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3.1 Introduction

Biomedical terminologies and ontologies are frequently described as enabling
resources in text mining systems [1–3]. These resources are used to support tasks
such as entity recognition (i.e., the identification of biomedical entities in text),
and relation extraction (i.e., the identification of relationships among biomedi-
cal entities). Although a significant part of current text mining efforts focuses on
the analysis of documents related to molecular biology, the use of lexical, termi-
nological, and ontological resources is mentioned in research systems developed
for the analysis of clinical narratives (e.g., MedSyndikate [4]), or the biological
literature (e.g., BioRAT [5], GeneScene [6], EMPathIE [7], and PASTA [7]).
Of note, some systems initially developed for extracting clinical information
later have been adapted to extract relations among biological entities (e.g.,
MedLEE [8], GENIES [9], and SemRep/SemGen [10]). Commercial systems
such as TeSSI, from Language & Computing (http://www.landcglobal.com/)
also make use of such resources.

Entity recognition often draws on lists of entity names collected in lexi-
cons, gazetteers, and, more generally, terminology resources. For example, lists
of disease names can be easily extracted from disease resources, such as the Inter-
national Classification of Diseases (ICD); from the disease component of gen-
eral resources, such as the Medical Subject Headings (MeSH); and from
specialized resources, such as the Online Multiple Congenital Anomaly/Mental
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Retardation (MCA/MR) Syndromes. In contrast, relation extraction may bene-
fit from the relationships represented among terms in terminologies (e.g., ‘Par-
kinson’s disease’ child of ‘Neurodegenerative diseases’ in MeSH), and in
ontologies [e.g., ‘Basal ganglia’ finding site of ‘Parkinson’s disease’ in the Sys-
tematized Nomenclature of Medicine Clinical Terms (SNOMED CT)].

Biomedical lexicons, such as the UMLS Specialist lexicon, collect lexical
items (i.e., words and multiword expressions) frequently observed in biomedical
text corpora, and record information about them, including parts of speech
(e.g., noun or adjective), inflectional variants (e.g., singular or plural), and spell-
ing variants (e.g., American versus British English). This information is useful
not only to NLP tools, such as part-of-speech taggers and parsers, but also to
entity recognition systems, since it can help identify variants of entity names in
text [11].

The purpose of biomedical terminology is to collect the names of entities
employed in the biomedical domain. Most biomedical terminologies record
synonymous terms (e.g., Parkinson’s disease and Paralysis agitans), and have some
kind of hierarchical organization, often treelike or graphlike [12]. Terminol-
ogy-driven approaches to text mining have been explored in [13].

In contrast, biomedical ontology aims to study entities (i.e., substances,
qualities, and processes) of biomedical significance, and the relations among
them. Examples of such entities include substances such as the mitral valve and
glucose, qualities such as the diameter of the left ventricle and the catalytic func-
tion of enzymes, and processes such as blood circulation and secreting hor-
mones. Fundamental relations in biomedical ontologies include not only is a
and part of, but also instance of, adjacent to, derives from, and so forth [14].

In practice, the distinction between lexicons, terminologies, and
ontologies is not always sharp. On the one hand, although ontologies mostly
focus on relations among entities, some of them also record the names by which
entities are referred. On the other hand, although terminologies essentially col-
lect the names of entities, their hierarchical organization also reflects relations
among such entities. Finally, the very names of these resources can be mislead-
ing. For example, despite its name, the GO defines itself as a controlled vocabu-
lary (i.e., a terminological resource), but like ontologies, its terms are linked by
relationships such as is a and part of. However, the definition and use of such
relations is not consistent throughout GO [15], as would be expected from
ontologies.

The objective of this chapter is to present some of the resources (lexicons,
terminologies, and ontologies) of interest for entity recognition and relation
extraction tasks. Providing an exhaustive list of these resources is beyond the
scope of this chapter. Many of these resources are highly specialized, and there-
fore would be of little interest to most readers. Instead, we have selected general,
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publicly available resources that have been shown to be useful for biomedical
text mining. This review is purposely limited to resources in English.

We start by presenting an extended example, illustrating biomedical terms
in two pieces of text. We then give a brief description of the major resources
available, with a particular emphasis on the UMLS [16]. Finally, we discuss
some issues related to biomedical terms and biomedical relations. The reader is
referred to Chapters 6 and 7 for a detailed presentation of the tasks of entity rec-
ognition and relation extraction.

3.2 Extended Example

In this example, we consider two short pieces of text related to the genetic dis-
ease neurofibromatosis 2. This is an autosomal dominant disease, characterized
by tumors called schwannomas that involve the acoustic nerve, as well as other
features [17]. The disorder is caused by mutations of the NF2 gene, resulting in
absence or inactivation of the protein product. The protein product of NF2 is
commonly called merlin (but also neurofibromin 2 and schwannomin), and
functions as a tumor suppressor. The first fragment of text (3.1) is extracted
from the abstract of an article [18]. The second is the definition of
neurofibromatosis 2 in the MeSH vocabulary (http://www.nlm.nih.gov/mesh/).

• (3.1) Neurofibromatosis type 2 (NF2) is often not recognized as a dis-
tinct entity from peripheral neurofibromatosis. NF2 is a predominantly
[intracranial condition] whose hallmark is [bilateral vestibular
schwannomas]. NF2 results from a mutation in the gene named merlin,
located on chromosome 22.

• (3.2) Neurofibromatosis type 2: An [autosomal dominant disorder]
characterized by a high incidence of [bilateral acoustic neuromas] as
well as schwannomas of other [cranial and peripheral nerves], and other
[benign intracranial tumors] including meningiomas, ependymomas,
spinal neurofibromas, and gliomas. The disease has been linked to
mutations of the NF2 gene on chromosome 22 (22q12) and usually
presents clinically in the first or second decade of life.

3.2.1 Entity Recognition

Many biomedical entities can be identified in these two fragments. Underlined
expressions correspond to terms present in the UMLS Metathesaurus. This is
the case, for example, of the disease neurofibromatosis 2 and the protein merlin.
Interestingly, vestibular schwannomas in (3.1) and acoustic neuromas in (3.2),
although lexically distinct, name the same tumor. While a lexicon is useful to
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identify these disease names, a terminology (or ontology) is required to identify
them as synonymous. These two terms are names for the same disease concept in
the UMLS Metathesaurus (C0027859). The list of UMLS concepts that can be
identified in the two text fragments is given in Table 3.1.

Many expressions extracted from the two text fragments can be mapped to
the UMLS Metathesaurus through a simple match (i.e., exact match or after
normalization). Except for merlin, which maps to both a protein and a bird, the
mapping is unambiguous. In contrast, expressions of (3.1) and (3.2) enclosed in
brackets also correspond to biomedical entities, but the name found in the text
cannot be mapped directly to a UMLS concept. Expressions, such as
intracranial condition in (3.1), are vague, compared to the corresponding con-
cept names in the UMLS (e.g., ‘central nervous system diseases’). Complex
phrases, such as cranial and peripheral nerves in (3.2), refer to two concepts (i.e.,
‘cranial nerves’ and ‘peripheral nerves’) present in the Metathesaurus. Con-
versely, some expressions in the text convey more precision than the correspond-
ing concepts found in biomedical terminologies [e.g., bilateral vestibular
schwannomas in (3.1) versus ‘vestibular schwannomas’ and benign intracranial
tumors in (3.2) versus ‘intracranial tumors’]. In these cases, while terminological
resources are useful for identifying entities in text, they may not be sufficient for
capturing all nuances present in the text. Term variation and management issues
are discussed extensively in Chapter 4.

3.2.2 Relation Extraction

Once entities have been identified in text fragments, the next step consists of
identifying the relationships among them, such as vestibular schwannomas mani-
festation of neurofibromatosis 2 and NF2 gene located on chromosome 22. Such
relations may be explicitly represented in biomedical ontologies. For example,
the relation ‘schwannomas’ associated morphology of ‘neurofibromatosis 2’ is
asserted in SNOMED CT. However, ontologies do not necessarily contain such
fine-grained assertions, but may rather represent higher-level facts such as ‘gene’
located on ‘chromosome’. A relation extraction system would first identify NF2
gene as a kind of gene and chromosome 22 as a kind of chromosome, before infer-
ring that a particular gene (NF2 gene) is located on a particular chromosome
(chromosome 22).

The use of ontologies to support relation extraction often requires the sys-
tem to identify in the text not only entities, but also potential relationships.
Clues for identifying relationships include lexical items (e.g., the preposition
‘on’ for the relationship located on), and syntactic structures (e.g., intracranial
tumors including meningiomas for meningiomas is a intracranial tumors), as well
as statistical and pattern-based clues (not presented here). Relations may span
several sentences, and their identification often requires advanced linguistic
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techniques, such as anaphora and coreference resolution. For example, from the
last sentence of (3.2), the relation disease associated with mutation can be
extracted. While accurate, this relation is incomplete in this context, because dis-
ease actually refers not to any disease, but to neurofibromatosis 2 (anaphoric rela-
tion). Similarly, mutations of the NF2 gene (not mutations in general) is the
entity associated with the disease. Therefore, the complete relation to be
extracted is neurofibromatosis 2 associated with mutations of the NF2 gene. The
potential relations extracted from the text then can be validated against the rela-
tions explicitly represented in the ontology, or inferred from it.

3.3 Lexical Resources

The resources presented under this category provide the lexical and lexico-syn-
tactic information needed for parsing text. The major resource for biomedical
text is the Specialist lexicon. Additionally, specialized resources can be useful for
analyzing subdomains of biomedicine (e.g., lists of gene names for molecular
biology corpora). Conversely, general resources such as WordNet also can help
analyze the literature written for less-specialized audiences (e.g., patients).

3.3.1 WordNet

WordNet is an electronic lexical database developed at Princeton University,
which serves as a resource for applications in natural language processing and
information retrieval [19]. The core structure in WordNet is a set of synonyms
(synset) that represents one underlying concept. For example, the synset repre-
senting ‘hemoglobin’ also contains the lexical entries ‘haemoglobin’ (British-
English spelling) and ‘Hb’ (abbreviation). A definition is provided for the
synset: “a hemoprotein composed of globin and heme that gives red blood cells
their characteristic color; function primarily to transport oxygen from the lungs
to the body tissues.” There are separate structures for each linguistic category
covered: nouns, verbs, adjectives, and adverbs. For example, the adjective ‘renal’
and the noun ‘kidney’, although similar in meaning, belong to two distinct
structures, and a specific relationship (pertainymy) relates the two forms. The
current version of WordNet (2.0) contains over 114,000 noun synsets. In addi-
tion to being a lexical resource, WordNet has some of the features of an ontol-
ogy. For example, each synset in the noun hierarchy belongs to at least one is a
tree (e.g., ‘hemoglobin’ is a ‘protein’), and may additionally belong to several
part of-like trees (‘hemoglobin’ substance of ‘red blood cell’). Because of its mod-
est coverage of the biomedical domain [20, 21], WordNet has been used only in
a limited number of projects in biomedicine [22], where resources such as the
UMLS usually play a more prominent role. WordNet is available free of charge
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from http://wordnet.princeton.edu/. Application programming interfaces (API)
have been developed for the major programming languages, making it relatively
easy for developers to integrate WordNet into their applications.

3.3.2 UMLS Specialist Lexicon

The Specialist lexicon is one of three knowledge sources developed by the NLM,
as part of the UMLS project. It provides the lexical information needed for pro-
cessing natural language in the biomedical domain [23]. The lexicon entry for
each word or multiword term records syntactic (part-of-speech, allowable
complementation patterns), morphological (base form, inflectional variants),
and orthographic (spelling variants) information. It is, in fact, a general English
lexicon that includes many biomedical terms. Lexical items are selected from a
variety of sources, including lexical items from MEDLINE/PubMed citation
records, the UMLS Metathesaurus, and a large set of lexical items from medical
and general English dictionaries. Contrary to WordNet, the Specialist lexicon
does not include any information about synonymy or semantic relations among
its entries. However, this information is present in the Metathesaurus, another
component of the UMLS (see Section 3.4.3). The record for ‘hemoglobin’ in
the Specialist lexicon, shown in Figure 3.1, indicates the base form, one spelling
variant, and two inflectional classes, since hemoglobin is used as both a mass
noun (e.g., in Hemoglobin concentration is reported as grams of hemoglobin per
deciliter of blood), and as a countable (e.g., in the study of hemoglobins, both nor-
mal and mutant). Additionally, the abbreviation ‘Hb’ and the acronym ‘Hgb’
are cross-referenced to ‘hemoglobin’. The Specialist lexicon is distributed as part
of the UMLS, and can be queried through application programming interfaces
for Java and XML. It is also available as an open source resource, as part of the
Specialist NLP tools (http://SPECIALIST.nlm.nih.gov).

3.3.3 Other Specialized Resources

While general resources such as WordNet and the Specialist lexicon provide a
good coverage of the general biomedical language, they (purposely) fail to cover
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{
base=hemoglobin (base form)

spelling_variant=haemoglobin

entry=E0031208 (identifier)

cat=noun (part of speech)

variants=uncount (no plural)

variants=reg (plural: hemoglobins, haemoglobins )
}

Figure 3.1 Representation of ‘hemoglobin’ in the Specialist lexicon.



in detail specialized subdomains, such as gene and protein names, or chemical
and drug names. Therefore, the syntactic analyzers and parsers relying on these
resources may give suboptimal results when analyzing specialized corpora (e.g.,
molecular biology abstracts). One approach to solving this problem is to use
machine learning techniques to identify the names of specialized entities. Alter-
natively, or in conjunction with these techniques, resources, such as lists of gene,
protein, chemical, and drug names, can be exploited [24]. In molecular biology,
for example, the Human Genome Organization (HUGO) has established,
through its Gene Nomenclature Committee (HGNC), a list of over 20,000
approved gene names and symbols, called Genew [25]. Recorded in this data-
base are the symbol ‘NF2’ and the name ‘neurofibromin 2 (bilateral acoustic
neuroma)’ for the gene merlin, whose mutation causes the disease
neurofibromatosis 2. More generally, lists of names for specialized entities can
be extracted from specialized resources. Examples of publicly available special-
ized resources for genes, proteins, chemical entities, and drugs are given in Table
3.2. Finally, acronyms and abbreviations harvested from the biomedical litera-
ture [26, 27] and collected in databases [28] also can benefit entity recognition
applications. This issue is discussed extensively in Chapter 6.

3.4 Terminological Resources

The purpose of terminology is to collect the names of entities employed in the
biomedical domain [29]. Terminologies typically provide lists of synonyms for
the entities in a given subdomain and for a given purpose. As such, they play an
important role in entity recognition. Additionally, most terminologies have
some kind of hierarchical organization that can be exploited for relation extrac-
tion purposes. Many terminologies consist of a tree, where nodes are terms, and
links represent parent-to-child or more-general-to-more-specific relationships.
Some terminologies allow multiple inheritance, and have the structure of a
directed acyclic graph. The Gene Ontology and MeSH provide examples of ter-
minological systems created to support different tasks. Because it integrates a
large number of terminologies, the UMLS Metathesaurus is the terminological
system most frequently used in the analysis of biomedical texts.

3.4.1 Gene Ontology

The Gene Ontology (GO) is a controlled vocabulary, developed by the Gene
Ontology Consortium, for the annotation of gene products in model organ-
isms. GO is organized in three separate hierarchies—for molecular functions
(6,933 terms), biological processes (9,053 terms), and cellular components
(1,414 terms), as of February 1, 2005 [30]. For example, annotations for the
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gene NF2 in the Gene Ontology Annotation (GOA) database
(http://www.ebi.ac.uk/GOA/) include the molecular function term
‘cytoskeletal protein binding’, the biological process term ‘negative regulation
of cell proliferation’, and the cellular component terms ‘plasma membrane’ and
‘cytoskeleton’. Each of the three hierarchies is organized in a directed acyclic
graph, in which the nodes are GO terms, and the edges represent the GO
relationships is a and part of. For example, as illustrated in Figure 3.2, the
relations of the cellular component ‘cytoskeleton’ to its parent terms
include ‘cytoskeleton’ is a ‘intracellular nonmembrane-bound organelle’ and
‘cytoskeleton’ part of ‘intracellular’. GO terms may have synonyms (e.g.,
synonyms for ‘plasma membrane’ include ‘cytoplasmic membrane’ and
‘plasmalemma’). Most terms have a textual definition (e.g., for ‘plasma
membrane’: “The membrane surrounding a cell that separates the cell from its
external environment. It consists of a phospholipid bilayer and associated
proteins.”).

Both the names and the relations comprised in the Gene Ontology can
benefit text mining applications. The names of molecular functions, biological
processes, and cellular components are frequently used in the biomedical litera-
ture [31]. For example, the biological process ‘activation of MAPK’ and the cel-
lular component ‘adherens junction’ can be identified in the title Erbin regulates
MAP kinase activation and MAP kinase-dependent interactions between merlin
and adherens junction protein complexes in Schwann cells . As illustrated in the
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Table 3.2
Examples of Publicly Available Specialized Resources for Genes, Proteins, Chemical Entities, and Drugs

Domain Resources URL

Genes
and proteins

Genew http://www.gene.ucl.ac.uk/nomenclature/

Entrez Gene
(formerly
LocusLink)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene

UniProt http://www.ebi.uniprot.org/index.shtml

Chemical
entities

PubChem http://pubchem.ncbi.nlm.nih.gov/

ChemIDplus http://chem.sis.nlm.nih.gov/chemidplus/chemidlite.jsp

ChEBI http://www.ebi.ac.uk/chebi/

Drugs RxNorm http://www.nlm.nih.gov/research/umls/rxnorm_main.html

National Drug
Code

http://www.fda.gov/cder/ndc/
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following text fragment (3.3), hierarchical relations can help resolve anaphora
and interpret associative relations.

• (3.3) The organization of the actin cytoskeleton in prefusion aligning
myoblasts is likely to be important for their shape and interaction. We
investigated actin filament organization and polarity by transmission
electron microscopy (TEM) in these cells.

The terms actin cytoskeleton and actin filament identified in the first two
sentences of (3.3) are present in GO. Moreover, a relation between them is
explicitly recorded in GO (‘actin filament’ part of ‘actin cytoskeleton’), which
helps link together the two sentences. However, many concepts and relations are
not represented in GO, or other biomedical terminologies. For example, a rela-
tion between myoblasts and these cells—namely, ‘myoblast’ is a ‘cell’—is needed
to resolve the anaphoric relation between the two terms in (3.3). Such a relation
cannot be found in GO, where the term myoblast is not even represented.

Finally, GO terms constitute an entry point to annotation databases,
providing a wealth of relations between gene products and the molecular func-
tions, biological processes, and cellular components with which they are associ-
ated (e.g., ‘NF2’ has biological process ‘negative regulation of cell proliferation’).
GO is available from http://geneontology.org/, and is distributed in various
formats, including XML and database formats. Perl and Java application pro-
gramming interfaces are also available. GO is one of the source vocabularies
included in the UMLS Metathesaurus. GO is a member of a family of con-
trolled vocabularies, called Open Biomedical Ontologies (OBO). These
resources can be useful in text mining applications as a source of specialized
vocabulary (e.g., for chemicals or experimental conditions). OBO resources are
available at http://obo.sourceforge.net.

3.4.2 Medical Subject Headings

The Medical Subject Headings (MeSH) thesaurus is a controlled vocabulary,
produced by the National Library of Medicine, and used for indexing, catalog-
ing, and searching for biomedical and health-related information and docu-
ments [32]. It consists of 22,995 descriptors (main headings), organized in 15
hierarchies. Additionally, a set of approximately 150,000 “supplementary con-
cept records” provides a finer-grained representation of biomedical entities,
including chemicals and proteins. A list of entry terms (synonyms or closely
related terms) is given for each descriptor. Entry terms for the disease
‘Neurofibromatosis 2’ include Neurofibromatosis Type II, Bilateral Acoustic
Neurofibromatosis, Bilateral Acoustic Schwannoma, and Familial Acoustic
Neuromas. A scope note often provides a definition of the descriptor. In the
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MeSH thesaurus, descriptors are related by parent/child relations; each
descriptor has at least one parent, and may have several. For example,
‘Neurofibromatoses’ and ‘Neuroma, Acoustic’ are the two parents of the
descriptor ‘Neurofibromatosis 2’. The arrangement of MeSH descriptors in
hierarchies is intended to serve the purpose of indexing and information
retrieval, and does not always follow strict classifications. In addition to hierar-
chical relations, cross references may link a descriptor to descriptors from other
hierarchies. For example, the disease ‘Neurofibromatosis 2’ is linked to the pro-
tein ‘Neurofibromin 2’ and to the gene ‘Genes, Neurofibromatosis 2’. The
MeSH thesaurus is used by the NLM for indexing articles from 4,600 biomedi-
cal journals for the MEDLINE/PubMed database. Like GO, MeSH can be used
in text mining applications, due to the many names and relations it provides. Its
scope is broader than that of GO, but its granularity is coarser. MeSH is avail-
able from http://www.nlm.nih.gov/mesh/ in various formats, including XML.
MeSH is one of the source vocabularies included in the UMLS Metathesaurus.

3.4.3 UMLS Metathesaurus

The UMLS Metathesaurus is one of three knowledge sources developed and dis-
tributed by the NLM, as part of the UMLS project [16]. Version 2005AA of the
Metathesaurus contains over 1 million biomedical concepts and 5 million con-
cept names, from more than 100 controlled vocabularies and classifications
(some in multiple languages) used in patient records, administrative health data,
bibliographic and full-text databases, and expert systems. The Metathesaurus
also records over 16 million relations among these concepts, either inherited
from the source vocabularies or specifically generated. While the Metathesaurus
preserves the names, meanings, hierarchical contexts, attributes, and interterm
relationships present in its source vocabularies, it also integrates existing termi-
nologies into a common semantic space. As in WordNet, synonymous names
are clustered together to form a concept. The Metathesaurus also assigns a
unique identifier to each concept, and establishes new relations between terms
from different source vocabularies, as appropriate. Each concept is also catego-
rized with at least one semantic type from the UMLS Semantic Network (see
Section 3.5.2), independent of its hierarchical position in the source vocabular-
ies. The scope of the Metathesaurus is determined by the combined scope of its
source vocabularies, including Gene Ontology and MeSH, disease vocabular-
ies (e.g., International Classification of Diseases), clinical vocabularies (e.g.,
SNOMED CT), nomenclatures of drugs and medical devices, as well as the
vocabularies of many subdomains of biomedicine (e.g., nursing, psychiatry, and
gastrointestinal endoscopy).

Examples of Metathesaurus concepts are given in Table 3.1. C0254123
identifies the protein ‘neurofibromin 2’, whose synonyms include merlin, NF2
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protein, and schwannomin. Its semantic types are ‘Amino Acid, Peptide, or Pro-
tein’ and ‘Biologically Active Substance’. The following source vocabularies con-
tributed names to this concept: MeSH, SNOMED CT, and the NCI Thesaurus.
Once integrated in the Metathesaurus, ‘neurofibromin 2’ has multiple parents
including ‘membrane proteins’ (from MeSH), ‘tumor suppressor proteins’ (from
both MeSH and SNOMED CT), and ‘signaling protein’ (from the NCI The-
saurus). Its only descendant is ‘merlin, Drosophila’ (from MeSH). Beside hierar-
chical relations, associative relations link the protein ‘neurofibromin 2’ to the
gene ‘neurofibromatosis 2 genes’ and to the disease ‘neurofibromatosis 2’. The
frequencies of co-occurrence of MeSH descriptors in MEDLINE/PubMed cita-
tions are also recorded in the Metathesaurus. For example, during the last 10
years, the descriptors ‘Neurofibromin 2’ and ‘Neurofibromatosis 2’ occurred
together 13 times as major descriptors. The descriptors ‘Membrane Proteins’ (8
times), ‘Phosphoproteins’ and ‘NF2 gene’ (7 times), and ‘Cell Transformation,
Neoplastic’ (5 times) frequently co-occur with ‘Neurofibromin 2’.

Section 3.2.1 illustrated how the Metathesaurus can be used in entity rec-
ognition and relation extraction tasks. Used in many biomedical entity recogni-
tion studies, the MetaMap (MMTx) program has been specially designed to
take advantage of the features of the UMLS Metathesaurus and Specialist lexi-
con [33]. MMTx is available from http://mmtx.nlm.nih.gov/. Besides text min-
ing, the Metathesaurus is used in a wide range of applications, including linking
between different clinical or biomedical vocabularies, information retrieval and
indexing, and biomedical language processing. The Metathesaurus is available
from http://umlsks.nlm.nih.gov/ (or on DVD) in relational database format.
Users must complete the License Agreement for the Use of UMLS
Metathesaurus. Java and XML application programming interfaces are available
for the Metathesaurus.

3.5 Ontological Resources

Biomedical ontology aims to study the kinds of entities (i.e., substances, quali-
ties, and processes) of biomedical significance. Unlike biomedical terminology,
biomedical ontology is not primarily concerned with names, but with the prin-
cipled definition of biological classes and their interrelations. In practice, since
most terminologies have some degree of organization, and many ontologies also
collect names for their entities, the distinction between ontological and termino-
logical resources is somewhat arbitrary. See Chapter 4 for further discussion of
this issue. Because they share many characteristics with ontologies, we will list
under this rubric two broad resources—SNOMED CT and the UMLS
Semantic Network. Other ontologies will be briefly discussed.
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3.5.1 SNOMED CT

The Systematized Nomenclature of Medicine (SNOMED) Clinical Terms
(SNOMED CT), developed by the College of American Pathologists, was
formed by the convergence of SNOMED RT and Clinical Terms Version 3
(formerly known as the Read Codes). SNOMED CT is the most comprehensive
biomedical terminology recently developed in native description logic formal-
ism.1 The version described here is dated January 31, 2004, and contains some
270,000 concepts, named by over 400,000 names. SNOMED CT consists of
18 independent hierarchies reflecting, in part, the organization of previous ver-
sions of SNOMED into “axes,” such as ‘Diseases’, ‘Drugs’, ‘Living organisms’,
‘Procedures’, and ‘Topography’. Each SNOMED CT concept is described by a
variable number of elements. For example, the concept ‘Neurofibromatosis,
type 2’ has a unique identifier (92503002), several names (Bilateral acoustic
neurofibromatosis, BANF - Bilateral acoustic neurofibromatosis, Neurofibromatosis,
type 2, and Neurofibromatosis type 2), and has multiple is a parents, including
‘Congenital anomaly of inner ear’, ‘Neoplasm of uncertain behavior of cranial
nerve’, and ‘Acoustic neuroma’. ‘Neurofibromatosis, type 2’ also participates in
a complex network of associative relations to other concepts. The relations
(called roles), shown in Table 3.3, indicate that the lesions encountered in
‘Neurofibromatosis, type 2’ include neurofibromatosis of the vestibulocochlear
nerve (Group 1) and neurilemoma of the vestibular nerve (Group 3).
SNOMED CT is available as part of the UMLS (from http://umlsks.
nlm.nih.gov/), at no charge for UMLS licensees in the United States. The struc-
ture of the UMLS Metathesaurus has been modified to accommodate the level
of detail provided by ontological resources like SNOMED CT. Because
SNOMED CT has become available through the UMLS only since 2004, the
number of studies reporting its uses is still limited.

3.5.2 UMLS Semantic Network

The UMLS Semantic Network is one of three knowledge sources developed and
distributed by the NLM, as part of the UMLS project. It was created in an effort
to provide a semantic framework for the UMLS and its constituent vocabularies
[34]. Unlike the Metathesaurus, the Semantic Network is a small structure,
composed of 135 high-level categories called semantic types. It is organized in
two single-inheritance hierarchies: one for ‘Entity’ and one for ‘Event’. In addi-
tion to is a, 53 kinds of relationships are defined in the Semantic Network,
which are used to represent over 6,700 relations—hierarchical and associa-
tive—among semantic types. Semantic types from the Semantic Network are
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linked to Metathesaurus concepts by the categorization link established by the
Metathesaurus editors. Each concept is categorized with at least one semantic
type from the Semantic Network, independently of its hierarchical position in
the source vocabularies. Fifteen collections of semantic types, called semantic
groups, have been defined in order to partition Metathesaurus concepts into a
smaller number of semantically consistent groups [35].

Semantic types for the Metathesaurus concepts listed in Table 3.1 are pre-
sented in Table 3.4, along with the corresponding semantic groups. For exam-
ple, the concept ‘Neurofibromatosis 2’ is categorized as ‘Neoplastic Process’, a
semantic type from the semantic group ‘Disorders’. In addition to ‘mutation,’
Metathesaurus concepts categorized with ‘Genetic Function’ include ‘alterna-
tive splicing’, ‘loss of heterozygosity’, and ‘ribonuclease activity’. Examples of
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Table 3.3
Some of the Roles Present in the Definition of ‘Neurofibromatosis, type 2’

Group Role Value

1 Associated morphology ‘Neurofibromatosis’

Finding site ‘Skin structure’

Finding site ‘Vestibulocochlear nerve structure’

3 Associated morphology ‘Neurilemoma’

Finding site ‘Vestibular nerve structure’

Table 3.4
Semantic Types and Semantic Groups for the Metathesaurus Concepts Listed in Table 3.1

ST Abbreviation ST Name Semantic Group

aapp Amino Acid, Peptide, or Protein Chemicals & Drugs

bacs Biologically Active Substance Chemicals & Drugs

bdsy Body System Anatomy

bpoc Body Part, Organ, or Organ
Component

Anatomy

celc Cell Component Anatomy

dsyn Disease or Syndrome Disorders

genf Genetic Function Physiology

gngm Gene or Genome Genes & Molecular Sequences

neop Neoplastic Process Disorders



relations among semantic types include ‘Body Part, Organ, or Organ Compo-
nent’ location of ‘Neoplastic Process;’ ‘Pharmacologic Substance’ treats ‘Neo-
plastic Process;’ and ‘Neoplastic Process’ manifestation of ‘Genetic Function.’ A
relationship between two semantic types indicates a possible link between the
concepts categorized with these semantic types. In natural language processing
and text mining applications, Semantic Network relations are typically used as
supporting evidence for the candidate predicates (i.e., <concept1, relationship,
concept2> structures) extracted from the text [36]. For example, in
schwannomas of cranial nerves, after identifying the concepts ‘neurilemmoma’
(from schwannoma) as a ‘Neoplastic Process’ and cranial nerves as a ‘Body Part,
Organ, or Organ Component,’ the preposition of can be interpreted as indicat-
ing the location of the neoplastic process to the body part. This candidate pred-
icate is supported by the Semantic Network relation ‘Body Part, Organ, or
Organ Component’ location of ‘Neoplastic Process.’ Many relation extraction
systems rely on correspondences established between semantic relations
and linguistic phenomena [37]. Semantic Network relations also can be
exploited in conjunction with relations among concepts in the Metathesaurus
[38]. The Semantic Network is distributed as part of the UMLS, and is
available from http://umlsks.nlm.nih.gov/. Like the other UMLS knowledge
sources, it can be queried through application programming interfaces for Java
and XML.

3.5.3 Other Ontological Resources

In addition to SNOMED CT and the UMLS Semantic Network, several onto-
logical resources can be used to support text mining. The Foundational Model
of Anatomy (FMA) (http://fma.biostr.washington.edu/) is a large reference
ontology of anatomy, developed at the University of Washington [39]. In addi-
tion to NLP applications [40], the FMA has been used in entity recognition
tasks [41], as well as relation extraction tasks [42]. Ontologies, such as
OpenGALEN (http://www.opengalen.org/), have been developed to support
terminological services [43], and may be less useful for text mining applications.
For example, unlike terminologies, OpenGALEN does not record lists of syn-
onyms for biomedical entities. For more information about biomedical
ontologies, we refer the interested reader to [44].

3.6 Issues Related to Entity Recognition

The biomedical domain has a long tradition of collecting and organizing terms,
as well as building classifications, dating back to the seventeenth century. The
dozens of terminological resources resulting from this effort now benefit entity
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recognition tasks. Moreover, UMLS has contributed to make existing terminol-
ogies both easier to use, by providing a common format and distribution mecha-
nism, and more useful, by identifying synonymy and other semantic relations
across them. As part of this effort, the NLM also developed the lexical resources
(lexicon and lexical programs) used to detect lexical similarity among biomedical
terms, and, more generally, to process biomedical text. This is the reason why
the UMLS is used in a large number of text mining systems in biomedicine.

The properties of biomedical terms have been studied. For example, [45,
46] found matches for 10% to 34% of the UMLS strings in MEDLINE/
PubMed (depending on the matching criteria used), and [45] developed a
model for identifying the UMLS terms useful in NLP applications. In the
domain of molecular biology, researchers have investigated the lexical properties
of the GO: 35% of GO terms have been found in the biomedical literature [31],
and 66% of GO terms are composed of other GO terms [47]. A model of
compositionality in GO has even been proposed [48]. These studies have con-
firmed the interest of using existing terminological resources in entity
recognition tasks.

However, there are some remaining challenges in biomedical entity recog-
nition, including the limited coverage of terminological resources and ambiguity
in biomedical names.

3.6.1 Limited Coverage

First, some subdomains remain only partially covered by existing resources.
One example is given by genes and proteins, and, more generally, chemical
entities. Names for such entities have proved difficult to exhaustively compile
in terminologies. Vocabularies extracted from specialized databases may com-
plement traditional terminologies. Moreover, while variant formation has been
studied and effectively modeled for clinical terms [49], normalization tech-
niques for the less regular names of entities employed in genomics have been
only recently researched [50]. For these reasons, entity recognition techniques
in this subdomain often include machine learning approaches, rather than the
rule-based approach traditionally employed in biomedical NLP. Many gene
name identification systems have been developed in the last 5 years [51–54].
Entity recognition systems in molecular biology texts may include algorithms
rather than (or in addition to) static resources [24]. However, the product of
some of these algorithms is made available to the research community by their
authors. For example, [55] shares the lexicon of over 1 million gene and protein
names extracted from the biomedical literature. Coverage issues have been
explored in clinical terminologies as well [56], and techniques have
been developed to extend the coverage of terminologies to specialized
subdomains [57], or from specific corpora [58]. More generally, relation
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extraction also may benefit from term extraction techniques resulting from
research in terminology [59].

3.6.2 Ambiguity

The second issue is the ambiguity of many names in biology. This phenome-
non is common in natural language, but poses specific challenges to biomedical
entity recognition. Polysemy (several meanings for the same name) is illustrated
by NF2, which simultaneously names the gene, the protein it produces, and the
disease resulting from its mutation. While polysemy usually does not pose
problems for domain experts, it makes it difficult for entity recognition systems
to select the appropriate meaning. The ambiguity resulting from polysemous
gene names has been quantified by Chen et al. [60]. These authors found
modest ambiguities with general English words (0.57%) and medical terms
(1.01%), but high ambiguity across species (14.20%). Ambiguity across species
may be difficult to resolve; for example, when only capitalization conventions
differentiate between gene names in various model organisms (e.g., NF2 in
Homo sapiens versus Nf2 in Mus musculus). Various disambiguation strate-
gies have been applied to biomedical language processing [61, 62]. However,
further research is needed to develop strategies adapted to the specificity of
molecular biology (e.g., ambiguity across species). Moreover, the limited
availability of annotated resources, such as the GENIA corpus [63], hinders the
development of unsupervised disambiguation techniques.

3.7 Issues Related to Relation Extraction

We round off our discussion of resources with a brief look at issues concerning
relation extraction, to further emphasize the core enabling role of resources with
respect to text mining.

3.7.1 Terminological Versus Ontological Relations

Not only do terminologies contain a large number of names for biomedical enti-
ties useful for entity recognition tasks, but they also represent a similarly consid-
erable number of relations. For example, over 16 million relations are recorded
in the UMLS Metathesaurus. While not all of them represent well-defined pred-
icates or assertions, as would be expected from ontologies, these relations are
essentially beneficial to applications such as relation extraction, especially when
used in combination with lexico-syntactic clues and additional ontological
relations.
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The relations found in the most recent terminologies—often developed
using knowledge representation techniques such as description logics—are gen-
erally better specified and principled, and therefore more directly useful for rela-
tion extraction. However, a careful inspection of these and other ontological
resources through the prism of formal ontology reveals some limitations, espe-
cially in terms of consistency [15, 64, 65]. Applying formal ontological princi-
ples to biomedical ontologies results in a clarification of the relations [66],
which, in turn, is expected to result in more consistent ontologies and more
accurate inferences.

Recent experiments in reengineering terminologies have shown both the
benefit and the cost (in terms of human resources) of such efforts [67, 68].
However, improving ontologies is likely to benefit relation extraction, as the
candidate assertions extracted from text must be checked, not necessarily against
relations explicitly represented in ontologies, but most often against inferred
relations.

3.7.2 Interactions Between Text Mining and Terminological Resources

This chapter deliberately looks at ontologies and other resources as enabling
resources for text mining, and relation extraction in particular. Conversely, it is
worth mentioning that the relations extracted from text corpora and other
knowledge sources (e.g., annotation databases) can help identify additional
ontological relations. For example, lexico-syntactic patterns have been used to
extract hypernymy relations from text corpora [69], and statistical methods have
helped identify associative relations among GO terms [70]. In other words, the
relations between text mining techniques and terminological resources are not
unilateral. There is a virtual cycle, in which applications and resources benefit
from one another. Studying this symbiotic relation is beyond the scope of this
chapter. Various existing resources can be combined in order to create new
resources. For example, semantic lexicons have been derived from lexicons,
terminologies, and text corpora [71, 72].

3.8 Conclusion

This chapter presents the various kinds of enabling resources used in biomedical
text mining applications. Lexicons support basic natural language processing
tasks, such as parsing. Along with terminologies, lexicons also provide lists of
names (including variants) for biological entities, thus supporting entity recog-
nition tasks. Finally, the relations represented in ontologies and terminologies
often serve as a reference for relation extraction algorithms.
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Because it integrates these three kinds of resources, the UMLS plays a cen-
tral role in biomedical text mining. Its three components (Specialist lexicon,
Metathesaurus, and Semantic Network) are illustrated in this chapter, showing
their use in entity recognition and relation extraction tasks. The role of other
resources, either more specialized or more general, is also discussed.

Despite the existence of these resources, there remain many challenges to
entity recognition and relation extraction in biology. Existing biomedical lexi-
cons and terminologies fail to provide adequate coverage of specialized
subdomains (e.g., genes and proteins for the various model organisms).
Approaches to normalizing the names of genomic entities and to resolving the
ambiguity introduced by some of them need to be further researched. Finally,
the development of large, consistent, principled sources of biomedical knowl-
edge—namely ontologies—will benefit not only text mining applications, but,
more generally, the wide range of tasks relying upon biomedical knowledge
(e.g., database interoperability, decision support, and so forth).
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