# Statistical Models

This lively and engaging textbook explains the things you have to know in order to read empirical papers in the social and health sciences, as well as techniques you need to build statistical models of your own. The author, David A. Freedman, explains the basic ideas of association and regression, and takes you through the current models that link these ideas to causality.

The focus is on applications of linear models, including generalized least squares and two-stage least squares, with probits and logits for binary variables. The bootstrap is developed as a technique for estimating bias and computing standard errors. Careful attention is paid to the principles of statistical inference. There is background material on study design, bivariate regression, and matrix algebra. To develop technique, there are computer labs, with sample computer programs. The book is rich in exercises, most with answers.

Target audiences include undergraduates and beginning graduate students in statistics, as well as students and professionals in the social and health sciences. The discussion in the book is organized around published studies, as are many of the exercises. Relevant journal articles are reprinted at the back of the book.

Freedman makes a thorough appraisal of the statistical methods in these papers, and in a variety of other examples. He illustrates the principles of modeling, and the pitfalls. The book shows you how to think about the critical issues—including the connection (or lack of it) between the statistical models and the real phenomena.

Features of the book

- authoritative guide by a well-known author with wide experience in teaching, research, and consulting
- will be of interest to anyone who deals in applied statistics
- no-nonsense, direct style will appeal to both new and experienced users of statistics
- careful analysis of statistical issues that come up in substantive applications, mainly in the social and health sciences
- can be used as a text in a course, or read on its own
- developed over many years at Berkeley, thoroughly class-tested
- background material on regression and matrix algebra
- plenty of exercises
- extra material for instructors, including data sets and MATLAB code for lab projects (email to solutions@cambridge.org)

#### The author

David A. Freedman is Professor of Statistics at the University of California, Berkeley. He has also taught in Athens, Caracas, Jerusalem, Kuwait, London, Mexico City, and Stanford. He has written several previous books, including a widely used elementary text. He is one of the leading researchers in probability and statistics, with 150 papers in the professional literature.

He is a member of the American Academy of Arts and Sciences. In 2003, he received the John J. Carty Award for the Advancement of Science from the National Academy of Sciences, recognizing his "profound contributions to the theory and practice of statistics."

Freedman has consulted for the Carnegie Commission, the City of San Francisco, and the Federal Reserve, as well as several departments of the U.S. government. He has testified as an expert witness on statistics in law cases that involve employment discrimination, fair loan practices, duplicate signatures on petitions, railroad taxation, ecological inference, flight patterns of golf balls, price scanner errors, sampling techniques, and census adjustment.

#### Cover illustration

The ellipse on the cover shows the region in the plane where a bivariate normal probability density exceeds a threshold level. The correlation coefficient is 0.50. The means of x and y are equal. So are the standard deviations. The dashed line is both the major axis of the ellipse and the SD. The solid line gives the regression of y on x. The normal density (with suitable means and standard deviations) serves as a mathematical idealization of the Pearson-Lee data on heights, discussed in chapter 2. Normal densities are reviewed in chapter 3.

# Statistical Models: Theory and Practice David A. Freedman

University of California, Berkeley



> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

> > Cambridge University Press 40 West 20th Street, New York, NY 10011-4211, USA

www.cambridge.org Information on this title: www.cambridge.org/9780521854832

© David A. Freedman 2005

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2005

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication Data

Freedman, David, 1938-Statistical models : theory and practice / David A. Freedman. p. cm. Includes bibliographical references and index. ISBN-13: 978-0-521-85483-2 ISBN-10: 0-521-85483-0 1. Social sciences - Statistics - Methodology. 2. Medical statistics - Methodology. 3. Regression analysis. 4. Statistics - Methodology. I. Title. HA29.F678 2005 2005047097 300'.1'519536 - dc22 ISBN-13 978-0-521-85483-2 hardback ISBN-10 0-521-85483-0 hardback ISBN-13 978-0-521-67105-7 paperback ISBN-10 0-521-67105-1 paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.

# Table of Contents

## Preface ix

## 1 Observational Studies and Experiments

- 1.1 Introduction
- 1.2 The HIP trial 4
- 1.3 Snow on cholera 6
- 1.4 Yule on the causes of poverty 9 Exercise set A 13

1

1.5 End notes 14

## 2 The Regression Line

- 2.1 Introduction 18
- 2.2 The regression line 18
- 2.3 Hooke's law 22 Exercise set A 23
- 2.4 Complexities 23
- 2.5 Simple vs multiple regression 25 Exercise set B 26
- 2.6 End notes 28
- 3 Matrix Algebra
  - 3.1 Introduction 29
    - Exercise set A 30
  - 3.2 Determinants and inverses 31 Exercise set B 33
  - 3.3 Random vectors 35 Exercise set C 35
  - 3.4 Positive definite matrices 36 Exercise set D 37
  - 3.5 The normal distribution 38 Exercise set E 39
  - 3.6 If you want a book on matrix algebra 40

vi

Cambridge University Press 0521854830 - Statistical Models: Theory and Practice David A. Freedman Frontmatter More information

STATISTICAL MODELS

## 4 Multiple Regression

| 4.1 Introduction 41                                       |
|-----------------------------------------------------------|
| Exercise set A 44                                         |
| 4.2 Standard errors 45                                    |
| Things we don't need 48                                   |
| Exercise set B 49                                         |
| 4.3 Explained variance in multiple regression 50          |
| Association or causation? 52                              |
| 4.4 Generalized least squares 52                          |
| 4.5 Examples on GLS 55                                    |
| Exercise set C 56                                         |
| 4.6 What happens to OLS if the assumptions break down? 57 |
| 4.7 Normal theory 57                                      |
| Statistical significance 60                               |
| Exercise set D 60                                         |
| 4.8 The $F$ -test 61                                      |
| "The" <i>F</i> -test in applied work 63                   |
| Exercise set E 63                                         |
| 4.9 Data snooping 64                                      |
| Exercise set F 65                                         |
| 4.10 Discussion questions 65                              |
| 4.11 End notes 72                                         |
|                                                           |
| 5 Path Models                                             |
| 5.1 Stratification 75                                     |
| Exercise set A 80                                         |
| 5.2 Hooke's law revisited 81                              |
| Exercise set B 82                                         |
| 5.3 Political repression during the McCarthy era 82       |
| Exercise set C 84                                         |
| 5.4 Inferring causation by regression 85                  |
| Exercise set D 87                                         |
| 5.5 Response schedules for path diagrams 88               |
| Selection vs intervention 95                              |
| Structural equations and stable parameters 95             |
| Ambiguity in notation 96                                  |
| Exercise set E 96                                         |
| 5.6 Dummy variables 9/                                    |
| Types of variables 98                                     |

### TABLE OF CONTENTS

- 5.7 Discussion questions 99
- 5.8 End notes 106

#### 6 Maximum Likelihood

- 109 6.1 Introduction Exercise set A 113 6.2 Probit models 114 Why not regression? 117 The latent-variable formulation 117 Exercise set B 118 Identification vs estimation 119 What if the  $U_i$  are  $N(\mu, \sigma^2)$ ? 120 Exercise set C 120 6.3 Logit models 121 Exercise set D 122 6.4 The effect of Catholic schools 123 More on table 3 126 Latent variables 126 Response schedules 127 The second equation 128 Mechanics: bivariate probit 130 Why a model rather than a cross-tab? 132 Interactions 132 More on the second equation 133 Exercise set E 133 6.5 Discussion questions 135
- 6.6 End notes 142

#### 7 The Bootstrap

#### 7.1 Introduction 148

- Exercise set A 159 7.2 Bootstrapping a model for energy demand 160 Exercise set B 166
- 7.3 End notes 167

#### 8 Simultaneous Equations

- 8.1 Introduction 169
  - Exercise set A 174
- 8.2 Instrumental variables 174 Exercise set B 177

# CAMBRIDGE

viii

Cambridge University Press 0521854830 - Statistical Models: Theory and Practice David A. Freedman Frontmatter More information

STATISTICAL MODELS

| 8.3 Estimating the butter model $177$<br>Exercise set C $178$                           |
|-----------------------------------------------------------------------------------------|
| 8.4 What are the two stages? 178                                                        |
| 8.5 A social-science example: education and fertility 180<br>More on Rindfuss et al 184 |
| 8.6 Covariates 184                                                                      |
| 8.7 Linear probability models 185                                                       |
| The assumptions 186                                                                     |
| The questions 188                                                                       |
| Exercise set D 188                                                                      |
| 8.8 More on IVLS 189                                                                    |
| Some technical issues 189                                                               |
| Exercise set E 191                                                                      |
| Simulations to illustrate IVLS 191                                                      |
| Further reading on econometric technique 192                                            |
| 8.9 Issues in statistical modeling 192                                                  |
| 8.10 Critical literature 195                                                            |
| Response schedules 199                                                                  |
| 8.11 Evaluating the models in chapters 6–8 200                                          |
| 8.12 Summing up 200                                                                     |
| References 201                                                                          |
| Answers to Exercises 216                                                                |
| The Computer Labs 267                                                                   |
| Appendix: Sample MATLAB Code 283                                                        |
| Reprints                                                                                |
| Gibson on McCarthy 288                                                                  |
| Evans and Schwah on Catholic Schools 316                                                |
| Dia frazz et al en Education en d'Estilite 250                                          |
| Kindluss et al on Education and Fertility 550                                           |
| Schneider et al on Social Capital 375                                                   |
| Index 404                                                                               |

# Preface

This book is primarily intended for advanced undergraduates or beginning graduate students in statistics. It should also be of interest to many students and professionals in the social and health sciences. Although written as a textbook, it can be read on its own. The focus is on applications of linear models, including generalized least squares, two-stage least squares, probits and logits. The bootstrap is explained as a technique for estimating bias and computing standard errors.

The contents of the book can fairly be described as what you have to know in order to start reading empirical papers that use statistical models. The emphasis throughout is on the connection—or lack of connection—between the models and the real phenomena. Much of the discussion is organized around published studies; key papers are reprinted here for ease of reference. Some may find the tone of the discussion too skeptical. If you are among them, I would make an unusual request: suspend belief until you finish reading the book. (Suspension of disbelief is all too easily obtained, but that is a topic for another day.)

The first chapter contrasts observational studies with experiments, and introduces regression as a technique that may help to adjust for confounding in observational studies. There is a chapter that explains the regression line, and another chapter with a quick review of matrix algebra. (At Berkeley, half the statistics majors need these chapters.) The going would be much easier with students who knew such material. Another big plus would be a solid upper-division course introducing the basics of probability and statistics.

Technique is developed by practice. At Berkeley, we have lab sessions where students use the computer to analyze data. There is a baker's dozen of these labs at the back of the book, with outlines for several more, and there are sample computer programs. Data are available to instructors from the publisher, along with source files for the labs and computer code: send email to solutions@cambridge.org.

A textbook is only as good as its exercises, and there are plenty of exercises in the pages that follow. Some are mathematical and some are hypothetical, but many of them are based on actual studies. That kind of exercise says, here is a summary of the data and the analysis; here is a specific issue: where do you come down? Answers to most of the exercises are at

## CAMBRIDGE

Cambridge University Press 0521854830 - Statistical Models: Theory and Practice David A. Freedman Frontmatter More information

PREFACE

the back of the book. Beyond exercises and labs, students at Berkeley write papers during the semester. (The best are presented in class, with discussion.) Instructions for projects are also available from the publisher.

A text is defined in part by what it chooses to discuss, and in part by what it chooses to ignore; the topics of interest are not all to be covered in one book, no matter how thick. ANOVA would be natural to discuss, but ANOVA can be viewed—with only some distortion—as a special case of regression. (The ANOVA table for regression is covered in chapter 4, along with the F-test.)

Some discussion of proportional hazards would also be natural. However, logistic regression (chapter 6) is a more common technique in the biomedical literature. Furthermore, proportional-hazard models require a substantial investment in time on risk, survival curves, and hazard rates. All tradeoffs are debatable; otherwise, they wouldn't be tradeoffs. I can only plead the finitude of semesters—never mind quarters—and the necessity of examining the logic of the enterprise as well as the mechanics.

There is enough material in the book for 15–20 weeks of lectures and discussion at the undergraduate level, or 10–15 weeks at the graduate level. With undergraduates on the semester system, I cover chapters 1–6, and introduce simultaneity (sections 8.1–4). This usually takes 13 weeks. If things go quickly, I do the examples in chapter 8 and the bootstrap. During the last two weeks of the term, students present their projects. I often have a review period on the last day of class. On a quarter system with ten-week terms, I would skip the student presentations and chapters 7–8; the bivariate probit model in chapter 6 could also be dispensed with. For a graduate course, I supplement the material with additional case studies and discussion of technique.

#### Acknowledgements

I've taught graduate and undergraduate courses based on this material for many years at Berkeley, and on occasion at Stanford and Athens. I would like to thank the students in those courses for their help and support. I would also like to thank Dick Berk, Máire Ní Bhrolcháin, Taylor Boas, Derek Briggs, David Collier, Persi Diaconis, Thad Dunning, Mike Finkelstein, Paul Humphreys, Jon McAuliffe, Doug Rivers, Mike Roberts, David Tranah, Don Ylvisaker, and Peng Zhao, along with several anonymous reviewers, for many useful comments. Russ Lyons was incredibly helpful, and Roger Purves was a virtual coauthor.

> David A. Freedman Berkeley, California June 2005

X