Dynamics of Multibody Systems

Third Edition

Dynamics of Multibody Systems, Third Edition, introduces multibody dynamics, with an emphasis on flexible body dynamics. Many common mechanisms such as automobiles, space structures, robots, and micromachines have mechanical and structural systems that consist of interconnected rigid and deformable components. The dynamics of these large-scale, multibody systems are highly nonlinear, presenting complex problems that in most cases can only be solved with computer-based techniques. The book begins with a review of the basic ideas of kinematics and the dynamics of rigid and deformable bodies before moving on to more advanced topics and computer implementation. This revised third edition now includes important new developments relating to the problem of large deformations and numerical algorithms as applied to flexible multibody systems. The book's wealth of examples and practical applications will be useful to graduate students, researchers, and practicing engineers working on a wide variety of flexible multibody systems.

Ahmed A. Shabana is a Professor in the Department of Mechnical and Industrial Engineering at the University of Illinois, Chicago. Dr. Shabana received his Ph.D. in mechanical engineering from the University of Iowa. His active areas of research interest are in dynamics, vibration, and control of mechanical systems consisting of rigid and deformable interconnected bodies. He is also the author of three other works, *Theory of Vibration: An Introduction, Vibration of Discrete and Continuous Systems*, and *Computational Dynamics*.

Cambridge University Press 0521850118 - Dynamics of Multibody Systems, Third Edition Ahmed A. Shabana Frontmatter <u>More information</u>

DYNAMICS OF MULTIBODY SYSTEMS

Third Edition

Ahmed A. Shabana

University of Illinois at Chicago

© Cambridge University Press

To my father and to the memory of my mother

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press 40 West 20th Street, New York, NY 10011-4211, USA

www.cambridge.org Information on this title: www.cambridge.org/9780521850117

© Cambridge University Press 2005

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2005

Printed in the United States of America

A catalog record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication Data Shabana, Ahmed A., 1951– Dynamics of multibody systems / Ahmed A. Shabana. – 3rd ed. p. cm. Includes bibliographical references (p. 359–366) and index. ISBN 0-521-85011-8 1. Dynamics. 2. Kinematics. I. Title. QA845.S45 1998 531'. 11 – DC21

97-31088 CIP

ISBN-13 978-0-521-85011-7 hardback ISBN-10 0-521-85011-8 hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this book and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate. Cambridge University Press 0521850118 - Dynamics of Multibody Systems, Third Edition Ahmed A. Shabana Frontmatter <u>More information</u>

Contents

	Prefa	ice	ix
1	INTRODUCTION		1
	1.1	Multibody Systems	1
	1.2	Reference Frames	3
	1.3	Particle Mechanics	6
	1.4	Rigid Body Mechanics	11
	1.5	Deformable Bodies	15
	1.6	Constrained Motion	18
	1.7	Computer Formulation and Coordinate Selection	22
	1.8	Objectives and Scope of This Book	25
2	REFERENCE KINEMATICS		
	2.1	Rotation Matrix	29
	2.2	Properties of the Rotation Matrix	35
	2.3	Successive Rotations	39
	2.4	Velocity Equations	47
	2.5	Accelerations and Important Identities	55
	2.6	Rodriguez Parameters	59
	2.7	Euler Angles	63
	2.8	Direction Cosines	68
	2.9	The 4×4 Transformation Matrix	72
	2.10	Relationship between Different Orientation Coordinates	80
		Problems	82

vi		C	CONTENTS
3	ANA	LYTICAL TECHNIQUES	85
	3.1	Generalized Coordinates and Kinematic Constraints	86
	3.2	Degrees of Freedom and Generalized Coordinate Partitioning	94
	3.3	Virtual Work and Generalized Forces	102
	3.4	Lagrangian Dynamics	115
	3.5	Application to Rigid Body Dynamics	123
	3.6	Calculus of Variations	129
	3.7	Euler's Equation in the Case of Several Variables	135
	3.8	Equations of Motion of Rigid Body Systems	142
	3.9	Newton-Euler Equations	150
	3.10	Concluding Remarks	154
		Problems	156
4	MEC	HANICS OF DEFORMABLE BODIES	159
	4.1	Kinematics of Deformable Bodies	160
	4.2	Strain Components	164
	4.3	Physical Interpretation of Strains	168
	4.4	Rigid Body Motion	169
	4.5	Stress Components	172
	4.6	Equations of Equilibrium	175
	4.7	Constitutive Equations	178
	4.8	Virtual Work of the Elastic Forces	183
		Problems	186
5	FLO	ATING FRAME OF REFERENCE FORMULATION	188
	5.1	Kinematic Description	189
	5.2	Inertia of Deformable Bodies	200
	5.3	Generalized Forces	213
	5.4	Kinematic Constraints	219
	5.5	Equations of Motion	223
	5.6	Coupling between Reference and Elastic Displacements	228
	5.7	Application to a Multibody System	231
	5.8	Use of Independent Coordinates	241
	5.9	Dynamic Equations with Multipliers	244
	5.10	Generalized Coordinate Partitioning	248
	5.11	Organization of Multibody Computer Programs	251
	5.12	Numerical Algorithms	254
		Problems	263
6	FINITE-ELEMENT FORMULATION		267
	6.1	Element Shape Functions	268
	6.2	Reference Conditions	276

со	CONTENTS		vii
	6.3	Kinetic Energy	278
	6.4	Generalized Elastic Forces	287
	6.5	Characterization of Planar Elastic Systems	288
	6.6	Characterization of Spatial Elastic Systems	294
	6.7	Coordinate Reduction	300
	6.8	The Floating Frame of Reference and Large	
		Deformation Problem	304
		Problems	307
7	THE	LARGE DEFORMATION PROBLEM	309
	7.1	Background	310
	7.2	Absolute Nodal Coordinate Formulation	314
	7.3	Formulation of the Stiffness Matrix	318
	7.4	Equations of Motion	322
	7.5	Relationship to the Floating Frame of Reference Formulation	323
	7.6	Coordinate Transformation	325
	7.7	Consistent Mass Formulation	328
	7.8	The Velocity Transformation Matrix	331
	7.9	Lumped Mass Formulation	332
	7.10	Extension of the Method	335
	7.11	Comparison with Large Rotation Vector Formulation	339
		Problems	342
	APPENDIX: LINEAR ALGEBRA		345
	A.1	Matrix Algebra	345
	A.2	Eigenvalue Analysis	349
	A.3	Vector Spaces	350
	A.4	Chain Rule of Differentiation	353
	A.5	Principle of Mathematical Induction	354
		Problems	355
	REF	ERENCES	357
	INDI	EX	369

Preface

The methods for the nonlinear analysis of physical and mechanical systems developed for use on modern digital computers provide means for accurate analysis of largescale systems under dynamic loading conditions. These methods are based on the concept of replacing the actual system by an equivalent model made up from discrete bodies having known elastic and inertia properties. The actual systems, in fact, form multibody systems consisting of interconnected rigid and deformable bodies, each of which may undergo large translational and rotational displacements. Examples of physical and mechanical systems that can be modeled as multibody systems are machines, mechanisms, vehicles, robotic manipulators, and space structures. Clearly, these systems consist of a set of interconnected bodies which may be rigid or deformable. Furthermore, the bodies may undergo large relative translational and rotational displacements. The dynamic equations that govern the motion of these systems are highly nonlinear which in most cases cannot be solved analytically in a closed form. One must resort to the numerical solution of the resulting dynamic equations.

The aim of this text, which is based on lectures that I have given during the past several years, is to provide an introduction to the subject of multibody mechanics in a form suitable for senior undergraduate and graduate students. The initial notes for the text were developed for two first-year graduate courses introduced and offered at the University of Illinois at Chicago. These courses were developed to emphasize both the general methodology of the nonlinear dynamic analysis of multibody systems and its actual implementation on the high-speed digital computer. This was prompted by the necessity to deal with complex problems arising in modern engineering and science. In this text, an attempt has been made to provide the rational development of the methods from their foundations and develop the techniques in clearly understandable stages. By understanding the basis of each step, readers can apply the method to their own problems.

The material covered in this text comprises an introductory chapter on the subjects of kinematics and dynamics of rigid and deformable bodies. In this chapter some

Cambridge University Press 0521850118 - Dynamics of Multibody Systems, Third Edition Ahmed A. Shabana Frontmatter <u>More information</u>

X

PREFACE

background materials and a few fundamental ideas are presented. In Chapter 2, the kinematics of the body reference is discussed and the transformation matrices that define the orientation of this body reference are developed. Alternate forms of the transformation matrix are presented. The material presented in this chapter is essential for understanding the dynamic motion of both rigid and deformable bodies. Analytical techniques for deriving the system differential and algebraic equations of motion of a multibody system consisting of rigid bodies are discussed in Chapter 3. In Chapter 4, an introduction to the theory of elasticity is presented. The material covered in this chapter is essential for understanding the dynamics of deformable bodies that undergo large translational and rotational displacements. In Chapter 5, the equations of motion of deformable multibody systems in which the reference motion and elastic deformation are coupled are derived using classical approximation methods. In Chapters 6 and 7, two finite element formulations are presented. Both formulations lead to exact modeling of the rigid body inertia and lead to zero strains under an arbitrary rigid body motion. The first formulation discussed in Chapter 6, which is based on the concept of the intermediate element coordinate system, uses the definition of the coordinates used in the conventional finite element method. A conceptually different finite element formulation that can be used in the large deformation analysis of multibody systems is presented in Chapter 7. In this chapter, the absolute nodal coordinate formulation in which no infinitesimal or finite rotations are used as element coordinates is introduced.

I am grateful to many teachers, colleagues, and students who have contributed to my education in this field. I owe a particular debt of gratitude to Dr. R.A. Wehage and Dr. M.M. Nigm for their advice, encouragement, and assistance at various stages of my educational career. Their work in the areas of computational mechanics and vibration theory stimulated my early interest in the subject of nonlinear dynamics. Several chapters of this book have been read, corrected, and improved by many of my graduate students. I would like to acknowledge the collaboration with my students Drs. Om Agrawal, E. Mokhtar Bakr, Ipek Basdogan, Michael Brown, Bilin Chang, Che-Wei Chang, Koroosh Changizi, Da-Chih Chen, Jui-Sheng Chen, Jin-Hwan Choi, Hanaa El-Absy, Marian Gofron, Wei-Hsin Gau, Wei-Cheng Hsu, Kuo-Hsing Hwang, Yunn-Lin Hwang, Yehia Khulief, John Kremer, Haichiang Lee, Jalil Rismantab-Sany, Mohammad Sarwar, Marcello Berzeri, Marcello Campanelli, Andrew Christensen, Hussien Hussien, Refaat Yakoub, and Hiroyuki Sugiyama. Their work contributed significantly to the development of the material presented in this book. Special thanks are due to Ms. Denise Burt for the excellent job in typing most of the manuscript. Finally, I thank my family for their patience and encouragement during the time of preparation of this text.

Chicago, Illinois NOVEMBER 2004 Ahmed Shabana