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CHAPTER 1

Manifolds and Vector Fields

Better is the end of a thing than the beginning thereof.
Ecclesiastes 7:8

AS students we learn differential and integral calculus in the context of euclidean space
R

n , but it is necessary to apply calculus to problems involving “curved” spaces. Geodesy
and cartography, for example, are devoted to the study of the most familiar curved
surface of all, the surface of planet Earth. In discussing maps of the Earth, latitude and
longitude serve as “coordinates,” allowing us to use calculus by considering functions
on the Earth’s surface (temperature, height above sea level, etc.) as being functions of
latitude and longitude. The familiar Mercator’s projection, with its stretching of the
polar regions, vividly informs us that these coordinates are badly behaved at the poles:
that is, that they are not defined everywhere; they are not “global.” (We shall refer to
such coordinates as being “local,” even though they might cover a huge portion of the
surface. Precise definitions will be given in Section 1.2.) Of course we may use two
sets of “polar” projections to study the Arctic and Antarctic regions. With these three
maps we can study the entire surface, provided we know how to relate the Mercator to
the polar maps.

We shall soon define a “manifold” to be a space that, like the surface of the Earth, can
be covered by a family of local coordinate systems. A manifold will turn out to be the
most general space in which one can use differential and integral calculus with roughly
the same facility as in euclidean space. It should be recalled, though, that calculus in
R

3 demands special care when curvilinear coordinates are required.
The most familiar manifold is N -dimensional euclidean space R

N , that is, the space
of ordered N tuples (x1, . . . , x N ) of real numbers. Before discussing manifolds in
general we shall talk about the more familiar (and less abstract) concept of a submanifold
of R

N , generalizing the notions of curve and surface in R
3.

1.1. Submanifolds of Euclidean Space

What is the configuration space of a rigid body fixed at one point of R
n?

3
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4 M A N I F O L D S A N D V E C T O R F I E L D S

1.1a. Submanifolds of R
N

Euclidean space, R
N , is endowed with a global coordinate system (x1, . . . , x N ) and is

the most important example of a manifold.
In our familiar R

3, with coordinates (x, y, z), a locus z = F(x, y) describes a (2-
dimensional) surface, whereas a locus of the form y = G(x), z = H(x), describes a
(1-dimensional) curve. We shall need to consider higher-dimensional versions of these
important notions.

A subset M = Mn ⊂ R
n+r is said to be an n-dimensional submanifold of R

n+r ,
if locally M can be described by giving r of the coordinates differentiably in terms of
the n remaining ones. This means that given p ∈ M , a neighborhood of p on M can
be described in some coordinate system (x, y) = (x1, . . . , xn, y1, . . . , yr ) of R

n+r by
r differentiable functions

yα = f α(x1, . . . , xn), α = 1, . . . r

We abbreviate this by y = f (x), or even y = y(x). We say that x1, . . . , xn are local
(curvilinear) coordinates for M near p.

Examples:

(i) y1 = f (x1, . . . , xn) describes an n-dimensional submanifold of R
n+1.

xn

Mn

x  , . . .1

y1

Figure 1.1

In Figure 1.1 we have drawn a portion of the submanifold M . This M is the graph
of a function f : R

n → R, that is, M = {(x, y) ∈ R
n+1 | y = f (x)}. When n = 1,

M is a curve; while if n = 2, it is a surface.
(ii) The unit sphere x2 + y2 + z2 = 1 in R

3. Points in the northern hemisphere can be
described by z = F(x, y) = (1 − x2 − y2)1/2 and this function is differentiable
everywhere except at the equator x2 + y2 = 1. Thus x and y are local coordinates for
the northern hemisphere except at the equator. For points on the equator one can solve
for x or y in terms of the others. If we have solved for x then y and z are the two local
coordinates. For points in the southern hemisphere one can use the negative square
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root for z. The unit sphere in R
3 is a 2-dimensional submanifold of R

3. We note that we
have not been able to describe the entire sphere by expressing one of the coordinates,
say z, in terms of the two remaining ones, z = F(x, y). We settle for local coordinates.

More generally, given r functions Fα(x1, . . . , xn, y1, . . . , yr ) of n + r variables,
we may consider the locus Mn ⊂ R

n+r defined by the equations

Fα(x, y) = cα, (c1, . . . , cr ) constants

If the Jacobian determinant [
∂(F1, . . . , Fr )

∂(y1, . . . , yr )

]
(x0, y0)

at (x0, y0) ∈ M of the locus is not 0, the implicit function theorem assures us that
locally, near (x0, y0), we may solve Fα(x, y) = cα, α = 1, . . . , r , for the y’s in terms
of the x’s

yα = f α(x1, . . . , xn)

We may say that “a portion of Mn near (x0, y0) is a submanifold of R
n+r .” If the

Jacobian �= 0 at all points of the locus, then the entire Mn is a submanifold.
Recall that the Jacobian condition arises as follows. If Fα(x, y) = cα can be

solved for the y’s differentiably in terms of the x’s, yβ = yβ(x), then if, for fixed i ,
we differentiate the identity Fα(x, y(x)) = cα with respect to xi , we get

∂ Fα

∂xi
+
∑

β

[
∂ Fα

∂yβ

]
∂yβ

∂xi
= 0

and

∂yβ

∂xi
= −

∑
α

([
∂ F

∂y

]−1
)β

α

[
∂ Fα

∂xi

]

provided the subdeterminant ∂(F1, . . . , Fr )/∂(y1, . . . , yr ) is not zero. (Here
([∂ F/∂y]−1)βα is the βα entry of the inverse to the matrix ∂ F/∂y; we shall use
the convention that for matrix indices, the index to the left always is the row index,
whether it is up or down.) This suggests that if the indicated Jacobian is nonzero then
we might indeed be able to solve for the y’s in terms of the x’s, and the implicit func-
tion theorem confirms this. The (nontrivial) proof of the implicit function theorem
can be found in most books on real analysis.

Still more generally, suppose that we have r functions of n+r variables, Fα(x1, . . . ,

xn+r ). Consider the locus Fα(x) = cα . Suppose that at each point x0 of the locus the
Jacobian matrix (

∂ Fα

∂xi

)
α = 1, . . . , r i = 1, . . . , n + r

has rank r . Then the equations Fα = cα define an n-dimensional submanifold of R
n+r ,

since we may locally solve for r of the coordinates in terms of the remaining n.
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F(x, y, z) = 0

G(x, y, z) = 0

grad G

grad F

x

y

z

M 1

Figure 1.2

In Figure 1.2, two surfaces F = 0 and G = 0 in R
3 intersect to yield a curve M .

The simplest case is one function F of N variables (x1, . . . , x N ). If at each point
of the locus F = c there is always at least one partial derivative that does not
vanish, then the Jacobian (row) matrix [∂ F/∂x1, ∂ F/∂x2, . . . , ∂ F/∂x N ] has rank 1
and we may conclude that this locus is indeed an (N − 1)-dimensional submani-
fold of R

N . This criterion is easily verified, for example, in the case of the 2-sphere
F(x, y, z) = x2 + y2 + z2 = 1 of Example (ii). The column version of this row
matrix is called in calculus the gradient vector of F . In R

3 this vector


∂ F
∂x
∂ F
∂y
∂ F
∂z




is orthogonal to the locus F = 0, and we may conclude, for example, that if this
gradient vector has a nontrivial component in the z direction at a point of F = 0,
then locally we can solve for z = z(x, y).

A submanifold of dimension (N −1) in R
N , that is, of “codimension” 1, is called

a hypersurface.
(iii) The x axis of the xy plane R

2 can be described (perversely) as the locus of the quadratic
F(x, y) := y2 = 0. Both partial derivatives vanish on the locus, the x axis, and our
criteria would not allow us to say that the x axis is a 1-dimensional submanifold of
R

2. Of course the x axis is a submanifold; we should have used the usual description
G(x, y) := y = 0. Our Jacobian criteria are sufficient conditions, not necessary ones.

(iv) The locus F(x, y) := xy = 0 in R
2, consisting of the union of the x and y axes,

is not a 1-dimensional submanifold of R
2. It seems “clear” (and can be proved) that

in a neighborhood of the intersection of the two lines we are not going to be able to
describe the locus in the form of y = f (x) or x = g(y), where f , g, are differen-
tiable functions. The best we can say is that this locus with the origin removed is a
1-dimensional submanifold.
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1.1b. The Geometry of Jacobian Matrices: The “Differential”

The tangent space to R
n at the point x , written here as R

n
x , is by definition the vector

space of all vectors in R
n based at x (i.e., it is a copy of R

n with origin shifted to x).
Let x1, . . . , xn and y1, . . . , yr be coordinates for R

n and R
r respectively. Let F :

R
n → R

r be a smooth map. (“Smooth” ordinarily means infinitely differentiable. For
our purposes, however, it will mean differentiable at least as many times as is necessary
in the present context. For example, if F is once continuously differentiable, we may
use the chain rule in the argument to follow.) In coordinates, F is described by giving
r functions of n variables

yα = Fα(x) α = 1, . . . , r

or simply y = F(x). We will frequently use the more dangerous notation y = y(x).
Let y0 = F(x0); the Jacobian matrix (∂yα/∂xi )(x0) has the following significance.

x

x

n

n
R

n
R0

x( )tF= ( )y( )t

x1, . . .

F

0= =( )y

yr

y r

image of     under F

−1

wv = x(0)

x = x(t)

y1, . . .

vF∗

Figure 1.3

Let v be a tangent vector to R
n at x0. Take any smooth curve x(t) such that x(0) = x0

and ẋ(0) := (dx/dt)(0) = v, for example, the straight line x(t) = x0 + tv. The image
of this curve

y(t) = F(x(t))

has a tangent vector w at y0 given by the chain rule

wα = ẏα(0) =
n∑

i=1

(
∂yα

∂xi

)
(x0)ẋ i (0) =

n∑
i=1

(
∂yα

∂xi

)
(x0)v

i

The assignment v �→ w is, from this expression, independent of the curve x(t) chosen,
and defines a linear transformation, the differential of F at x0

F∗ : R
n
x0

→ R
r
y0

F∗(v) = w (1.1)
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whose matrix is simply the Jacobian matrix (∂yα/∂xi )(x0). This interpretation of the
Jacobian matrix, as a linear transformation sending tangents to curves into tangents
to the image curves under F, can sometimes be used to replace the direct computation
of matrices. This philosophy will be illustrated in Section 1.1d.

1.1c. The Main Theorem on Submanifolds of R
N

The main theorem is a geometric interpretation of what we have discussed. Note that
the statement “F has rank r at x0,” that is, [∂yα/∂xi ](x0) has rank r , is geometrically
the statement that the differential

F∗ : R
n
x0

→ R
r
y0=F(x0)

is onto or “surjective”; that is, given any vector w at y0 there is at least one vector v at
x0 such that F∗(v) = w. We then have

Theorem (1.2): Let F : R
r+n → R

r and suppose that the locus

F−1(y0) := {x ∈ R
r+n | F(x) = y0}

is not empty. Suppose further that for all x0 ∈ F−1(y0)

F∗ : R
n+r
x0

→ R
r
y0

is onto. Then F−1(y0) is an n-dimensional submanifold of R
n+r.

R2

R3

x2

x1

x3

y1

y2

F

v

w

F −1(y0

y0

x0

)

Figure 1.4


