The Geometry of Physics An Introduction

Second Edition

Theodore Frankel

University of California, San Diego

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011–4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

© Cambridge University Press 2004

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2004

Printed in the United States of America

Typeface Times Roman 10.5/13 pt. System $\Delta T_E X 2_{\mathcal{E}}$ [TB]

A catalog record for this book is available from the British Library. Library of Congress Cataloging in Publication data

Frankel, Theodore, 1929–

The geometry of physics : an introduction / Theodore Frankel.- 2nd ed.

p. cm.
Includes bibliographical references and index.
ISBN 0-521-53927-7 (pbk.)
1. Geometry, Differential. 2. Mathematical physics. I. Title.
QC20.7 D52F73 2003
530.15' 636-dc21 2003044030

ISBN 0 521 83330 2 hardback ISBN 0 521 53927 7 paperback

Contents

Preface to the Second Edition	<i>page</i> xix
Preface to the Revised Printing	xxi
Preface to the First Edition	xxiii

I Manifolds, Tensors, and Exterior Forms

1 Manifolds and Vector Fields						
1.1.	Subma	Submanifolds of Euclidean Space				
	1.1a.	1.1a. Submanifolds of \mathbb{R}^N				
	1.1b.	.1b. The Geometry of Jacobian Matrices: The "Differential"				
	1.1c.	The Main Theorem on Submanifolds of \mathbb{R}^N	8			
	1.1d.	A Nontrivial Example: The Configuration Space of a				
		Rigid Body	9			
1.2.	Manif	olds	11			
	1.2a.	Some Notions from Point Set Topology	11			
	1.2b.	The Idea of a Manifold	13			
	1.2c.	A Rigorous Definition of a Manifold	19			
	1.2d.	Complex Manifolds: The Riemann Sphere	21			
1.3.	Tange	nt Vectors and Mappings	22			
	1.3a.	Tangent or "Contravariant" Vectors	23			
	1.3b.	Vectors as Differential Operators	24			
	1.3c.	The Tangent Space to M^n at a Point	25			
	1.3d.	Mappings and Submanifolds of Manifolds	26			
	1.3e.	Change of Coordinates	29			
1.4.	Vector	Fields and Flows	30			
	1.4a.	Vector Fields and Flows on \mathbb{R}^n	30			
	1.4b.	Vector Fields on Manifolds	33			
	1.4c.	Straightening Flows	34			

2 Tens	2 Tensors and Exterior Forms 37				
2.1.	2.1. Covectors and Riemannian Metrics				
	2.1a.	Linear Functionals and the Dual Space	37		
	2.1b.	The Differential of a Function	40		
	2.1c.	Scalar Products in Linear Algebra	42		
	2.1d.	Riemannian Manifolds and the Gradient Vector	45		
	2.1e.	Curves of Steepest Ascent	46		
2.2.	The T	angent Bundle	48		
	2.2a.	The Tangent Bundle	48		
	2.2b.	The Unit Tangent Bundle	50		
2.3.	The C	otangent Bundle and Phase Space	52		
	2.3a.	The Cotangent Bundle	52		
	2.3b.	The Pull-Back of a Covector	52		
	2.3c.	The Phase Space in Mechanics	54		
	2.3d.	The Poincaré 1-Form	56		
2.4.	Tenso	rs	58		
	2.4a.	Covariant Tensors	58		
	2.4b.	Contravariant Tensors	59		
	2.4c.	Mixed Tensors	60		
	2.4d.	Transformation Properties of Tensors	62		
	2.4e.	Tensor Fields on Manifolds	63		
2.5.	The G	rassmann or Exterior Algebra	66		
	2.5a.	The Tensor Product of Covariant Tensors	66		
	2.5b.	The Grassmann or Exterior Algebra	66		
	2.5c.	The Geometric Meaning of Forms in \mathbb{R}^n	70		
	2.5d.	Special Cases of the Exterior Product	70		
	2.5e.	Computations and Vector Analysis	71		
2.6.	Exteri	or Differentiation	73		
	2.6a.	The Exterior Differential	73		
	2.6b.	Examples in \mathbb{R}^3	75		
	2.6c.	A Coordinate Expression for <i>d</i>	76		
2.7.	Pull-E	Sacks	77		
	2.7a.	The Pull-Back of a Covariant Tensor	77		
• •	2.7b.	The Pull-Back in Elasticity	80		
2.8.	Orient	tation and Pseudoforms	82		
	2.8a.	Orientation of a Vector Space	82		
	2.80.	Orientation of a Manifold	83		
	2.8c.	Orientability and 2-Sided Hypersurfaces	84		
	2.ðd.	Projective Spaces	85		
	2.ðe. 2 og	The Volume Form in a Discoursion Marifull	83		
3.0	2.8 I.	The volume Form in a Klemannian Manifold	87		
2.9.		Dr Products and Vector Analysis	89		
	2.9a. 2 ol	Interior Products and Contractions Interior Draduct in \mathbb{D}^3	89		
	2.9D.	Interior Product in K ²	90		
	2.9C.		92		

-	

2.1	0. Dicti	ionary	94			
3 Inte	3 Integration of Differential Forms 95					
3.1.	3.1. Integration over a Parameterized Subset					
	3.1a. Integration of a <i>p</i> -Form in \mathbb{R}^p					
	3.1b.	Integration over Parameterized Subsets	96			
	3.1c.	Line Integrals	97			
	3.1d.	Surface Integrals	99			
	3.1e.	Independence of Parameterization	101			
	3.1f.	Integrals and Pull-Backs	102			
	3.1g.	Concluding Remarks	102			
3.2.	Integr	ation over Manifolds with Boundary	104			
	3.2a.	Manifolds with Boundary	105			
	3.2b.	Partitions of Unity	106			
	3.2c.	Integration over a Compact Oriented Submanifold	108			
	3.2d.	Partitions and Riemannian Metrics	109			
3.3.	. Stokes	s's Theorem	110			
	3.3 a.	Orienting the Boundary	110			
	3.3b.	Stokes's Theorem	111			
3.4.	. Integr	ation of Pseudoforms	114			
	3.4a.	Integrating Pseudo- <i>n</i> -Forms on an <i>n</i> -Manifold	115			
	3.4b.	Submanifolds with Transverse Orientation	115			
	3.4c.	Integration over a Submanifold with Transverse				
		Orientation	116			
	3.4d.	Stokes's Theorem for Pseudoforms	117			
3.5.	. Maxw	vell's Equations	118			
	3.5a.	Charge and Current in Classical Electromagnetism	118			
	3.5b.	The Electric and Magnetic Fields	119			
	3.5c.	Maxwell's Equations	120			
	3.5d.	Forms and Pseudoforms	122			
4 The	Lie Dei	rivative	125			
4.1.	. The L	ie Derivative of a Vector Field	125			
	4.1a.	The Lie Bracket	125			
	4.1b.	Jacobi's Variational Equation	127			
	4.1c.	The Flow Generated by $[X, Y]$	129			
4.2.	. The L	ie Derivative of a Form	132			
	4.2a.	Lie Derivatives of Forms	132			
	4.2b.	Formulas Involving the Lie Derivative	134			
	4.2c.	Vector Analysis Again	136			
4.3.	. Differ	entiation of Integrals	138			
	4.3a.	The Autonomous (Time-Independent) Case	138			
	4.3b.	Time-Dependent Fields	140			
	4.3c. Differentiating Integrals					
4.4.	A Pro	blem Set on Hamiltonian Mechanics	145			
	4.4 a.	Time-Independent Hamiltonians	147			

	4.4b.	Time-Dependent Hamiltonians and Hamilton's Principle	151
	4.40.	Poisson Brackets	134
5 The	Poinca	ré Lemma and Potentials	155
5.1.	A Mo	re General Stokes's Theorem	155
5.2.	Close	d Forms and Exact Forms	156
5.3.	Comp	lex Analysis	158
5.4.	The C	Converse to the Poincaré Lemma	160
5.5.	Findir	ng Potentials	162
6 Holo	nomic	and Nonholonomic Constraints	165
6.1.	The F	robenius Integrability Condition	165
	6.1a.	Planes in \mathbb{R}^3	165
	6.1b.	Distributions and Vector Fields	167
	6.1c.	Distributions and 1-Forms	167
	6.1d.	The Frobenius Theorem	169
6.2.	Integr	ability and Constraints	172
	6.2a.	Foliations and Maximal Leaves	172
	6.2b.	Systems of Mayer-Lie	174
	6.2c.	Holonomic and Nonholonomic Constraints	175
6.3.	Heuri	stic Thermodynamics via Caratheodory	178
	6.3a.	Introduction	178
	6.3b.	The First Law of Thermodynamics	179
	6.3c.	Some Elementary Changes of State	180
	6.3d.	The Second Law of Thermodynamics	181
	6.3e.	Entropy	183
	6.3f.	Increasing Entropy	185
	6.3g.	Chow's Theorem on Accessibility	187
	U	H. Coometry and Tanalogy	

II Geometry and Topology

7 \mathbb{R}^3 a	nd Min	ikowski Space	191
7.1.	Curva	ature and Special Relativity	191
	7.1a.	Curvature of a Space Curve in \mathbb{R}^3	191
	7.1b.	Minkowski Space and Special Relativity	192
	7.1c.	Hamiltonian Formulation	196
7.2.	Electi	romagnetism in Minkowski Space	196
	7.2a.	Minkowski's Electromagnetic Field Tensor	196
	7.2b.	Maxwell's Equations	198
8 The	Geome	etry of Surfaces in \mathbb{R}^3	201
8.1.	The F	First and Second Fundamental Forms	201
	8.1a.	The First Fundamental Form, or Metric Tensor	201
	8.1b.	The Second Fundamental Form	203
8.2.	Gauss	sian and Mean Curvatures	205
	8.2a.	Symmetry and Self-Adjointness	205

CONTENTS

	8.2b.	Principal Normal Curvatures	206
	8.2c.	Gauss and Mean Curvatures: The Gauss Normal Map	207
8.3.	The B	rouwer Degree of a Map: A Problem Set	210
	8.3a.	The Brouwer Degree	210
	8.3b.	Complex Analytic (Holomorphic) Maps	214
	8.3c.	The Gauss Normal Map Revisited: The Gauss-Bonnet	
		Theorem	215
	8.3d.	The Kronecker Index of a Vector Field	215
	8.3e.	The Gauss Looping Integral	218
8.4.	Area,	Mean Curvature, and Soap Bubbles	221
	8.4 a.	The First Variation of Area	221
	8.4b.	Soap Bubbles and Minimal Surfaces	226
8.5.	Gauss	's Theorema Egregium	228
	8.5a.	The Equations of Gauss and Codazzi	228
	8.5b.	The Theorema Egregium	230
8.6.	Geode	esics	232
	8.6a.	The First Variation of Arc Length	232
	8.6b.	The Intrinsic Derivative and the Geodesic Equation	234
8.7.	The P	arallel Displacement of Levi-Civita	236
9 Cove	riant I	Differentiation and Curvature	241
9 Cuva 0 1		iant Differentiation	241 241
<i>)</i> ,1,	0 1a	Covariant Derivative	241
	9.1h	Curvature of an Affine Connection	241
	9.1c.	Torsion and Symmetry	245
9.2.	The R	iemannian Connection	246
9.3.	Cartar	n's Exterior Covariant Differential	247
	9.3a.	Vector-Valued Forms	247
	9.3b.	The Covariant Differential of a Vector Field	248
	9.3c.	Cartan's Structural Equations	249
	9.3d.	The Exterior Covariant Differential of a Vector-Valued	
		Form	250
	9.3e.	The Curvature 2-Forms	251
9.4.	Chang	ge of Basis and Gauge Transformations	253
	9.4a.	Symmetric Connections Only	253
	9.4b.	Change of Frame	253
9.5.	The C	urvature Forms in a Riemannian Manifold	255
	9.5a.	The Riemannian Connection	255
	9.5b.	Riemannian Surfaces M^2	257
	9.5c.	An Example	257
9.6.	Parall	el Displacement and Curvature on a Surface	259
9.7.	Riema	ann's Theorem and the Horizontal Distribution	263
	9.7a.	Flat Metrics	263
	9.7b.	The Horizontal Distribution of an Affine Connection	263
	9.7c.	Riemann's Theorem	266

xi

10 Geod	lesics		269
10.1	1. Geodesics and Jacobi Fields		
	10.1a.	Vector Fields Along a Surface in M^n	269
	10.1b.	Geodesics	271
	10.1c.	Jacobi Fields	272
	10.1d.	Energy	274
10.2	. Variatio	onal Principles in Mechanics	275
	10.2a.	Hamilton's Principle in the Tangent Bundle	275
	10.2b.	Hamilton's Principle in Phase Space	277
	10.2c.	Jacobi's Principle of "Least" Action	278
	10.2d.	Closed Geodesics and Periodic Motions	281
10.3	. Geodes	sics, Spiders, and the Universe	284
	10.3a.	Gaussian Coordinates	284
	10.3b.	Normal Coordinates on a Surface	287
	10.3c.	Spiders and the Universe	288
11 Rela	tivity, Tei	nsors, and Curvature	291
11.1	. Heurist	tics of Einstein's Theory	291
	11.1a.	The Metric Potentials	291
	11.1b.	Einstein's Field Equations	293
	11.1c.	Remarks on Static Metrics	296
11.2	. Tensor	Analysis	298
	11.2a.	Covariant Differentiation of Tensors	298
	11.2b.	Riemannian Connections and the Bianchi Identities	299
	11.2c.	Second Covariant Derivatives: The Ricci Identities	301
11.3	. Hilbert	's Action Principle	303
	11. 3 a.	Geodesics in a Pseudo-Riemannian Manifold	303
	11.3b.	Normal Coordinates, the Divergence and Laplacian	303
	11.3c.	Hilbert's Variational Approach to General Relativity	305
11.4	. The Se	cond Fundamental Form in the Riemannian Case	309
	11. 4 a.	The Induced Connection and the Second Fundamental	200
		Form	309
	11.4b.	The Equations of Gauss and Codazzi	311
	11.4c.	The Interpretation of the Sectional Curvature	313
11 5	11.4 a .	Fixed Points of Isometries	314
11.5	. The Ge	The Einstein Tencer in a (Decode) Discoursion	515
	11.5a.	Space Time	215
	11 5 b	Space-Time The Polotivistic Meaning of Course's Equation	216
	11.50. 11.50	The Relativistic Meaning of Gauss's Equation The Second Eurodemental Form of a Spatial Slice	210
	11.5C. 11.5d	The Codezzi Equations	210
	11.5u. 11.5e.	Some Remarks on the Schwarzschild Solution	319
12 C	atura a	d Tonology, Syngola Theorem	220
12 UUIV	ature and	a Topology: Synge's Theorem	323
14.1	12 1a	The Second Variation of Arc Length	524 224
	12.1d. 12.1k	Incoobi Fields	324 204
	14.10.	Jacobi 1 Icius	520

12.2	. Curvatı	ure and Simple Connectivity	329
	12.2a.	Synge's Theorem	329
	12.2b.	Orientability Revisited	331
13 Bett	i Number:	s and De Rham's Theorem	333
13.1	. Singula	ar Chains and Their Boundaries	333
	13.1a.	Singular Chains	333
	13.1b.	Some 2-Dimensional Examples	338
13.2	. The Sir	ngular Homology Groups	342
	13.2a.	Coefficient Fields	342
	13.2b.	Finite Simplicial Complexes	343
	13.2c.	Cycles, Boundaries, Homology, and Betti Numbers	344
13.3	. Homole	ogy Groups of Familiar Manifolds	347
	13.3a.	Some Computational Tools	347
	13.3b.	Familiar Examples	350
13.4	De Rha	am's Theorem	355
	13.4a.	The Statement of De Rham's Theorem	355
	13.4b.	Two Examples	357
14 Har	monic For	rms	361
14.1	. The Ho	odge Operators	361
	14.1a.	The * Operator	361
	14.1b.	The Codifferential Operator $\delta = d^*$	364
	14.1c.	Maxwell's Equations in Curved Space–Time M^4	366
	14.1d.	The Hilbert Lagrangian	367
14.2	. Harmon	nic Forms	368
	14.2a.	The Laplace Operator on Forms	368
	14.2b.	The Laplacian of a 1-Form	369
	14.2c.	Harmonic Forms on Closed Manifolds	370
	14.2d.	Harmonic Forms and De Rham's Theorem	372
	14.2e.	Bochner's Theorem	374
14.3	Bounda	ary Values, Relative Homology, and Morse Theory	375
	14.3a.	Tangential and Normal Differential Forms	376
	14.3b.	Hodge's Theorem for Tangential Forms	377
	14.3c.	Relative Homology Groups	379
	14.3d.	Hodge's Theorem for Normal Forms	381
	14.3e.	Morse's Theory of Critical Points	382
]	III Lie Groups, Bundles, and Chern Forms	
15 T io 4	Croups		201
15 Lie (Jia Cer	ouns Invariant Vector Fields and Forms	201
15.1	. Lie Of(Lie Croupe	201
	15.18.		391

	15.1b. Invariant Vector Fields and Forms	395
15.2.	One-Parameter Subgroups	398
15.3.	The Lie Algebra of a Lie Group	402
	15.3a. The Lie Algebra	402

		15.3b.	The Exponential Map	403
		15.3c.	Examples of Lie Algebras	404
		15.3d.	Do the 1-Parameter Subgroups Cover G?	405
	15.4.	Subgro	ups and Subalgebras	407
		15.4a.	Left Invariant Fields Generate Right Translations	407
		15.4b.	Commutators of Matrices	408
		15.4c.	Right Invariant Fields	409
		15.4d.	Subgroups and Subalgebras	410
16	Vector	Bundle	es in Geometry and Physics	413
	16.1.	Vector	Bundles	413
		16.1a.	Motivation by Two Examples	413
		16.1b.	Vector Bundles	415
		16.1c.	Local Trivializations	417
		16.1d.	The Normal Bundle to a Submanifold	419
	16.2.	Poinca	ré's Theorem and the Euler Characteristic	421
		16.2a.	Poincaré's Theorem	422
		16.2b.	The Stiefel Vector Field and Euler's Theorem	426
	16.3.	Connec	ctions in a Vector Bundle	428
		16.3a.	Connection in a Vector Bundle	428
		16.3b.	Complex Vector Spaces	431
		16.3c.	The Structure Group of a Bundle	433
		16.3d.	Complex Line Bundles	433
	16.4.	The Ele	ectromagnetic Connection	435
		16.4a.	Lagrange's Equations without Electromagnetism	435
		16.4b.	The Modified Lagrangian and Hamiltonian	436
		16.4c.	Schrödinger's Equation in an Electromagnetic Field	439
		16.4d.	Global Potentials	443
		16.4e.	The Dirac Monopole	444
		16.4f.	The Aharonov–Bohm Effect	446
17	Fiber 1	Bundles	s, Gauss–Bonnet, and Topological Quantization	451
	17.1.	Fiber B	Bundles and Principal Bundles	451
		17.1a.	Fiber Bundles	451
		17.1b.	Principal Bundles and Frame Bundles	453
		17.1c.	Action of the Structure Group on a Principal Bundle	454
	17.2.	Coset S	Spaces	456
		17.2a.	Cosets	456
		17.2b.	Grassmann Manifolds	459
	17.3.	Chern's	s Proof of the Gauss–Bonnet–Poincaré Theorem	460
		17.3a.	A Connection in the Frame Bundle of a Surface	460
		17.3b.	The Gauss–Bonnet–Poincaré Theorem	462
		17.3c.	Gauss–Bonnet as an Index Theorem	465
	17.4.	Line Bu	undles, Topological Quantization, and Berry Phase	465
		17.4a.	A Generalization of Gauss–Bonnet	465
		17.4b.	Berry Phase	468
		17.4c.	Monopoles and the Hopf Bundle	473

18 Conne	ections a	and Associated Bundles	475	
18.1.	Forms	475		
	18.1a.	The Maurer–Cartan Form	475	
	18.1b.	g-Valued <i>p</i> -Forms on a Manifold	477	
	18.1c.	Connections in a Principal Bundle	479	
18.2.	Associ	ated Bundles and Connections	481	
	18.2a.	Associated Bundles	481	
	18.2b.	Connections in Associated Bundles	483	
	18.2c.	The Associated Ad Bundle	485	
18.3.	r-Form	a Sections of a Vector Bundle: Curvature	488	
	18.3a.	r-Form Sections of E	488	
	18.3b.	Curvature and the Ad Bundle	489	
19 The D)irac Eq	uation	491	
19.1.	The Gr	roups $SO(3)$ and $SU(2)$	491	
	19.1a.	The Rotation Group $SO(3)$ of \mathbb{R}^3	492	
	19.1b.	$SU(2)$: The Lie Algebra $\mathfrak{su}(2)$	493	
	19.1c.	SU(2) Is Topologically the 3-Sphere	495	
	19.1d.	$Ad: SU(2) \rightarrow SO(3)$ in More Detail	496	
19.2.	Hamilt	on, Clifford, and Dirac	497	
	19.2a.	Spinors and Rotations of \mathbb{R}^3	497	
	19.2b.	Hamilton on Composing Two Rotations	499	
	19.2c.	Clifford Algebras	500	
	19.2d.	The Dirac Program: The Square Root of the		
		d'Alembertian	502	
19.3.	The Di	rac Algebra	504	
	19.3a.	The Lorentz Group	504	
	19.3b.	The Dirac Algebra	509	
19.4.	The Di	The Dirac Operator ∂ in Minkowski Space		
	19.4a.	Dirac Spinors	511	
	19.4b.	The Dirac Operator	513	
19.5.	The Di	rac Operator in Curved Space–Time	515	
	19.5a.	The Spinor Bundle	515	
	19.5b.	The Spin Connection in SM	518	
20 Yang-	-Mills F	ields	523	
20.1.	Noethe	523		
	20.1a.	The Tensorial Nature of Lagrange's Equations	523	
	20.1b.	Boundary Conditions	526	
	20.1c.	Noether's Theorem for Internal Symmetries	527	
	20.1d.	Noether's Principle	528	
20.2.	Weyl's	Gauge Invariance Revisited	531	
	20.2a.	The Dirac Lagrangian	531	
	20.2b.	Weyl's Gauge Invariance Revisited	533	
	20.2c.	The Electromagnetic Lagrangian	534	
	20.2d.	Quantization of the A Field: Photons	536	

CONTENTS

XV

20.3.	The Ya	ng–Mills Nucleon	537		
	20.3a.	The Heisenberg Nucleon	537		
	20.3b.	The Yang–Mills Nucleon	538		
	20.3c.	A Remark on Terminology	540		
20.4.	Compa	ect Groups and Yang–Mills Action	541		
	20.4a.	The Unitary Group Is Compact	541		
	20.4b.	Averaging over a Compact Group	541		
	20.4c.	Compact Matrix Groups Are Subgroups of Unitary			
		Groups	542		
	20.4d.	Ad Invariant Scalar Products in the Lie Algebra of a			
		Compact Group	543		
	20.4e.	The Yang–Mills Action	544		
20.5.	The Ya	ng–Mills Equation	545		
	20.5a.	The Exterior Covariant Divergence ∇^*	545		
	20.5b.	The Yang–Mills Analogy with Electromagnetism	547		
	20.5c.	Further Remarks on the Yang–Mills Equations	548		
20.6.	Yang–N	Mills Instantons	550		
	20.6a.	Instantons	550		
	20.6b.	Chern's Proof Revisited	553		
	20.6c.	Instantons and the Vacuum	557		
21 Betti N	Number	rs and Covering Spaces	561		
21.1.	Bi-inva	ariant Forms on Compact Groups	561		
	21.1a.	Bi-invariant <i>p</i> -Forms	561		
	21.1b.	The Cartan <i>p</i> -Forms	562		
	21.1c.	Bi-invariant Riemannian Metrics	563		
	21.1d.	Harmonic Forms in the Bi-invariant Metric	564		
	21.1e.	Weyl and Cartan on the Betti Numbers of G	565		
21.2.	The Fu	indamental Group and Covering Spaces	567		
	21.2a.	Poincaré's Fundamental Group $\pi_1(M)$	567		
	21.2b.	The Concept of a Covering Space	569		
	21.2c.	The Universal Covering	570		
	21.2d.	The Orientable Covering	573		
	21.2e.	Lifting Paths	574		
	21.2f.	Subgroups of $\pi_1(M)$	575		
	21.2g.	The Universal Covering Group	575		
21.3.	The Th	neorem of S. B. Myers: A Problem Set	576		
21.4.	The Ge	eometry of a Lie Group	580		
	21.4a.	The Connection of a Bi-invariant Metric	580		
	21.4b.	The Flat Connections	581		
22 Chern Forms and Homotopy Groups583					
22.1.	Chern]	Forms and Winding Numbers	583		
	22.1a.	The Yang–Mills "Winding Number"	583		
	22.1b.	Winding Number in Terms of Field Strength	585		
	22.1c.	The Chern Forms for a $U(n)$ Bundle	587		

22.2.	Homote	opies and Extensions	591
	22.2a.	Homotopy	591
	22.2b.	Covering Homotopy	592
	22.2c.	Some Topology of $SU(n)$	594
22.3.	The Hig	gher Homotopy Groups $\pi_k(M)$	596
	22.3a.	$\pi_k(M)$	596
	22.3b.	Homotopy Groups of Spheres	597
	22.3c.	Exact Sequences of Groups	598
	22.3d.	The Homotopy Sequence of a Bundle	600
	22.3e.	The Relation between Homotopy and Homology	
		Groups	603
22.4.	Some C	Computations of Homotopy Groups	605
	22.4a.	Lifting Spheres from <i>M</i> into the Bundle <i>P</i>	605
	22.4b.	SU(n) Again	606
	22.4c.	The Hopf Map and Fibering	606
22.5.	Chern I	Forms as Obstructions	608
	22.5a.	The Chern Forms c_r for an $SU(n)$ Bundle Revisited	608
	22.5b.	c_2 as an "Obstruction Cocycle"	609
	22.5c.	The Meaning of the Integer $j(\Delta_4)$	612
	22.5d.	Chern's Integral	612
	22.5e.	Concluding Remarks	615
Appe	ndix A. I	Forms in Continuum Mechanics	617
A.a.	The Cla	ssical Cauchy Stress Tensor and Equations of Motion	617
A.b.	Stresses	in Terms of Exterior Forms	618
A.c.	Symmet	ry of Cauchy's Stress Tensor in \mathbb{R}^n	620
A.d.	The Piola–Kirchhoff Stress Tensors		
A.e.	Stored Energy of Deformation		
A.f.	Hamilton	n's Principle in Elasticity	626
A.g.	Some T	629	
A.h.	Concluc	ling Remarks	635
Anne	ndix B. H	Harmonic Chains and Kirchhoff's Circuit Laws	636
B.a.	Chain C	complexes	636
B.b.	Cochain	s and Cohomology	638
B.c.	Transpo	se and Adioint	639
B.d.	Laplacia	ans and Harmonic Cochains	641
B.e.	Kirchho	ff's Circuit Laws	643
Anno	ndiv C 🤇	Symmetries Quarks and Meson Masses	648
Ca	Flavore	d Quarks	0 40 648
C.h	Interacti	ions of Ouarks and Antiquarks	650
C.c.	The Lie	Algebra of $SU(3)$	652
C.d.	Pions. k	Kaons, and Etas	653
C.e.	A Reduc	ced Symmetry Group	656
C.f.	Meson N	Aasses	658

Appen	idix D. Representations and Hyperelastic Bodies	660			
D.a.	Hyperelastic Bodies				
D.b.	Isotropic Bodies				
D.c.	Application of Schur's Lemma	662			
D.d.	Frobenius–Schur Relations	664			
D.e.	The Symmetric Traceless 3×3 Matrices Are Irreducible	666			
Appen	dix E. Orbits and Morse–Bott Theory in Compact Lie Groups	670			
E.a.	The Topology of Conjugacy Orbits	670			
E.b.	Application of Bott's Extension of Morse Theory	673			
D		(70)			
References		6/9			
Index		683			

CHAPTER 1 Manifolds and Vector Fields

Better is the end of a thing than the beginning thereof.

Ecclesiastes 7:8

As students we learn differential and integral calculus in the context of euclidean space \mathbb{R}^n , but it is necessary to apply calculus to problems involving "curved" spaces. Geodesy and cartography, for example, are devoted to the study of the most familiar curved surface of all, the surface of planet Earth. In discussing maps of the Earth, latitude and longitude serve as "coordinates," allowing us to use calculus by considering functions on the Earth's surface (temperature, height above sea level, etc.) as being functions of latitude and longitude. The familiar Mercator's projection, with its stretching of the polar regions, vividly informs us that these coordinates are badly behaved at the poles: that is, that they are not defined everywhere; they are not "global." (We shall refer to such coordinates as being "local," even though they might cover a huge portion of the surface. Precise definitions will be given in Section 1.2.) Of course we may use two sets of "polar" projections to study the Arctic and Antarctic regions. With these three maps we can study the entire surface, provided we know how to relate the Mercator to the polar maps.

We shall soon define a "manifold" to be a space that, like the surface of the Earth, can be covered by a family of local coordinate systems. A manifold will turn out to be the most general space in which one can use differential and integral calculus with roughly the same facility as in euclidean space. It should be recalled, though, that calculus in \mathbb{R}^3 demands special care when curvilinear coordinates are required.

The most familiar manifold is *N*-dimensional euclidean space \mathbb{R}^N , that is, the space of ordered *N* tuples (x^1, \ldots, x^N) of real numbers. Before discussing manifolds in general we shall talk about the more familiar (and less abstract) concept of a submanifold of \mathbb{R}^N , generalizing the notions of curve and surface in \mathbb{R}^3 .

1.1. Submanifolds of Euclidean Space

What is the configuration space of a rigid body fixed at one point of \mathbb{R}^n ?

1.1a. Submanifolds of \mathbb{R}^N

Euclidean space, \mathbb{R}^N , is endowed with a global coordinate system (x^1, \ldots, x^N) and is the most important example of a manifold.

In our familiar \mathbb{R}^3 , with coordinates (x, y, z), a locus z = F(x, y) describes a (2-dimensional) surface, whereas a locus of the form y = G(x), z = H(x), describes a (1-dimensional) curve. We shall need to consider higher-dimensional versions of these important notions.

A subset $M = M^n \subset \mathbb{R}^{n+r}$ is said to be an *n*-dimensional **submanifold** of \mathbb{R}^{n+r} , if *locally* M can be described by giving r of the coordinates differentiably in terms of the *n* remaining ones. This means that given $p \in M$, a neighborhood of p on M can be described in *some* coordinate system $(x, y) = (x^1, \dots, x^n, y^1, \dots, y^r)$ of \mathbb{R}^{n+r} by r differentiable functions

$$y^{\alpha} = f^{\alpha}(x^1, \dots, x^n), \qquad \alpha = 1, \dots r$$

We abbreviate this by y = f(x), or even y = y(x). We say that x^1, \ldots, x^n are local (curvilinear) coordinates for *M* near *p*.

Examples:

(i) $y^1 = f(x^1, ..., x^n)$ describes an *n*-dimensional submanifold of \mathbb{R}^{n+1} .

Figure 1.1

In Figure 1.1 we have drawn a portion of the submanifold M. This M is the **graph** of a function $f : \mathbb{R}^n \to \mathbb{R}$, that is, $M = \{(\mathbf{x}, y) \in \mathbb{R}^{n+1} \mid y = f(\mathbf{x})\}$. When n = 1, M is a curve; while if n = 2, it is a surface.

(ii) The *unit sphere* $x^2 + y^2 + z^2 = 1$ in \mathbb{R}^3 . Points in the northern hemisphere can be described by $z = F(x, y) = (1 - x^2 - y^2)^{1/2}$ and this function is differentiable everywhere except at the equator $x^2 + y^2 = 1$. Thus *x* and *y* are local coordinates for the northern hemisphere except at the equator. For points on the equator one can solve for *x* or *y* in terms of the others. If we have solved for *x* then *y* and *z* are the two local coordinates. For points in the southern hemisphere one can use the negative square

root for z. The unit sphere in \mathbb{R}^3 is a 2-dimensional submanifold of \mathbb{R}^3 . We note that we have *not* been able to describe the *entire* sphere by expressing one of the coordinates, say z, in terms of the two remaining ones, z = F(x, y). We settle for local coordinates.

More generally, given *r* functions $F^{\alpha}(x_1, \ldots, x_n, y_1, \ldots, y_r)$ of n + r variables, we may consider the locus $M^n \subset \mathbb{R}^{n+r}$ defined by the equations

$$F^{\alpha}(x, y) = c^{\alpha}, \qquad (c^1, \dots, c^r) \text{ constants}$$

If the Jacobian determinant

$$\left[\frac{\partial(F^1,\ldots,F^r)}{\partial(y^1,\ldots,y^r)}\right](x_0,y_0)$$

at $(x_0, y_0) \in M$ of the locus is not 0, the **implicit function theorem** assures us that locally, near (x_0, y_0) , we may solve $F^{\alpha}(x, y) = c^{\alpha}, \alpha = 1, ..., r$, for the y's in terms of the x's

$$y^{\alpha} = f^{\alpha}(x^1, \dots, x^n)$$

We may say that "a portion of M^n near (x_0, y_0) is a submanifold of \mathbb{R}^{n+r} ." If the Jacobian $\neq 0$ *at all points of the locus*, then the entire M^n is a submanifold.

Recall that the Jacobian condition arises as follows. If $F^{\alpha}(x, y) = c^{\alpha}$ can be solved for the *y*'s differentiably in terms of the *x*'s, $y^{\beta} = y^{\beta}(x)$, then if, for fixed *i*, we differentiate the identity $F^{\alpha}(x, y(x)) = c^{\alpha}$ with respect to x^{i} , we get

$$\frac{\partial F^{\alpha}}{\partial x^{i}} + \sum_{\beta} \left[\frac{\partial F^{\alpha}}{\partial y^{\beta}} \right] \frac{\partial y^{\beta}}{\partial x^{i}} = 0$$

and

$$\frac{\partial y^{\beta}}{\partial x^{i}} = -\sum_{\alpha} \left(\left[\frac{\partial F}{\partial y} \right]^{-1} \right)^{\beta} \left[\frac{\partial F^{\alpha}}{\partial x^{i}} \right]$$

provided the subdeterminant $\partial(F^1, \ldots, F^r)/\partial(y^1, \ldots, y^r)$ is not zero. (Here $([\partial F/\partial y]^{-1})^{\beta_{\alpha}}$ is the $\beta \alpha$ entry of the inverse to the matrix $\partial F/\partial y$; we shall use the convention that for matrix indices, the index to the *left* always is the *row* index, whether it is up or down.) This *suggests* that if the indicated Jacobian is nonzero then we might indeed be able to solve for the y's in terms of the x's, and the implicit function theorem confirms this. The (nontrivial) *proof* of the implicit function theorem can be found in most books on real analysis.

Still more generally, suppose that we have *r* functions of n+r variables, $F^{\alpha}(x^1, \ldots, x^{n+r})$. Consider the locus $F^{\alpha}(x) = c^{\alpha}$. Suppose that at each point x_0 of the locus the Jacobian *matrix*

$$\left(\frac{\partial F^{\alpha}}{\partial x^{i}}\right)$$
 $\alpha = 1, \dots, r$ $i = 1, \dots, n + r$

has rank r. Then the equations $F^{\alpha} = c^{\alpha}$ define an *n*-dimensional submanifold of \mathbb{R}^{n+r} , since we may locally solve for r of the coordinates in terms of the remaining n.

In Figure 1.2, two surfaces F = 0 and G = 0 in \mathbb{R}^3 intersect to yield a curve M.

The simplest case is one function F of N variables (x^1, \ldots, x^N) . If at each point of the locus F = c there is always at least one partial derivative that does not vanish, then the Jacobian (row) matrix $[\partial F/\partial x^1, \partial F/\partial x^2, \ldots, \partial F/\partial x^N]$ has rank 1 and we may conclude that this locus is indeed an (N - 1)-dimensional submanifold of \mathbb{R}^N . This criterion is easily verified, for example, in the case of the 2-sphere $F(x, y, z) = x^2 + y^2 + z^2 = 1$ of Example (ii). The column version of this row matrix is called in calculus the gradient vector of F. In \mathbb{R}^3 this vector

$$\begin{bmatrix} \frac{\partial F}{\partial x} \\ \frac{\partial F}{\partial y} \\ \frac{\partial F}{\partial z} \end{bmatrix}$$

is orthogonal to the locus F = 0, and we may conclude, for example, that if this gradient vector has a nontrivial component in the z direction at a point of F = 0, then locally we can solve for z = z(x, y).

A submanifold of dimension (N-1) in \mathbb{R}^N , that is, of "codimension" 1, is called a hypersurface.

- (iii) The *x* axis of the *xy* plane \mathbb{R}^2 can be described (perversely) as the locus of the quadratic $F(x, y) := y^2 = 0$. Both partial derivatives vanish on the locus, the *x* axis, and our criteria would not allow us to say that the *x* axis is a 1-dimensional submanifold of \mathbb{R}^2 . Of course the *x* axis *is* a submanifold; we should have used the usual description G(x, y) := y = 0. Our Jacobian criteria are *sufficient* conditions, not necessary ones.
- (iv) The locus F(x, y) := xy = 0 in \mathbb{R}^2 , consisting of the union of the x and y axes, is not a 1-dimensional submanifold of \mathbb{R}^2 . It seems "clear" (and can be proved) that in a neighborhood of the intersection of the two lines we are not going to be able to describe the locus in the form of y = f(x) or x = g(y), where f, g, are differentiable functions. The best we can say is that this locus with the origin removed is a 1-dimensional submanifold.

1.1b. The Geometry of Jacobian Matrices: The "Differential"

The **tangent space** to \mathbb{R}^n at the point *x*, written here as \mathbb{R}^n_x , is by definition the vector space of all vectors in \mathbb{R}^n based at *x* (i.e., it is a copy of \mathbb{R}^n with origin shifted to *x*).

Let x^1, \ldots, x^n and y^1, \ldots, y^r be coordinates for \mathbb{R}^n and \mathbb{R}^r respectively. Let $F : \mathbb{R}^n \to \mathbb{R}^r$ be a **smooth** map. ("Smooth" ordinarily means infinitely differentiable. For our purposes, however, it will mean differentiable at least as many times as is necessary in the present context. For example, if F is once continuously differentiable, we may use the chain rule in the argument to follow.) In coordinates, F is described by giving r functions of n variables

$$y^{\alpha} = F^{\alpha}(x)$$
 $\alpha = 1, \dots, r$

or simply y = F(x). We will frequently use the more dangerous notation y = y(x). Let $y_0 = F(x_0)$; the Jacobian *matrix* $(\partial y^{\alpha} / \partial x^i)(x_0)$ has the following significance.

Let **v** be a tangent vector to \mathbb{R}^n at x_0 . Take *any* smooth curve x(t) such that $x(0) = x_0$

Let **v** be a tangent vector to \mathbb{R}^n at x_0 . Take *any* smooth curve x(t) such that $x(0) = x_0$ and $\dot{x}(0) := (dx/dt)(0) = \mathbf{v}$, for example, the straight line $x(t) = x_0 + t\mathbf{v}$. The image of this curve

$$y(t) = F(x(t))$$

has a tangent vector \mathbf{w} at y_0 given by the chain rule

$$w^{\alpha} = \dot{y}^{\alpha}(0) = \sum_{i=1}^{n} \left(\frac{\partial y^{\alpha}}{\partial x^{i}}\right)(x_{0})\dot{x}^{i}(0) = \sum_{i=1}^{n} \left(\frac{\partial y^{\alpha}}{\partial x^{i}}\right)(x_{0})v^{i}$$

The assignment $\mathbf{v} \mapsto \mathbf{w}$ is, from this expression, independent of the curve x(t) chosen, and defines a *linear transformation*, the **differential** of *F* at x_0

$$F_*: \mathbb{R}^n_{x_0} \to \mathbb{R}^r_{y_0} \qquad F_*(\mathbf{v}) = \mathbf{w}$$
(1.1)

whose matrix is simply the Jacobian matrix $(\partial y^{\alpha}/\partial x^i)(x_0)$. This interpretation of the Jacobian matrix, as a linear transformation sending tangents to curves into tangents to the image curves under *F*, can sometimes be used to replace the direct computation of matrices. This philosophy will be illustrated in Section 1.1d.

1.1c. The Main Theorem on Submanifolds of \mathbb{R}^N

The main theorem is a geometric interpretation of what we have discussed. Note that the statement "*F* has rank *r* at x_0 ," that is, $[\partial y^{\alpha}/\partial x^i](x_0)$ has rank *r*, is geometrically the statement that the differential

$$F_*: \mathbb{R}^n_{x_0} \to \mathbb{R}^r_{y_0=F(x_0)}$$

is **onto** or "surjective"; that is, given any vector \mathbf{w} at y_0 there is at least one vector \mathbf{v} at x_0 such that $F_*(\mathbf{v}) = \mathbf{w}$. We then have

Theorem (1.2): Let $F : \mathbb{R}^{r+n} \to \mathbb{R}^r$ and suppose that the locus

 $F^{-1}(y_0) := \{x \in \mathbb{R}^{r+n} \mid F(x) = y_0\}$

is not empty. Suppose further that for all $x_0 \in F^{-1}(y_0)$

$$F_*: \mathbb{R}^{n+r}_{x_0} \to \mathbb{R}^r_{y_0}$$

is onto. Then $F^{-1}(y_0)$ is an n-dimensional submanifold of \mathbb{R}^{n+r} .

Figure 1.4