing ..... xxi
Preface to the First Edition ..... xxiii
I Manifolds, Tensors, and Exterior Forms
1 Manifolds and Vector Fields ..... 3
1.1. Submanifolds of Euclidean Space ..... 3
1.1a. Submanifolds of $\mathbb{R}^{N}$ ..... 4
1.1b. The Geometry of Jacobian Matrices: The "Differential" ..... 7
1.1c. The Main Theorem on Submanifolds of $\mathbb{R}^{N}$ ..... 8
1.1d. A Nontrivial Example: The Configuration Space of a Rigid Body ..... 9
1.2. Manifolds ..... 11
1.2a. Some Notions from Point Set Topology ..... 11
1.2b. The Idea of a Manifold ..... 13
1.2c. A Rigorous Definition of a Manifold ..... 19
1.2d. Complex Manifolds: The Riemann Sphere ..... 21
1.3. Tangent Vectors and Mappings ..... 22
1.3a. Tangent or "Contravariant" Vectors ..... 23
1.3b. Vectors as Differential Operators ..... 24
1.3c. The Tangent Space to $M^{n}$ at a Point ..... 25
1.3d. Mappings and Submanifolds of Manifolds ..... 26
1.3e. Change of Coordinates ..... 29
1.4. Vector Fields and Flows ..... 30
1.4a. Vector Fields and Flows on $\mathbb{R}^{n}$ ..... 30
1.4b. Vector Fields on Manifolds ..... 33
1.4c. Straightening Flows ..... 34
2 Tensors and Exterior Forms ..... 37
2.1. Covectors and Riemannian Metrics ..... 37
2.1a. Linear Functionals and the Dual Space ..... 37
2.1b. The Differential of a Function ..... 40
2.1c. Scalar Products in Linear Algebra ..... 42
2.1d. Riemannian Manifolds and the Gradient Vector ..... 45
2.1e. Curves of Steepest Ascent ..... 46
2.2. The Tangent Bundle ..... 48
2.2a. The Tangent Bundle ..... 48
2.2b. The Unit Tangent Bundle ..... 50
2.3. The Cotangent Bundle and Phase Space ..... 52
2.3a. The Cotangent Bundle ..... 52
2.3b. The Pull-Back of a Covector ..... 52
2.3c. The Phase Space in Mechanics ..... 54
2.3d. The Poincaré 1-Form ..... 56
2.4. Tensors ..... 58
2.4a. Covariant Tensors ..... 58
2.4b. Contravariant Tensors ..... 59
2.4c. Mixed Tensors ..... 60
2.4d. Transformation Properties of Tensors ..... 62
2.4e. Tensor Fields on Manifolds ..... 63
2.5. The Grassmann or Exterior Algebra ..... 66
2.5a. The Tensor Product of Covariant Tensors ..... 66
2.5b. The Grassmann or Exterior Algebra ..... 66
2.5c. The Geometric Meaning of Forms in $\mathbb{R}^{n}$ ..... 70
2.5d. Special Cases of the Exterior Product ..... 70
2.5e. Computations and Vector Analysis ..... 71
2.6. Exterior Differentiation ..... 73
2.6a. The Exterior Differential ..... 73
2.6b. Examples in $\mathbb{R}^{3}$ ..... 75
2.6c. A Coordinate Expression for $d$ ..... 76
2.7. Pull-Backs ..... 77
2.7a. The Pull-Back of a Covariant Tensor ..... 77
2.7b. The Pull-Back in Elasticity ..... 80
2.8. Orientation and Pseudoforms ..... 82
2.8a. Orientation of a Vector Space ..... 82
2.8b. Orientation of a Manifold ..... 83
2.8c. Orientability and 2-Sided Hypersurfaces ..... 84
2.8d. Projective Spaces ..... 85
2.8e. Pseudoforms and the Volume Form ..... 85
2.8f. The Volume Form in a Riemannian Manifold ..... 87
2.9. Interior Products and Vector Analysis ..... 89
2.9a. Interior Products and Contractions ..... 89
2.9b. Interior Product in $\mathbb{R}^{3}$ ..... 90
2.9c. Vector Analysis in $\mathbb{R}^{3}$ ..... 92
2.10. Dictionary ..... 94
3 Integration of Differential Forms ..... 95
3.1. Integration over a Parameterized Subset ..... 95
3.1a. Integration of a $p$-Form in $\mathbb{R}^{p}$ ..... 95
3.1b. Integration over Parameterized Subsets ..... 96
3.1c. Line Integrals ..... 97
3.1d. Surface Integrals ..... 99
3.1e. Independence of Parameterization ..... 101
3.1f. Integrals and Pull-Backs ..... 102
3.1g. Concluding Remarks ..... 102
3.2. Integration over Manifolds with Boundary ..... 104
3.2a. Manifolds with Boundary ..... 105
3.2b. Partitions of Unity ..... 106
3.2c. Integration over a Compact Oriented Submanifold ..... 108
3.2d. Partitions and Riemannian Metrics ..... 109
3.3. Stokes's Theorem ..... 110
3.3a. Orienting the Boundary ..... 110
3.3b. Stokes's Theorem ..... 111
3.4. Integration of Pseudoforms ..... 114
3.4a. Integrating Pseudo- $n$-Forms on an $n$-Manifold ..... 115
3.4b. Submanifolds with Transverse Orientation ..... 115
3.4c. Integration over a Submanifold with Transverse Orientation ..... 116
3.4d. Stokes's Theorem for Pseudoforms ..... 117
3.5. Maxwell's Equations ..... 118
3.5a. Charge and Current in Classical Electromagnetism ..... 118
3.5b. The Electric and Magnetic Fields ..... 119
3.5c. Maxwell's Equations ..... 120
3.5d. Forms and Pseudoforms ..... 122
4 The Lie Derivative ..... 125
4.1. The Lie Derivative of a Vector Field ..... 125
4.1a. The Lie Bracket ..... 125
4.1b. Jacobi's Variational Equation ..... 127
4.1c. The Flow Generated by $[X, Y]$ ..... 129
4.2. The Lie Derivative of a Form ..... 132
4.2a. Lie Derivatives of Forms ..... 132
4.2b. Formulas Involving the Lie Derivative ..... 134
4.2c. Vector Analysis Again ..... 136
4.3. Differentiation of Integrals ..... 138
4.3a. The Autonomous (Time-Independent) Case ..... 138
4.3b. Time-Dependent Fields ..... 140
4.3c. Differentiating Integrals ..... 142
4.4. A Problem Set on Hamiltonian Mechanics ..... 145
4.4a. Time-Independent Hamiltonians ..... 147
4.4b. Time-Dependent Hamiltonians and Hamilton's Principle ..... 151
4.4c. Poisson Brackets ..... 154
5 The Poincaré Lemma and Potentials ..... 155
5.1. A More General Stokes's Theorem ..... 155
5.2. Closed Forms and Exact Forms ..... 156
5.3. Complex Analysis ..... 158
5.4. The Converse to the Poincaré Lemma ..... 160
5.5. Finding Potentials ..... 162
6 Holonomic and Nonholonomic Constraints ..... 165
6.1. The Frobenius Integrability Condition ..... 165
6.1a. Planes in $\mathbb{R}^{3}$ ..... 165
6.1b. Distributions and Vector Fields ..... 167
6.1c. Distributions and 1-Forms ..... 167
6.1d. The Frobenius Theorem ..... 169
6.2. Integrability and Constraints ..... 172
6.2a. Foliations and Maximal Leaves ..... 172
6.2b. Systems of Mayer-Lie ..... 174
6.2c. Holonomic and Nonholonomic Constraints ..... 175
6.3. Heuristic Thermodynamics via Caratheodory ..... 178
6.3a. Introduction ..... 178
6.3b. The First Law of Thermodynamics ..... 179
6.3c. Some Elementary Changes of State ..... 180
6.3d. The Second Law of Thermodynamics ..... 181
6.3e. Entropy ..... 183
6.3f. Increasing Entropy ..... 185
6.3g. Chow's Theorem on Accessibility ..... 187
II Geometry and Topology
$7 \mathbb{R}^{3}$ and Minkowski Space ..... 191
7.1. Curvature and Special Relativity ..... 191
7.1a. Curvature of a Space Curve in $\mathbb{R}^{3}$ ..... 191
7.1b. Minkowski Space and Special Relativity ..... 192
7.1c. Hamiltonian Formulation ..... 196
7.2. Electromagnetism in Minkowski Space ..... 196
7.2a. Minkowski's Electromagnetic Field Tensor ..... 196
7.2b. Maxwell's Equations ..... 198
8 The Geometry of Surfaces in $\mathbb{R}^{3}$ ..... 201
8.1. The First and Second Fundamental Forms ..... 201
8.1a. The First Fundamental Form, or Metric Tensor ..... 201
8.1b. The Second Fundamental Form ..... 203
8.2. Gaussian and Mean Curvatures ..... 205
8.2a. Symmetry and Self-Adjointness ..... 205
8.2b. Principal Normal Curvatures ..... 206
8.2c. Gauss and Mean Curvatures: The Gauss Normal Map ..... 207
8.3. The Brouwer Degree of a Map: A Problem Set ..... 210
8.3a. The Brouwer Degree ..... 210
8.3b. Complex Analytic (Holomorphic) Maps ..... 214
8.3c. The Gauss Normal Map Revisited: The Gauss-Bonnet Theorem ..... 215
8.3d. The Kronecker Index of a Vector Field ..... 215
8.3e. The Gauss Looping Integral ..... 218
8.4. Area, Mean Curvature, and Soap Bubbles ..... 221
8.4a. The First Variation of Area ..... 221
8.4b. Soap Bubbles and Minimal Surfaces ..... 226
8.5. Gauss's Theorema Egregium ..... 228
8.5a. The Equations of Gauss and Codazzi ..... 228
8.5b. The Theorema Egregium ..... 230
8.6. Geodesics ..... 232
8.6a. The First Variation of Arc Length ..... 232
8.6b. The Intrinsic Derivative and the Geodesic Equation ..... 234
8.7. The Parallel Displacement of Levi-Civita ..... 236
9 Covariant Differentiation and Curvature ..... 241
9.1. Covariant Differentiation ..... 241
9.1a. Covariant Derivative ..... 241
9.1b. Curvature of an Affine Connection ..... 244
9.1c. Torsion and Symmetry ..... 245
9.2. The Riemannian Connection ..... 246
9.3. Cartan's Exterior Covariant Differential ..... 247
9.3a. Vector-Valued Forms ..... 247
9.3b. The Covariant Differential of a Vector Field ..... 248
9.3c. Cartan's Structural Equations ..... 249
9.3d. The Exterior Covariant Differential of a Vector-Valued Form ..... 250
9.3e. The Curvature 2-Forms ..... 251
9.4. Change of Basis and Gauge Transformations ..... 253
9.4a. Symmetric Connections Only ..... 253
9.4b. Change of Frame ..... 253
9.5. The Curvature Forms in a Riemannian Manifold ..... 255
9.5a. The Riemannian Connection ..... 255
9.5b. Riemannian Surfaces $M^{2}$ ..... 257
9.5c. An Example ..... 257
9.6. Parallel Displacement and Curvature on a Surface ..... 259
9.7. Riemann's Theorem and the Horizontal Distribution ..... 263
9.7a. Flat Metrics ..... 263
9.7b. The Horizontal Distribution of an Affine Connection ..... 263
9.7c. Riemann's Theorem ..... 266
10 Geodesics ..... 269
10.1. Geodesics and Jacobi Fields ..... 269
10.1a. Vector Fields Along a Surface in $M^{n}$ ..... 269
10.1b. Geodesics ..... 271
10.1c. Jacobi Fields ..... 272
10.1d. Energy ..... 274
10.2. Variational Principles in Mechanics ..... 275
10.2a. Hamilton's Principle in the Tangent Bundle ..... 275
10.2b. Hamilton's Principle in Phase Space ..... 277
10.2c. Jacobi's Principle of "Least" Action ..... 278
10.2d. Closed Geodesics and Periodic Motions ..... 281
10.3. Geodesics, Spiders, and the Universe ..... 284
10.3a. Gaussian Coordinates ..... 284
10.3b. Normal Coordinates on a Surface ..... 287
10.3c. Spiders and the Universe ..... 288
11 Relativity, Tensors, and Curvature ..... 291
11.1. Heuristics of Einstein's Theory ..... 291
11.1a. The Metric Potentials ..... 291
11.1b. Einstein's Field Equations ..... 293
11.1c. Remarks on Static Metrics ..... 296
11.2. Tensor Analysis ..... 298
11.2a. Covariant Differentiation of Tensors ..... 298
11.2b. Riemannian Connections and the Bianchi Identities ..... 299
11.2c. Second Covariant Derivatives: The Ricci Identities ..... 301
11.3. Hilbert's Action Principle ..... 303
11.3a. Geodesics in a Pseudo-Riemannian Manifold ..... 303
11.3b. Normal Coordinates, the Divergence and Laplacian ..... 303
11.3c. Hilbert's Variational Approach to General Relativity ..... 305
11.4. The Second Fundamental Form in the Riemannian Case ..... 309
11.4a. The Induced Connection and the Second Fundamental Form ..... 309
11.4b. The Equations of Gauss and Codazzi ..... 311
11.4c. The Interpretation of the Sectional Curvature ..... 313
11.4d. Fixed Points of Isometries ..... 314
11.5. The Geometry of Einstein's Equations ..... 315
11.5a. The Einstein Tensor in a (Pseudo-)Riemannian Space-Time ..... 315
11.5b. The Relativistic Meaning of Gauss's Equation ..... 316
11.5c. The Second Fundamental Form of a Spatial Slice ..... 318
11.5d. The Codazzi Equations ..... 319
11.5e. Some Remarks on the Schwarzschild Solution ..... 320
12 Curvature and Topology: Synge's Theorem ..... 323
12.1. Synge's Formula for Second Variation ..... 324
12.1a. The Second Variation of Arc Length ..... 324
12.1b. Jacobi Fields ..... 326
12.2. Curvature and Simple Connectivity ..... 329
12.2a. Synge's Theorem ..... 329
12.2b. Orientability Revisited ..... 331
13 Betti Numbers and De Rham's Theorem ..... 333
13.1. Singular Chains and Their Boundaries ..... 333
13.1a. Singular Chains ..... 333
13.1b. Some 2-Dimensional Examples ..... 338
13.2. The Singular Homology Groups ..... 342
13.2a. Coefficient Fields ..... 342
13.2b. Finite Simplicial Complexes ..... 343
13.2c. Cycles, Boundaries, Homology, and Betti Numbers ..... 344
13.3. Homology Groups of Familiar Manifolds ..... 347
13.3a. Some Computational Tools ..... 347
13.3b. Familiar Examples ..... 350
13.4. De Rham's Theorem ..... 355
13.4a. The Statement of De Rham's Theorem ..... 355
13.4b. Two Examples ..... 357
14 Harmonic Forms ..... 361
14.1. The Hodge Operators ..... 361
14.1a. The $*$ Operator ..... 361
14.1b. The Codifferential Operator $\delta=d^{*}$ ..... 364
14.1c. Maxwell's Equations in Curved Space-Time $M^{4}$ ..... 366
14.1d. The Hilbert Lagrangian ..... 367
14.2. Harmonic Forms ..... 368
14.2a. The Laplace Operator on Forms ..... 368
14.2b. The Laplacian of a 1-Form ..... 369
14.2c. Harmonic Forms on Closed Manifolds ..... 370
14.2d. Harmonic Forms and De Rham's Theorem ..... 372
14.2e. Bochner's Theorem ..... 374
14.3. Boundary Values, Relative Homology, and Morse Theory ..... 375
14.3a. Tangential and Normal Differential Forms ..... 376
14.3b. Hodge's Theorem for Tangential Forms ..... 377
14.3c. Relative Homology Groups ..... 379
14.3d. Hodge's Theorem for Normal Forms ..... 381
14.3e. Morse's Theory of Critical Points ..... 382
III Lie Groups, Bundles, and Chern Forms
15 Lie Groups ..... 391
15.1. Lie Groups, Invariant Vector Fields, and Forms ..... 391
15.1a. Lie Groups ..... 391
15.1b. Invariant Vector Fields and Forms ..... 395
15.2. One-Parameter Subgroups ..... 398
15.3. The Lie Algebra of a Lie Group ..... 402
15.3a. The Lie Algebra ..... 402
15.3b. The Exponential Map ..... 403
15.3c. Examples of Lie Algebras ..... 404
15.3d. Do the 1-Parameter Subgroups Cover $G$ ? ..... 405
15.4. Subgroups and Subalgebras ..... 407
15.4a. Left Invariant Fields Generate Right Translations ..... 407
15.4b. Commutators of Matrices ..... 408
15.4c. Right Invariant Fields ..... 409
15.4d. Subgroups and Subalgebras ..... 410
16 Vector Bundles in Geometry and Physics ..... 413
16.1. Vector Bundles ..... 413
16.1a. Motivation by Two Examples ..... 413
16.1b. Vector Bundles ..... 415
16.1c. Local Trivializations ..... 417
16.1d. The Normal Bundle to a Submanifold ..... 419
16.2. Poincaré's Theorem and the Euler Characteristic ..... 421
16.2a. Poincaré's Theorem ..... 422
16.2b. The Stiefel Vector Field and Euler's Theorem ..... 426
16.3. Connections in a Vector Bundle ..... 428
16.3a. Connection in a Vector Bundle ..... 428
16.3b. Complex Vector Spaces ..... 431
16.3c. The Structure Group of a Bundle ..... 433
16.3d. Complex Line Bundles ..... 433
16.4. The Electromagnetic Connection ..... 435
16.4a. Lagrange's Equations without Electromagnetism ..... 435
16.4b. The Modified Lagrangian and Hamiltonian ..... 436
16.4c. Schrödinger's Equation in an Electromagnetic Field ..... 439
16.4d. Global Potentials ..... 443
16.4e. The Dirac Monopole ..... 444
16.4f. The Aharonov-Bohm Effect ..... 446
17 Fiber Bundles, Gauss-Bonnet, and Topological Quantization ..... 451
17.1. Fiber Bundles and Principal Bundles ..... 451
17.1a. Fiber Bundles ..... 451
17.1b. Principal Bundles and Frame Bundles ..... 453
17.1c. Action of the Structure Group on a Principal Bundle ..... 454
17.2. Coset Spaces ..... 456
17.2a. Cosets ..... 456
17.2b. Grassmann Manifolds ..... 459
17.3. Chern's Proof of the Gauss-Bonnet-Poincaré Theorem ..... 460
17.3a. A Connection in the Frame Bundle of a Surface ..... 460
17.3b. The Gauss-Bonnet-Poincaré Theorem ..... 462
17.3c. Gauss-Bonnet as an Index Theorem ..... 465
17.4. Line Bundles, Topological Quantization, and Berry Phase ..... 465
17.4a. A Generalization of Gauss-Bonnet ..... 465
17.4b. Berry Phase ..... 468
17.4c. Monopoles and the Hopf Bundle ..... 473
18 Connections and Associated Bundles ..... 475
18.1. Forms with Values in a Lie Algebra ..... 475
18.1a. The Maurer-Cartan Form ..... 475
18.1b. $g$-Valued $p$-Forms on a Manifold ..... 477
18.1c. Connections in a Principal Bundle ..... 479
18.2. Associated Bundles and Connections ..... 481
18.2a. Associated Bundles ..... 481
18.2b. Connections in Associated Bundles ..... 483
18.2c. The Associated Ad Bundle ..... 485
18.3. $r$-Form Sections of a Vector Bundle: Curvature ..... 488
18.3a. $r$-Form Sections of $E$ ..... 488
18.3b. Curvature and the $A d$ Bundle ..... 489
19 The Dirac Equation ..... 491
19.1. The Groups $S O$ (3) and $S U(2)$ ..... 491
19.1a. The Rotation Group $S O(3)$ of $\mathbb{R}^{3}$ ..... 492
19.1b. $S U(2)$ : The Lie Algebra $\mathbf{s u}(2)$ ..... 493
19.1c. $S U(2)$ Is Topologically the 3-Sphere ..... 495
19.1d. Ad : $S U(2) \rightarrow S O(3)$ in More Detail ..... 496
19.2. Hamilton, Clifford, and Dirac ..... 497
19.2a. Spinors and Rotations of $\mathbb{R}^{3}$ ..... 497
19.2b. Hamilton on Composing Two Rotations ..... 499
19.2c. Clifford Algebras ..... 500
19.2d. The Dirac Program: The Square Root of the d'Alembertian ..... 502
19.3. The Dirac Algebra ..... 504
19.3a. The Lorentz Group ..... 504
19.3b. The Dirac Algebra ..... 509
19.4. The Dirac Operator $\not \partial$ in Minkowski Space ..... 511
19.4a. Dirac Spinors ..... 511
19.4b. The Dirac Operator ..... 513
19.5. The Dirac Operator in Curved Space-Time ..... 515
19.5a. The Spinor Bundle ..... 515
19.5b. The Spin Connection in $\varsigma M$ ..... 518
20 Yang-Mills Fields ..... 523
20.1. Noether's Theorem for Internal Symmetries ..... 523
20.1a. The Tensorial Nature of Lagrange's Equations ..... 523
20.1b. Boundary Conditions ..... 526
20.1c. Noether's Theorem for Internal Symmetries ..... 527
20.1d. Noether's Principle ..... 528
20.2. Weyl's Gauge Invariance Revisited ..... 531
20.2a. The Dirac Lagrangian ..... 531
20.2b. Weyl's Gauge Invariance Revisited ..... 533
20.2c. The Electromagnetic Lagrangian ..... 534
20.2d. Quantization of the $A$ Field: Photons ..... 536
20.3. The Yang-Mills Nucleon ..... 537
20.3a. The Heisenberg Nucleon ..... 537
20.3b. The Yang-Mills Nucleon ..... 538
20.3c. A Remark on Terminology ..... 540
20.4. Compact Groups and Yang-Mills Action ..... 541
20.4a. The Unitary Group Is Compact ..... 541
20.4b. Averaging over a Compact Group ..... 541
20.4c. Compact Matrix Groups Are Subgroups of Unitary Groups ..... 542
20.4d. Ad Invariant Scalar Products in the Lie Algebra of a Compact Group ..... 543
20.4e. The Yang-Mills Action ..... 544
20.5. The Yang-Mills Equation ..... 545
20.5a. The Exterior Covariant Divergence $\nabla^{*}$ ..... 545
20.5b. The Yang-Mills Analogy with Electromagnetism ..... 547
20.5c. Further Remarks on the Yang-Mills Equations ..... 548
20.6. Yang-Mills Instantons ..... 550
20.6a. Instantons ..... 550
20.6b. Chern's Proof Revisited ..... 553
20.6c. Instantons and the Vacuum ..... 557
21 Betti Numbers and Covering Spaces ..... 561
21.1. Bi-invariant Forms on Compact Groups ..... 561
21.1a. Bi-invariant $p$-Forms ..... 561
21.1b. The Cartan $p$-Forms ..... 562
21.1c. Bi-invariant Riemannian Metrics ..... 563
21.1d. Harmonic Forms in the Bi-invariant Metric ..... 564
21.1e. Weyl and Cartan on the Betti Numbers of $G$ ..... 565
21.2. The Fundamental Group and Covering Spaces ..... 567
21.2a. Poincaré's Fundamental Group $\pi_{1}(M)$ ..... 567
21.2b. The Concept of a Covering Space ..... 569
21.2c. The Universal Covering ..... 570
21.2d. The Orientable Covering ..... 573
21.2e. Lifting Paths ..... 574
21.2f. Subgroups of $\pi_{1}(M)$ ..... 575
21.2g. The Universal Covering Group ..... 575
21.3. The Theorem of S. B. Myers: A Problem Set ..... 576
21.4. The Geometry of a Lie Group ..... 580
21.4a. The Connection of a Bi-invariant Metric ..... 580
21.4b. The Flat Connections ..... 581
22 Chern Forms and Homotopy Groups ..... 583
22.1. Chern Forms and Winding Numbers ..... 583
22.1a. The Yang-Mills "Winding Number" ..... 583
22.1b. Winding Number in Terms of Field Strength ..... 585
22.1c. The Chern Forms for a $U(n)$ Bundle ..... 587
22.2. Homotopies and Extensions ..... 591
22.2a. Homotopy ..... 591
22.2b. Covering Homotopy ..... 592
22.2c. Some Topology of $S U(n)$ ..... 594
22.3. The Higher Homotopy Groups $\pi_{k}(M)$ ..... 596
22.3a. $\pi_{k}(M)$ ..... 596
22.3b. Homotopy Groups of Spheres ..... 597
22.3c. Exact Sequences of Groups ..... 598
22.3d. The Homotopy Sequence of a Bundle ..... 600
22.3e. The Relation between Homotopy and Homology Groups ..... 603
22.4. Some Computations of Homotopy Groups ..... 605
22.4a. Lifting Spheres from $M$ into the Bundle $P$ ..... 605
22.4b. $S U(n)$ Again ..... 606
22.4c. The Hopf Map and Fibering ..... 606
22.5. Chern Forms as Obstructions ..... 608
22.5a. The Chern Forms $c_{r}$ for an $S U(n)$ Bundle Revisited ..... 608
22.5b. $c_{2}$ as an "Obstruction Cocycle" ..... 609
22.5c. The Meaning of the Integer $j\left(\Delta_{4}\right)$ ..... 612
22.5d. Chern's Integral ..... 612
22.5e. Concluding Remarks ..... 615
Appendix A. Forms in Continuum Mechanics ..... 617
A.a. The Classical Cauchy Stress Tensor and Equations of Motion ..... 617
A.b. Stresses in Terms of Exterior Forms ..... 618
A.c. Symmetry of Cauchy's Stress Tensor in $\mathbb{R}^{n}$ ..... 620
A.d. The Piola-Kirchhoff Stress Tensors ..... 622
A.e. Stored Energy of Deformation ..... 623
A.f. Hamilton's Principle in Elasticity ..... 626
A.g. Some Typical Computations Using Forms ..... 629
A.h. Concluding Remarks ..... 635
Appendix B. Harmonic Chains and Kirchhoff's Circuit Laws ..... 636
B.a. Chain Complexes ..... 636
B.b. Cochains and Cohomology ..... 638
B.c. Transpose and Adjoint ..... 639
B.d. Laplacians and Harmonic Cochains ..... 641
B.e. Kirchhoff's Circuit Laws ..... 643
Appendix C. Symmetries, Quarks, and Meson Masses ..... 648
C.a. Flavored Quarks ..... 648
C.b. Interactions of Quarks and Antiquarks ..... 650
C.c. The Lie Algebra of $S U(3)$ ..... 652
C.d. Pions, Kaons, and Etas ..... 653
C.e. A Reduced Symmetry Group ..... 656
C.f. Meson Masses ..... 658
Appendix D. Representations and Hyperelastic Bodies ..... 660
D.a. Hyperelastic Bodies ..... 660
D.b. Isotropic Bodies ..... 661
D.c. Application of Schur's Lemma ..... 662
D.d. Frobenius-Schur Relations ..... 664
D.e. The Symmetric Traceless $3 \times 3$ Matrices Are Irreducible ..... 666
Appendix E. Orbits and Morse-Bott Theory in Compact Lie Groups ..... 670
E.a. The Topology of Conjugacy Orbits ..... 670
E.b. Application of Bott's Extension of Morse Theory ..... 673
References ..... 679
Index ..... 683

## CHAPTER 1

## Manifolds and Vector Fields

Better is the end of a thing than the beginning thereof.
Ecclesiastes 7:8

As students we learn differential and integral calculus in the context of euclidean space $\mathbb{R}^{n}$, but it is necessary to apply calculus to problems involving "curved" spaces. Geodesy and cartography, for example, are devoted to the study of the most familiar curved surface of all, the surface of planet Earth. In discussing maps of the Earth, latitude and longitude serve as "coordinates," allowing us to use calculus by considering functions on the Earth's surface (temperature, height above sea level, etc.) as being functions of latitude and longitude. The familiar Mercator's projection, with its stretching of the polar regions, vividly informs us that these coordinates are badly behaved at the poles: that is, that they are not defined everywhere; they are not "global." (We shall refer to such coordinates as being "local," even though they might cover a huge portion of the surface. Precise definitions will be given in Section 1.2.) Of course we may use two sets of "polar" projections to study the Arctic and Antarctic regions. With these three maps we can study the entire surface, provided we know how to relate the Mercator to the polar maps.

We shall soon define a "manifold" to be a space that, like the surface of the Earth, can be covered by a family of local coordinate systems. A manifold will turn out to be the most general space in which one can use differential and integral calculus with roughly the same facility as in euclidean space. It should be recalled, though, that calculus in $\mathbb{R}^{3}$ demands special care when curvilinear coordinates are required.

The most familiar manifold is $N$-dimensional euclidean space $\mathbb{R}^{N}$, that is, the space of ordered $N$ tuples $\left(x^{1}, \ldots, x^{N}\right)$ of real numbers. Before discussing manifolds in general we shall talk about the more familiar (and less abstract) concept of a submanifold of $\mathbb{R}^{N}$, generalizing the notions of curve and surface in $\mathbb{R}^{3}$.

1.1. Submanifolds of Euclidean Space<br>What is the configuration space of a rigid body fixed at one point of $\mathbb{R}^{n}$ ?

## 1.1a. Submanifolds of $\mathbb{R}^{N}$

Euclidean space, $\mathbb{R}^{N}$, is endowed with a global coordinate system $\left(x^{1}, \ldots, x^{N}\right)$ and is the most important example of a manifold.

In our familiar $\mathbb{R}^{3}$, with coordinates $(x, y, z)$, a locus $z=F(x, y)$ describes a (2dimensional) surface, whereas a locus of the form $y=G(x), z=H(x)$, describes a (1-dimensional) curve. We shall need to consider higher-dimensional versions of these important notions.

A subset $M=M^{n} \subset \mathbb{R}^{n+r}$ is said to be an $n$-dimensional submanifold of $\mathbb{R}^{n+r}$, if locally $M$ can be described by giving $r$ of the coordinates differentiably in terms of the $n$ remaining ones. This means that given $p \in M$, a neighborhood of $p$ on $M$ can be described in some coordinate system $(x, y)=\left(x^{1}, \ldots, x^{n}, y^{1}, \ldots, y^{r}\right)$ of $\mathbb{R}^{n+r}$ by $r$ differentiable functions

$$
y^{\alpha}=f^{\alpha}\left(x^{1}, \ldots, x^{n}\right), \quad \alpha=1, \ldots r
$$

We abbreviate this by $y=f(x)$, or even $y=y(x)$. We say that $x^{1}, \ldots, x^{n}$ are local (curvilinear) coordinates for $M$ near $p$.

## Examples:

(i) $y^{1}=f\left(x^{1}, \ldots, x^{n}\right)$ describes an $n$-dimensional submanifold of $\mathbb{R}^{n+1}$.


Figure 1.1
In Figure 1.1 we have drawn a portion of the submanifold $M$. This $M$ is the graph of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, that is, $M=\left\{(\mathbf{x}, y) \in \mathbb{R}^{n+1} \mid y=f(\mathbf{x})\right\}$. When $n=1$, $M$ is a curve; while if $n=2$, it is a surface.
(ii) The unit sphere $x^{2}+y^{2}+z^{2}=1$ in $\mathbb{R}^{3}$. Points in the northern hemisphere can be described by $z=F(x, y)=\left(1-x^{2}-y^{2}\right)^{1 / 2}$ and this function is differentiable everywhere except at the equator $x^{2}+y^{2}=1$. Thus $x$ and $y$ are local coordinates for the northern hemisphere except at the equator. For points on the equator one can solve for $x$ or $y$ in terms of the others. If we have solved for $x$ then $y$ and $z$ are the two local coordinates. For points in the southern hemisphere one can use the negative square
root for $z$. The unit sphere in $\mathbb{R}^{3}$ is a 2 -dimensional submanifold of $\mathbb{R}^{3}$. We note that we have not been able to describe the entire sphere by expressing one of the coordinates, say $z$, in terms of the two remaining ones, $z=F(x, y)$. We settle for local coordinates.

More generally, given $r$ functions $F^{\alpha}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{r}\right)$ of $n+r$ variables, we may consider the locus $M^{n} \subset \mathbb{R}^{n+r}$ defined by the equations

$$
F^{\alpha}(x, y)=c^{\alpha}, \quad\left(c^{1}, \ldots, c^{r}\right) \text { constants }
$$

If the Jacobian determinant

$$
\left[\frac{\partial\left(F^{1}, \ldots, F^{r}\right)}{\partial\left(y^{1}, \ldots, y^{r}\right)}\right]\left(x_{0}, y_{0}\right)
$$

at $\left(x_{0}, y_{0}\right) \in M$ of the locus is not 0 , the implicit function theorem assures us that locally, near $\left(x_{0}, y_{0}\right)$, we may solve $F^{\alpha}(x, y)=c^{\alpha}, \alpha=1, \ldots, r$, for the $y$ 's in terms of the $x$ 's

$$
y^{\alpha}=f^{\alpha}\left(x^{1}, \ldots, x^{n}\right)
$$

We may say that "a portion of $M^{n}$ near $\left(x_{0}, y_{0}\right)$ is a submanifold of $\mathbb{R}^{n+r}$." If the Jacobian $\neq 0$ at all points of the locus, then the entire $M^{n}$ is a submanifold.

Recall that the Jacobian condition arises as follows. If $F^{\alpha}(x, y)=c^{\alpha}$ can be solved for the $y$ 's differentiably in terms of the $x$ 's, $y^{\beta}=y^{\beta}(x)$, then if, for fixed $i$, we differentiate the identity $F^{\alpha}(x, y(x))=c^{\alpha}$ with respect to $x^{i}$, we get

$$
\frac{\partial F^{\alpha}}{\partial x^{i}}+\sum_{\beta}\left[\frac{\partial F^{\alpha}}{\partial y^{\beta}}\right] \frac{\partial y^{\beta}}{\partial x^{i}}=0
$$

and

$$
\frac{\partial y^{\beta}}{\partial x^{i}}=-\sum_{\alpha}\left(\left[\frac{\partial F}{\partial y}\right]^{-1}\right)_{\alpha}^{\beta}\left[\frac{\partial F^{\alpha}}{\partial x^{i}}\right]
$$

provided the subdeterminant $\partial\left(F^{1}, \ldots, F^{r}\right) / \partial\left(y^{1}, \ldots, y^{r}\right)$ is not zero. (Here $\left([\partial F / \partial y]^{-1}\right)^{\beta}{ }_{\alpha}$ is the $\beta \alpha$ entry of the inverse to the matrix $\partial F / \partial y$; we shall use the convention that for matrix indices, the index to the left always is the row index, whether it is up or down.) This suggests that if the indicated Jacobian is nonzero then we might indeed be able to solve for the $y$ 's in terms of the $x$ 's, and the implicit function theorem confirms this. The (nontrivial) proof of the implicit function theorem can be found in most books on real analysis.

Still more generally, suppose that we have $r$ functions of $n+r$ variables, $F^{\alpha}\left(x^{1}, \ldots\right.$, $\left.x^{n+r}\right)$. Consider the locus $F^{\alpha}(x)=c^{\alpha}$. Suppose that at each point $x_{0}$ of the locus the Jacobian matrix

$$
\left(\frac{\partial F^{\alpha}}{\partial x^{i}}\right) \quad \alpha=1, \ldots, r \quad i=1, \ldots, n+r
$$

has rank $r$. Then the equations $F^{\alpha}=c^{\alpha}$ define an $n$-dimensional submanifold of $\mathbb{R}^{n+r}$, since we may locally solve for $r$ of the coordinates in terms of the remaining $n$.


Figure 1.2
In Figure 1.2, two surfaces $F=0$ and $G=0$ in $\mathbb{R}^{3}$ intersect to yield a curve $M$. The simplest case is one function $F$ of $N$ variables $\left(x^{1}, \ldots, x^{N}\right)$. If at each point of the locus $F=c$ there is always at least one partial derivative that does not vanish, then the Jacobian (row) matrix $\left[\partial F / \partial x^{1}, \partial F / \partial x^{2}, \ldots, \partial F / \partial x^{N}\right]$ has rank 1 and we may conclude that this locus is indeed an $(N-1)$-dimensional submanifold of $\mathbb{R}^{N}$. This criterion is easily verified, for example, in the case of the 2 -sphere $F(x, y, z)=x^{2}+y^{2}+z^{2}=1$ of Example (ii). The column version of this row matrix is called in calculus the gradient vector of $F$. In $\mathbb{R}^{3}$ this vector

$$
\left[\begin{array}{l}
\frac{\partial F}{\partial x} \\
\frac{\partial F}{\partial y} \\
\frac{\partial F}{\partial z}
\end{array}\right]
$$

is orthogonal to the locus $F=0$, and we may conclude, for example, that if this gradient vector has a nontrivial component in the $z$ direction at a point of $F=0$, then locally we can solve for $z=z(x, y)$.

A submanifold of dimension $(N-1)$ in $\mathbb{R}^{N}$, that is, of "codimension" 1 , is called a hypersurface.
(iii) The $x$ axis of the $x y$ plane $\mathbb{R}^{2}$ can be described (perversely) as the locus of the quadratic $F(x, y):=y^{2}=0$. Both partial derivatives vanish on the locus, the $x$ axis, and our criteria would not allow us to say that the $x$ axis is a 1-dimensional submanifold of $\mathbb{R}^{2}$. Of course the $x$ axis is a submanifold; we should have used the usual description $G(x, y):=y=0$. Our Jacobian criteria are sufficient conditions, not necessary ones.
(iv) The locus $F(x, y):=x y=0$ in $\mathbb{R}^{2}$, consisting of the union of the $x$ and $y$ axes, is not a 1-dimensional submanifold of $\mathbb{R}^{2}$. It seems "clear" (and can be proved) that in a neighborhood of the intersection of the two lines we are not going to be able to describe the locus in the form of $y=f(x)$ or $x=g(y)$, where $f, g$, are differentiable functions. The best we can say is that this locus with the origin removed is a 1-dimensional submanifold.

## 1.1b. The Geometry of Jacobian Matrices: The "Differential"

The tangent space to $\mathbb{R}^{n}$ at the point $x$, written here as $\mathbb{R}_{x}^{n}$, is by definition the vector space of all vectors in $\mathbb{R}^{n}$ based at $x$ (i.e., it is a copy of $\mathbb{R}^{n}$ with origin shifted to $x$ ).

Let $x^{1}, \ldots, x^{n}$ and $y^{1}, \ldots, y^{r}$ be coordinates for $\mathbb{R}^{n}$ and $\mathbb{R}^{r}$ respectively. Let $F$ : $\mathbb{R}^{n} \rightarrow \mathbb{R}^{r}$ be a smooth map. ("Smooth" ordinarily means infinitely differentiable. For our purposes, however, it will mean differentiable at least as many times as is necessary in the present context. For example, if $F$ is once continuously differentiable, we may use the chain rule in the argument to follow.) In coordinates, $F$ is described by giving $r$ functions of $n$ variables

$$
y^{\alpha}=F^{\alpha}(x) \quad \alpha=1, \ldots, r
$$

or simply $y=F(x)$. We will frequently use the more dangerous notation $y=y(x)$.
Let $y_{0}=F\left(x_{0}\right)$; the Jacobian matrix $\left(\partial y^{\alpha} / \partial x^{i}\right)\left(x_{0}\right)$ has the following significance.


Figure 1.3

Let $\mathbf{v}$ be a tangent vector to $\mathbb{R}^{n}$ at $x_{0}$. Take any smooth curve $x(t)$ such that $x(0)=x_{0}$ and $\dot{x}(0):=(d x / d t)(0)=\mathbf{v}$, for example, the straight line $x(t)=x_{0}+t \mathbf{v}$. The image of this curve

$$
y(t)=F(x(t))
$$

has a tangent vector $\mathbf{w}$ at $y_{0}$ given by the chain rule

$$
w^{\alpha}=\dot{y}^{\alpha}(0)=\sum_{i=1}^{n}\left(\frac{\partial y^{\alpha}}{\partial x^{i}}\right)\left(x_{0}\right) \dot{x}^{i}(0)=\sum_{i=1}^{n}\left(\frac{\partial y^{\alpha}}{\partial x^{i}}\right)\left(x_{0}\right) v^{i}
$$

The assignment $\mathbf{v} \mapsto \mathbf{w}$ is, from this expression, independent of the curve $x(t)$ chosen, and defines a linear transformation, the differential of $F$ at $x_{0}$

$$
\begin{equation*}
F_{*}: \mathbb{R}_{x_{0}}^{n} \rightarrow \mathbb{R}_{y_{0}}^{r} \quad F_{*}(\mathbf{v})=\mathbf{w} \tag{1.1}
\end{equation*}
$$

whose matrix is simply the Jacobian matrix $\left(\partial y^{\alpha} / \partial x^{i}\right)\left(x_{0}\right)$. This interpretation of the Jacobian matrix, as a linear transformation sending tangents to curves into tangents to the image curves under $F$, can sometimes be used to replace the direct computation of matrices. This philosophy will be illustrated in Section 1.1d.

## 1.1c. The Main Theorem on Submanifolds of $\mathbb{R}^{N}$

The main theorem is a geometric interpretation of what we have discussed. Note that the statement " $F$ has rank $r$ at $x_{0}$," that is, $\left[\partial y^{\alpha} / \partial x^{i}\right]\left(x_{0}\right)$ has rank $r$, is geometrically the statement that the differential

$$
F_{*}: \mathbb{R}_{x_{0}}^{n} \rightarrow \mathbb{R}_{y_{0}=F\left(x_{0}\right)}^{r}
$$

is onto or "surjective"; that is, given any vector $\mathbf{w}$ at $y_{0}$ there is at least one vector $\mathbf{v}$ at $x_{0}$ such that $F_{*}(\mathbf{v})=\mathbf{w}$. We then have

Theorem (1.2): Let $F: \mathbb{R}^{r+n} \rightarrow \mathbb{R}^{r}$ and suppose that the locus

$$
F^{-1}\left(y_{0}\right):=\left\{x \in \mathbb{R}^{r+n} \mid F(x)=y_{0}\right\}
$$

is not empty. Suppose further that for all $x_{0} \in F^{-1}\left(y_{0}\right)$

$$
F_{*}: \mathbb{R}_{x_{0}}^{n+r} \rightarrow \mathbb{R}_{y_{0}}^{r}
$$

is onto. Then $F^{-1}\left(y_{0}\right)$ is an $n$-dimensional submanifold of $\mathbb{R}^{n+r}$.


Figure 1.4

