INTRODUCTORY ALGEBRAIC NUMBER THEORY

ŞABAN ALACA

Carleton University, Ottawa

KENNETH S. WILLIAMS Carleton University, Ottawa

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011-4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

© Şaban Alaca and Kenneth S. Williams 2004

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2004

Printed in the United States of America

Typeface Times 11/14 pt. System $\[\]$ TFX 2 $_{\mathcal{E}}$ [TB]

A catalog record for this book is available from the British Library.

Library of Congress Cataloging in Publication Data Alaca, Saban, 1964–

Introductory algebraic number theory / Saban Alaca, Kenneth S. Williams.

p. cm.

Includes bibliographical references and index.

ISBN 0-521-83250-0 (hb.) - ISBN 0-521-54011-9 (pbk.)

1. Algebraic number theory. I. Williams, Kenneth S. II. Title.

QA247.A43 2003

512'.74 - dc21 2003051243

ISBN 0 521 83250 0 hardback ISBN 0 521 54011 9 paperback

Contents

List	of Ta	bles	<i>page</i> xi
Notation			xiii
Intr	oduct	XV	
1	Integral Domains		1
	1.1	Integral Domains	1
	1.2	Irreducibles and Primes	5
	1.3	Ideals	8
	1.4	Principal Ideal Domains	10
	1.5	Maximal Ideals and Prime Ideals	16
	1.6	Sums and Products of Ideals	21
		Exercises	23
		Suggested Reading	25
		Biographies	25
2	Eucl	lidean Domains	27
	2.1	Euclidean Domains	27
	2.2	Examples of Euclidean Domains	30
	2.3	Examples of Domains That are Not Euclidean	37
	2.4	Almost Euclidean Domains	46
	2.5	Representing Primes by Binary Quadratic Forms	47
		Exercises	49
		Suggested Reading	51
		Biographies	53
3	Noetherian Domains		54
	3.1	Noetherian Domains	54
	3.2	Factorization Domains	57
	3.3	Unique Factorization Domains	60
	3.4	Modules	64
	3.5	Noetherian Modules	67
		Exercises	71

viii		Contents	
		Suggested Reading	72
		Biographies	73
4	Elen	nents Integral over a Domain	74
•	4.1	Elements Integral over a Domain	74
	4.2	Integral Closure	81
		Exercises	86
		Suggested Reading	87
		Biographies	87
5	Alge	ebraic Extensions of a Field	88
	5.1	Minimal Polynomial of an Element Algebraic over a Field	88
	5.2	Conjugates of α over K	90
	5.3	Conjugates of an Algebraic Integer	91
	5.4	Algebraic Integers in a Quadratic Field	94
	5.5	Simple Extensions	98
	5.6	Multiple Extensions	102
		Exercises	106
		Suggested Reading	108
		Biographies	108
6	Alge	ebraic Number Fields	109
	6.1	Algebraic Number Fields	109
	6.2	Conjugate Fields of an Algebraic Number Field	112
	6.3	The Field Polynomial of an Element of an Algebraic Number	
		Field	116
	6.4	The Discriminant of a Set of Elements in an Algebraic Number	
		Field	123
	6.5	Basis of an Ideal	129
	6.6	Prime Ideals in Rings of Integers	137
		Exercises	138
		Suggested Reading	140
		Biographies	140
7	Integ	gral Bases	141
	7.1	Integral Basis of an Algebraic Number Field	141
	7.2	Minimal Integers	160
	7.3	Some Integral Bases in Cubic Fields	170
	7.4	Index and Minimal Index of an Algebraic Number Field	178
	7.5	Integral Basis of a Cyclotomic Field	186
		Exercises	189
		Suggested Reading	191
0	D -	Biographies	193
8	Ded	ekind Domains	194
	8.1	Dedekind Domains	194
	8.2	Ideals in a Dedekind Domain	195

		Contents	ix
	8.3	Factorization into Prime Ideals	200
	8.4	Order of an Ideal with Respect to a Prime Ideal	206
	8.5	Generators of Ideals in a Dedekind Domain	215
		Exercises	216
		Suggested Reading	217
9	Nor	ms of Ideals	218
	9.1	Norm of an Integral Ideal	218
	9.2	Norm and Trace of an Element	222
	9.3	Norm of a Product of Ideals	228
	9.4	Norm of a Fractional Ideal	231
		Exercises	233
		Suggested Reading	234
		Biographies	235
10	Fact	oring Primes in a Number Field	236
	10.1	Norm of a Prime Ideal	236
	10.2	Factoring Primes in a Quadratic Field	241
	10.3	Factoring Primes in a Monogenic Number Field	249
	10.4	Some Factorizations in Cubic Fields	253
	10.5	Factoring Primes in an Arbitrary Number Field	257
	10.6	Factoring Primes in a Cyclotomic Field	260
		Exercises	261
		Suggested Reading	262
11	Unit	s in Real Quadratic Fields	264
	11.1	The Units of $\mathbb{Z} + \mathbb{Z}\sqrt{2}$	264
	11.2	The Equation $x^2 - my^2 = 1$	267
	11.3	Units of Norm 1	271
	11.4	Units of Norm -1	275
	11.5	The Fundamental Unit	278
	11.6	Calculating the Fundamental Unit	286
	11.7	The Equation $x^2 - my^2 = N$	294
		Exercises	297
		Suggested Reading	298
		Biographies	298
12	The	Ideal Class Group	299
	12.1	Ideal Class Group	299
	12.2	Minkowski's Translate Theorem	300
	12.3	Minkowski's Convex Body Theorem	305
	12.4	Minkowski's Linear Forms Theorem	306
	12.5	Finiteness of the Ideal Class Group	311
	12.6	Algorithm to Determine the Ideal Class Group	314
	12.7	Applications to Binary Quadratic Forms	331
		Exercises	341

х		Contents	
		Suggested Reading	343
		Biographies	343
13	Dirio	chlet's Unit Theorem	344
	13.1	Valuations of an Element of a Number Field	344
	13.2	Properties of Valuations	346
	13.3	Proof of Dirichlet's Unit Theorem	359
	13.4	Fundamental System of Units	361
	13.5	Roots of Unity	363
	13.6	Fundamental Units in Cubic Fields	369
	13.7	Regulator	378
		Exercises	382
		Suggested Reading	383
		Biographies	384
14	App	lications to Diophantine Equations	385
	14.1	Insolvability of $y^2 = x^3 + k$ Using Congruence Considerations	385
	14.2	Solving $y^2 = x^3 + k$ Using Algebraic Numbers	389
	14.3	The Diophantine Equation	
		y(y + 1) = x(x + 1)(x + 2)	401
		Exercises	410
		Suggested Reading	411
		Biographies	411
Lis	t of De	finitions	413
Lo	Location of Theorems		417
Lo	Location of Lemmas		421
Bik	Bibliography		423
Ind	Index		425

List of Tables

1	Integral bases and discriminants for $\mathbb{O}(\sqrt[3]{k})$ $2 < k < 20$	
1	k cubefree	nage 177
2	Integral bases and discriminants for $\mathbb{O}(\sqrt[4]{k})$	puge 177
2	$r^4 - k$ irreducible in $\mathbb{O}[r]$ 2 < k < 10	177
3	Integral bases and discriminants for $\mathbb{O}(\sqrt[4]{-k})$	177
J	$x^4 + k$ irreducible in $\mathbb{Q}[x]$, $1 \le k \le 10$.	178
4	Fundamental units of $\Omega_{\infty} = 2 \le m \le 40$ m squarefree	280
5	Nontrivial ideal class groups $H(\mathbb{O}(\sqrt{k})) = 30 < k < 0$	200
5	k squarefree	322
6	Nontrivial ideal class groups $H(\mathbb{O}(\sqrt{k}))$ $2 \le k \le 100$	522
0	k squarefree	323
7	Class numbers of imaginary quadratic fields $K = \mathbb{O}(\sqrt{k})$	525
'	-195 < k < 0 k squarefree	325
8	Class numbers of real quadratic fields $K = \mathbb{O}(\sqrt{k})$	525
0	Class numbers of real quadratic fields $\mathbf{K} = \mathcal{Q}(\nabla \mathbf{K})$, 0 < k < 107 k squarefree	326
0	$0 < k \le 197$; k squarenece.	320
9	Class numbers of $\mathbb{Q}(\sqrt{k})$, $2 \le k \le 101$, k cuberree.	529
10	Class numbers of cyclotomic fields K_m , $3 \le m \le 45$,	221
	$m \not\equiv 2 \pmod{4}$.	331
11	Fundamental unit (> 1) of $\mathbb{Q}(\sqrt[3]{m})$ for a few values	
	of $m \in \mathbb{N}$.	375
12	Fundamental unit of cubic fields K with exactly one real	
	embedding and $-268 \le d(K) < 0$.	376
13	Units of totally real cubic fields <i>K</i> with $0 < d(K) \le 1101$.	377
14	Fundamental unit of some pure quartic	
	fields $\mathbb{Q}(\sqrt[4]{-m})$.	378
15	Solutions $(x, y) \in \mathbb{Z}^2$ of $y^2 = x^3 + k$, $-20 \le k < 0$.	402
16	Solutions $(x, y) \in \mathbb{Z}^2$ of $y^2 = x^3 + k$, $0 < k \le 20$.	403

1 Integral Domains

1.1 Integral Domains

In this chapter we recall the definition and properties of an integral domain and develop the concept of divisibility in such a domain. We expect the reader to be familiar with the elementary properties of groups, rings, and fields and to have a basic knowledge of both elementary number theory and linear algebra over a field.

Definition 1.1.1 (Integral domain) *An integral domain is a commutative ring that has a multiplicative identity but no divisors of zero.*

An integral domain D is called a field if for each $a \in D$, $a \neq 0$, there exists $b \in D$ with ab = 1.

Example 1.1.1 The ring $\mathbb{Z} = \{0, \pm 1, \pm 2, \ldots\}$ of all integers is an integral domain.

Example 1.1.2 $\mathbb{Z} + \mathbb{Z}i = \{a + bi \mid a, b \in \mathbb{Z}\}$ is an integral domain. The elements of $\mathbb{Z} + \mathbb{Z}i$ are called Gaussian integers after the famous mathematician Carl Friedrich Gauss (1777–1855), who developed their properties in his work on biquadratic reciprocity. $\mathbb{Z} + \mathbb{Z}i$ is called the Gaussian domain.

Example 1.1.3 $\mathbb{Z} + \mathbb{Z}\omega = \{a + b\omega \mid a, b \in \mathbb{Z}\}$, where ω is the complex cube root of unity given by $\omega = (-1 + \sqrt{-3})/2$, is an integral domain. The elements of $\mathbb{Z} + \mathbb{Z}\omega$ are called Eisenstein integers after Gotthold Eisenstein (1823–1852), who introduced them in his pioneering work on the law of cubic reciprocity. $\mathbb{Z} + \mathbb{Z}\omega$ is called the Eisenstein domain. The other complex cube root of unity is $\omega^2 = \overline{\omega} = (-1 - \sqrt{-3})/2$. Note that $\mathbb{Z} + \mathbb{Z}\omega = \mathbb{Z} + \mathbb{Z}\omega^2$ as $\omega^2 = -\omega - 1$. Also $\mathbb{Z} + \mathbb{Z}\omega = \mathbb{Z} + \mathbb{Z} \left(\frac{1+\sqrt{-3}}{2}\right)$.

Example 1.1.4 $\mathbb{Z} + \mathbb{Z}\sqrt{m} = \{a + b\sqrt{m} \mid a, b \in \mathbb{Z}\}$, where *m* is a positive or negative integer that is not a perfect square, is an integral domain. As \sqrt{m} is a root of an irreducible quadratic polynomial (namely $x^2 - m$), $\mathbb{Z} + \mathbb{Z}\sqrt{m}$ is called

a quadratic domain. If k is a nonzero integer such that k^2 divides m then

$$\mathbb{Z} + \mathbb{Z}\sqrt{m} \subseteq \mathbb{Z} + \mathbb{Z}\sqrt{m/k^2}$$

with equality if and only if $k^2 = 1$. $\mathbb{Z} + \mathbb{Z}\sqrt{m}$ is called a subdomain of $\mathbb{Z} + \mathbb{Z}\sqrt{m/k^2}$. Thus $\mathbb{Z} + 2\mathbb{Z}i \subset \mathbb{Z} + \mathbb{Z}i$.

Example 1.1.5 $\mathbb{Z} + \mathbb{Z}\left(\frac{1+\sqrt{m}}{2}\right) = \{a + b\left(\frac{1+\sqrt{m}}{2}\right) \mid a, b \in \mathbb{Z}\}, where m is a non-square integer (positive or negative), which is congruent to 1 modulo 4, is an integral domain. We emphasize that <math>\mathbb{Z} + \mathbb{Z}\left(\frac{1+\sqrt{m}}{2}\right)$ is not an integral domain if $m \neq 1 \pmod{4}$ since in this case it is not closed under multiplication as

$$\left(\frac{1+\sqrt{m}}{2}\right)\left(1-\left(\frac{1+\sqrt{m}}{2}\right)\right) = \left(\frac{1+\sqrt{m}}{2}\right)\left(\frac{1-\sqrt{m}}{2}\right) = \frac{1-m}{4} \notin \mathbb{Z}.$$

Again as $\frac{1+\sqrt{m}}{2}$ is a root of an irreducible quadratic polynomial (namely $x^2 - x + (\frac{1-m}{4})$), $\mathbb{Z} + \mathbb{Z}(\frac{1+\sqrt{m}}{2})$ is called a quadratic domain. We note that the elements of the integral domain $\mathbb{Z} + \mathbb{Z}(\frac{1+\sqrt{m}}{2})$ can also be written in the form $\frac{1}{2}(x + y\sqrt{m})$, where x and y are integers such that $x \equiv y \pmod{2}$. Clearly the domain $\mathbb{Z} + \mathbb{Z}\sqrt{m}$ is a subdomain of $\mathbb{Z} + \mathbb{Z}(\frac{1+\sqrt{m}}{2})$.

Example 1.1.6 F[x] = the ring of polynomials in the indeterminate x with coefficients from a field F is an integral domain.

Example 1.1.7 $\mathbb{Z}[x] =$ the ring of polynomials in the indeterminate x with integral coefficients is an integral domain.

Example 1.1.8 D[x] = the ring of polynomials in the indeterminate x with coefficients from the integral domain D is an integral domain.

Example 1.1.9 F[x, y] = the ring of polynomials in the two indeterminates x and y with coefficients from the field F is an integral domain.

Example 1.1.10 $\mathbb{Z} + \mathbb{Z}\theta + \mathbb{Z}\theta^2 = \{a + b\theta + c\theta^2 \mid a, b, c \in \mathbb{Z}\}$, where θ is a root of the cubic equation $\theta^3 + \theta + 1 = 0$, is an integral domain. It is called a cubic domain.

Example 1.1.11 $D = \{a + b\sqrt{2} + ci + di\sqrt{2} \mid a, c \text{ integers}; b, d \text{ both integers} or both halves of odd integers} is an integral domain. Clearly <math>\mathbb{Z} + \mathbb{Z}\sqrt{2} \subset D$, $\mathbb{Z} + \mathbb{Z}i \subset D$, $\mathbb{Z} + \mathbb{Z}i\sqrt{2} \subset D$.

Properties of an Integral Domain

Let *D* be an integral domain. Then the following properties hold.

(a) The identity element of D is unique, for if 1 and 1' are two identities for D then

 $1 = 1 \cdot 1'$ (as 1' is an identity) = 1' (as 1 is an identity).

(b) D possesses a left cancellation law, that is,

$$ab = ac, a \neq 0 \Longrightarrow b = c (a, b, c \in D)$$

as well as a right cancellation law

 $ac = bc, \ c \neq 0 \Longrightarrow a = b \ (a, b, c \in D).$

(c) It is well known that if *D* is an integral domain then there exists a field *F*, called the field of quotients of *D* or the quotient field of *D*, that contains an isomorphic copy *D'* of *D* (see, for example, Fraleigh [3]). In practice it is usual to identify *D* with *D'* and so consider *D* as a subdomain of *F*. The quotient field of Z is the field of rational numbers Q. The quotient field of the polynomial domain *F*[X] (where *F* is a field) is the field *F*(X) of rational functions in *X*.

Definition 1.1.2 (Divisor) *Let a and b belong to the integral domain D. The element a is said to be a divisor of b (or a divides b) if there exists an element c of D such that b = ac. If a is a divisor of b, we write a | b. If a is not a divisor of b, we write* $a \nmid b$.

Example 1.1.12 $1 + i \mid 2 \text{ in } \mathbb{Z} + \mathbb{Z}i \text{ as } 2 = (1 + i)(1 - i).$

Example 1.1.13 $x^2 + x + 1 | x^4 + x^2 + 1$ in $\mathbb{Z}[x]$ as $x^4 + x^2 + 1 = (x^2 + x + 1)$ $(x^2 - x + 1)$.

Example 1.1.14 $(1 - \omega)^2 | 3$ in $\mathbb{Z} + \mathbb{Z}\omega$ as $3 = (1 - \omega)^2(1 + \omega)$ (see Example 1.1.3).

Example 1.1.15 $1 + \theta - \theta^2 | -\theta - 2\theta^2$ in $\mathbb{Z} + \mathbb{Z}\theta + \mathbb{Z}\theta^2$ as $-\theta - 2\theta^2 = (1 + \theta - \theta^2)(1 - \theta)$ (see Example 1.1.10).

Example 1.1.16 $2 + \sqrt{2} \nmid 3$ in $\mathbb{Z} + \mathbb{Z}\sqrt{2}$ as $3/(2 + \sqrt{2}) = 3 - \frac{3}{2}\sqrt{2} \notin \mathbb{Z} + \mathbb{Z}\sqrt{2}$.

Properties of Divisors

Let $a, b, c \in D$, where D is an integral domain. Then the following properties hold.

(a) $a \mid a$ (reflexive property).

(b) $a \mid b$ and $b \mid c$ implies $a \mid c$ (transitive property).

- (c) $a \mid b$ and $a \mid c$ implies $a \mid xb + yc$ for any $x \in D$ and $y \in D$.
- (d) $a \mid b$ implies $ac \mid bc$.
- (e) $ac \mid bc$ and $c \neq 0$ implies $a \mid b$.
- (f) 1 | *a*.
- (g) *a* | 0.
- (h) $0 \mid a \text{ implies } a = 0.$

Definition 1.1.3 (Unit) An element *a* of an integral domain *D* is called a unit if $a \mid 1$. The set of units of *D* is denoted by U(D).

Properties of Units

Let D be an integral domain. Then U(D) has the following properties.

(a) ±1 ∈ U(D).
(b) If a ∈ U(D) then -a ∈ U(D).
(c) If a ∈ U(D) then a⁻¹ ∈ U(D).
(d) If a ∈ U(D) and b ∈ U(D) then ab ∈ U(D).
(e) If a ∈ U(D) then ±aⁿ ∈ U(D) for any n ∈ Z.

Example 1.1.17

(a) *i* ∈ U(ℤ + ℤ*i*).
(b) ω ∈ U(ℤ + ℤω) (see Example 1.1.3).
(c) θ ∈ U(ℤ + ℤθ + ℤθ²) as 1 = θ(−1 − θ²) (see Example 1.1.10).

Theorem 1.1.1 If D is an integral domain then U(D) is an Abelian group with respect to multiplication.

Proof: U(D) is closed under multiplication by property (d). Multiplication of elements of U(D) is both associative and commutative as D is an integral domain. U(D) possesses an identity element, namely 1, by property (a). Every element of U(D) has a multiplicative inverse by property (c). Thus U(D) is an Abelian group with respect to multiplication.

Abelian groups are named after the Norwegian mathematician Niels Henrik Abel (1802–1829), who proved in 1824 the impossibility of solving the general quintic equation by means of radicals.

Example 1.1.18 Let \mathbb{Z}_n denote the cyclic group of order n.

(a) U(Z) = {±1} ≃ Z₂.
(b) U(Z + Zi) = {±1, ±i} ≃ Z₄.
(c) U(F[x]) = F*, where F is a field and F* = F \ {0}.

4

(d) U(ℤ[x]) = {±1} ≃ ℤ₂.
(e) ±(1 + √2)ⁿ ∈ U(ℤ + ℤ√2), for all n ∈ ℤ.
(f) ½√2 + ½i√2 ∈ U(D), where D is defined in Example 1.1.11.

We remark that in Chapter 11 we will show that

$$U(\mathbb{Z} + \mathbb{Z}\sqrt{2}) = \{ \pm (1 + \sqrt{2})^n \mid n \in \mathbb{Z} \} \simeq \mathbb{Z}_2 \times \mathbb{Z}.$$

Definition 1.1.4 (Associate) *Two nonzero elements a and b of an integral domain D are called associates, or said to be associated, if each divides the other. If a and b are associates we write a* \sim *b. If a and b are not associates we write a* γ *b.*

Properties of Associates

Let $a, b, c \in D^* = D \setminus \{0\}$, where D is an integral domain. The following properties hold.

(a) $a \sim a$ (reflexive property).

(b) $a \sim b$ implies $b \sim a$ (symmetric property).

(c) $a \sim b$ and $b \sim c$ imply $a \sim c$ (transitive property).

(d) $a \sim b$ if and only if $ab^{-1} \in U(D)$.

(e) $a \sim 1$ if and only if *a* is a unit.

Properties (a), (b), and (c) show that \sim is an equivalence relation. The equivalence class containing $a \in D$ is just the set $\{ua \mid u \in U(D)\}$.

Example 1.1.19

(a) In Z, a ~ b if and only if a = ±b, equivalently |a| = |b|.
(b) In Z + Zi we have 1 + i ~ 1 - i as ¹⁺ⁱ/_{1-i} = i ∈ U(Z + Zi).
(c) In Z + Z√2 we have 1 + 3√2 ~ 5 - 2√2 as ^{1+3√2}/_{5-2√2} = 1 + √2 ∈ U(Z + Z√2).

1.2 Irreducibles and Primes

In \mathbb{Z} an integer $p \geq 2$ that is divisible only by the positive integers 1 and p is called a prime. Each prime p in \mathbb{Z} has the following two properties:

$$p = ab \ (a, b \in \mathbb{Z}) \Longrightarrow a \text{ or } b = \pm 1$$
 (1.2.1)

and

$$p \mid ab \ (a, b \in \mathbb{Z}) \Longrightarrow p \mid a \text{ or } p \mid b. \tag{1.2.2}$$

Our next definition generalizes property (1.2.1) to an arbitrary integral domain D, and an element of D with this property is called an irreducible element.

Definition 1.2.1 (Irreducible) A nonzero, nonunit element a of an integral domain D is called an irreducible, or said to be irreducible, if a = bc, where $b, c \in D$, implies that either b or c is a unit.

A nonzero, nonunit element that is not irreducible is called reducible.

Example 1.2.1 2 *is irreducible in* \mathbb{Z} *, for if* 2 = ab *with* $a \in \mathbb{Z}$ *and* $b \in \mathbb{Z}$ *then either* $a = \pm 1$ *or* $b = \pm 1$.

Example 1.2.2 2 is irreducible in $\mathbb{Z} + \mathbb{Z}\sqrt{-5}$. To show this, suppose that $2 = (a + b\sqrt{-5})(c + d\sqrt{-5})$, where $a, b, c, d \in \mathbb{Z}$. Taking the modulus of both sides of this equation, we obtain $4 = (a^2 + 5b^2)(c^2 + 5d^2)$. Thus $a^2 + 5b^2$ is a positive integral divisor of 4 and so we must have

a

Example 1.2.5 2 *is not a prime in* $\mathbb{Z} + \mathbb{Z}\sqrt{-5}$ *as* $2 \mid (1 + \sqrt{-5})(1 - \sqrt{-5})$ *yet* $2 \nmid 1 \pm \sqrt{-5}$.

Example 1.2.6 1 + i is a prime in $\mathbb{Z} + \mathbb{Z}i$. To show this, suppose that 1 + i | (a + bi)(c + di), where $a, b, c, d \in \mathbb{Z}$. Then there exist integers x and y such that

$$(a+bi)(c+di) = (1+i)(x+yi).$$

Taking the modulus of both sides of this equation, we obtain

$$(a2 + b2)(c2 + d2) = 2(x2 + y2).$$

As 2 is a prime in \mathbb{Z} , we have either $2 | a^2 + b^2 \text{ or } 2 | c^2 + d^2$. Interchanging a + bi and c + di, if necessary, we may suppose that $2 | a^2 + b^2$. Thus, either a and b are both even or they are both odd. In the former case a = 2r and b = 2s, where r and s are integers, and

$$a + bi = 2(r + si) = (1 + i)((r + s) + (-r + s)i),$$

so that $1 + i \mid a + bi$. In the latter case a = 2r + 1 and b = 2s + 1, where r and s are integers, and

$$a + bi = 2(r + si) + (1 + i) = (1 + i)((r + s + 1) + (-r + s)i),$$

so that $1 + i \mid a + bi$. Hence 1 + i is a prime in $\mathbb{Z} + \mathbb{Z}i$.

Theorem 1.2.1 In any integral domain D a prime is irreducible.

Proof: Let $p \in D$ be a prime and suppose that p = ab, where $a, b \in D$. As $ab = p \cdot 1$ we have $p \mid ab$, and so, as p is prime, we deduce that $p \mid a$ or $p \mid b$, that is, $a/p \in D$ or $b/p \in D$. Since $1 = a/p \cdot b$ or $1 = a \cdot b/p$, either b is a unit or a is a unit of D. This proves that p is an irreducible element of D.

The converse of Theorem 1.2.1 is not true. From Examples 1.2.2 and 1.2.5 we see that the element 2 of $\mathbb{Z} + \mathbb{Z}\sqrt{-5}$ is irreducible but not prime.

Waterhouse [6] has recently given a class of integral domains in which every irreducible is prime.

Theorem 1.2.2 *Let D be an integral domain that has the following property:*

Every quadratic polynomial in D[X] having roots in the quotient field F of D is a product of linear polynomials in D[X]. (1.2.3)

Then every irreducible in D is prime.

Proof: Let *p* be an irreducible element in *D*, which is not prime. Then there exist $a, b \in D$ such that

$$p \mid ab, p \nmid a, p \nmid b.$$

Let $r = ab/p \in D$, and consider the quadratic polynomial

$$f(X) = pX^2 - (a+b)X + r.$$

In F[X] we have

$$f(X) = p(X - a/p)(X - b/p).$$

We show that f(X) does not factor into linear factors in D[X]. Indeed, suppose on the contrary that

$$f(X) = (cX + s)(dX + t)$$

in D[X]. Then cd = p. As p is irreducible, one of c and d is a unit of D, say d, so that $c = d^{-1}p$. Then the roots of f(X) in F are -ds/p and $-d^{-1}t$. But $-d^{-1}t \in D$, while neither a/p nor b/p is in D. Thus no such factorization can exist. Hence every irreducible in D is prime.

1.3 Ideals

Subsets of an integral domain D that are closed under addition and under multiplication by elements of D play a special role and are called ideals.

Definition 1.3.1 (Ideal) *An ideal I of an integral domain D is a nonempty subset of D having the following two properties:*

```
a \in I, \ b \in I \Longrightarrow a + b \in I,
a \in I, r \in D \Longrightarrow ra \in I.
```

It is clear that if $a_1, \ldots, a_n \in I$ then $r_1a_1 + \cdots + r_na_n \in I$ for all $r_1, \ldots, r_n \in D$. In particular if $a \in I$ and $b \in I$ then $-a \in I$ and $a - b \in I$. Also $0 \in I$, and if $1 \in I$ then I = D.

Example 1.3.1 If $\{a_1, \ldots, a_n\}$ is a set of elements of the integral domain D then the set of all finite linear combinations of a_1, \ldots, a_n

$$\left\{\sum_{i=1}^n r_i a_i \mid r_1, \dots, r_n \in D\right\}$$

is an ideal of D, which we denote by $\langle a_1, \ldots, a_n \rangle$.

Definition 1.3.2 (Principal ideal) An ideal I of an integral domain D is called a principal ideal if there exists an element $a \in I$ such that $I = \langle a \rangle$. The element a is called a generator of the ideal I.

If *D* is an integral domain the principal ideal $\langle a \rangle$ generated by $a \in D$ is just the set $\{ra \mid r \in D\}$. Clearly the principal ideal $\langle 0 \rangle$ is just the singleton set $\{0\}$ and the principal ideal $\langle 1 \rangle$ is *D*.

Definition 1.3.3 (Proper ideal) An ideal I of an integral domain D is called a proper ideal of D if $I \neq \langle 0 \rangle, \langle 1 \rangle$.

Thus a proper ideal of an integral domain D is an ideal I such that $\{0\} \subset I \subset D$.

Example 1.3.2 For any positive integer k, the set

$$k\mathbb{Z} = \{0, \pm k, \pm 2k, \ldots\}$$

is an ideal of \mathbb{Z} . Indeed $k\mathbb{Z}$ is a principal ideal generated by k (or -k) so that

$$k\mathbb{Z} = \langle k \rangle = \langle -k \rangle.$$

Example 1.3.3 Let

$$I = \{ f(x) \in \mathbb{Z}[x] \mid f(0) = 0 \}.$$

Then I is an ideal of $\mathbb{Z}[x]$ *and* $I = \langle x \rangle$ *.*

Example 1.3.4 Let

$$J = \{ f(x) \in \mathbb{Z}[x] \mid f(0) \equiv 0 \pmod{2} \}.$$

Then J is an ideal of $\mathbb{Z}[x]$ and $J = \langle 2, x \rangle$. However, J is not a principal ideal.

Theorem 1.3.1 Let D be an integral domain and let $a, b \in D^* = D \setminus \{0\}$. Then

$$\langle a \rangle = \langle b \rangle$$
 if and only if $a/b \in U(D)$.

Proof: If $a/b \in U(D)$ then a = bu for some $u \in U(D)$. Let $x \in \langle a \rangle$. Then x = ac for some $c \in D$. Hence x = buc with $uc \in D$. Thus $x \in \langle b \rangle$. We have shown that $\langle a \rangle \subseteq \langle b \rangle$. As $a/b \in U(D)$ and U(D) is a group with respect to multiplication, we have $b/a = (a/b)^{-1} \in U(D)$. Then, proceeding exactly as before with the roles of a and b interchanged, we find that $\langle b \rangle \subseteq \langle a \rangle$. Thus $\langle a \rangle = \langle b \rangle$.

Conversely, suppose that $\langle a \rangle = \langle b \rangle$. Then a = bc for some $c \in D$ and b = ad for some $d \in D$. Hence b = bcd. As $b \neq 0$ we deduce that 1 = cd so that $c \in U(D)$. Thus $a/b = c \in U(D)$.

1.4 Principal Ideal Domains

An important class of integral domains are those in which every ideal is principal.

Definition 1.4.1 (**Principal ideal domain**) *An integral domain D is called a principal ideal domain if every ideal in D is principal.*

We begin by giving an example of an integral domain in which every ideal is principal.

Theorem 1.4.1 \mathbb{Z} *is a principal ideal domain.*

Proof: Let *I* be an ideal of \mathbb{Z} . If $I = \{0\}$ then $I = \langle 0 \rangle$ is a principal ideal. Thus we may suppose that $I \neq \{0\}$. Hence *I* contains a nonzero element *a*. As both *a* and -a belong to *I*, we can suppose that a > 0. Hence *I* contains at least one positive integer, namely *a*.

We let *m* denote the least positive integer in *I*. Dividing *a* by *m*, we obtain integers *q* and *r* such that a = mq + r and $0 \le r < m$. As $a \in I$ and $m \in I$, we have $r = a - mq \in I$. This contradicts the minimality of *m* unless r = 0, in which case a = mq; that is, $I = \langle m \rangle = m\mathbb{Z}$.

Theorems 1.3.1 and 1.4.1 show that the set of ideals of \mathbb{Z} is $\{k\mathbb{Z} \mid k \in \{0, 1, 2, ...\}\}$. Moreover, if *I* is an ideal of \mathbb{Z} then it is generated by the least positive integer in *I*.

Other examples of principal ideal domains will be given in Chapter 2 where we discuss Euclidean domains.

Theorem 1.4.2 In a principal ideal domain, an irreducible element is prime.

Proof: Let *p* be an irreducible element in a principal ideal domain *D*. Suppose that $p \mid ab$, where $a, b \in D$. If $p \nmid a$ we let *I* be the ideal $\langle p, a \rangle$ of *D*. As *D* is a principal ideal domain there is an element $c \in D$ such that $I = \langle c \rangle$. As $a \in I$ and $p \in I$ we must have $c \mid a$ and $c \mid p$. If $c \sim p$ then $p \mid a$, contradicting $p \nmid a$. Hence $c \not\sim p$, and as *p* is irreducible, *c* must be a unit. Thus there exists $d \in D$ such that cd = 1. Now $c \in \langle a, p \rangle$ so there exist $x, y \in D$ such that c = xa + yp. Hence

$$1 = cd = dxa + dyp,$$

and so

$$b = (dx)ab + (bdy)p.$$

Since $p \mid ab$ this shows that $p \mid b$. Thus $p \mid a$ or $p \mid b$ and p is a prime element of D.

Theorem 1.4.3 In a principal ideal domain, an element is irreducible if and only *if it is prime.*

Proof: This follows immediately from Theorems 1.2.1 and 1.4.2.

Example 1.4.1 It was noted in Section 1.2 that 2 is irreducible but not prime in $\mathbb{Z} + \mathbb{Z}\sqrt{-5}$. Hence, by Theorem 1.4.3, the integral domain $\mathbb{Z} + \mathbb{Z}\sqrt{-5}$ is not a principal ideal domain. Indeed the ideal $\langle 2, 1 + \sqrt{-5} \rangle$ of $\mathbb{Z} + \mathbb{Z}\sqrt{-5}$ is not principal. This can be shown directly as follows. Suppose, on the contrary, that the ideal $\langle 2, 1 + \sqrt{-5} \rangle$ is principal, that is, $\langle 2, 1 + \sqrt{-5} \rangle =$ $\langle \alpha \rangle$ for some $\alpha \in \mathbb{Z} + \mathbb{Z}\sqrt{-5}$. Hence $2 \in \langle \alpha \rangle$ and $1 + \sqrt{-5} \in \langle \alpha \rangle$ so that $\alpha \mid 2$ and $\alpha \mid 1 + \sqrt{-5}$. From the first of these, as 2 is irreducible in $\mathbb{Z} + \mathbb{Z}\sqrt{-5}$, it must be the case that $\alpha \sim 1$ or $\alpha \sim 2$. If $\alpha \sim 2$ then $2 \mid 1 + \sqrt{-5}$, which is impossible as $\frac{1+\sqrt{-5}}{2} = \frac{1}{2} + \frac{1}{2}\sqrt{-5} \notin \mathbb{Z} + \mathbb{Z}\sqrt{-5}$. Hence $\alpha \sim 1$, and so $\langle 2, 1 + \sqrt{-5} \rangle = \langle 1 \rangle$. This shows that 1 is a linear combination of 2 and $1 + \sqrt{-5}$ with coefficients from $\mathbb{Z} + \mathbb{Z}\sqrt{-5}$; that is, there exist x, y, z, w \in \mathbb{Z} such that

$$1 = (x + y\sqrt{-5})2 + (z + w\sqrt{-5})(1 + \sqrt{-5}).$$

Equating coefficients of 1 and $\sqrt{-5}$, we obtain

$$1 = 2x + z - 5w, 0 = 2y + z + w.$$

The difference of these equations yields

$$1 = 2(x - y - 3w),$$

which is clearly impossible as the left-hand side is an odd integer and the righthand side is an even integer. Hence the ideal $\langle 2, 1 + \sqrt{-5} \rangle$ is not principal in $\mathbb{Z} + \mathbb{Z}\sqrt{-5}$.

Definition 1.4.2 (Greatest common divisor) *Let* D *be a principal ideal domain* and let $\{a_1, \ldots, a_n\}$ be a set of elements of D. Then the ideal $\langle a_1, \ldots, a_n \rangle$ is a principal ideal. A generator of this ideal is called a greatest common divisor of a_1, \ldots, a_n .

Let *D* be a principal ideal domain. If *a* and *b* are greatest common divisors of $a_1, \ldots, a_n \in D$ then

$$\langle a \rangle = \langle a_1, \dots, a_n \rangle = \langle b \rangle$$

so that, by Theorem 1.3.1, $a \sim b$. We write (a_1, \ldots, a_n) for a greatest common divisor of a_1, \ldots, a_n , understanding that (a_1, \ldots, a_n) is only defined up to a unit. We note that $(a_1, \ldots, a_n) = 0$ if $a_1 = \cdots = a_n = 0$. Also $(a_1, \ldots, a_n) = (a_1, \ldots, a_{n-1})$ if $a_n = 0$. Furthermore,

$$a \in \langle a \rangle = \langle a_1, \ldots, a_n \rangle,$$

so that

 $a = r_1 a_1 + \dots + r_n a_n$

for some $r_1, \ldots, r_n \in D$. Thus if $c \in D$ is such that

$$c \mid a_j \ (j = 1, 2, \dots, n)$$

then

 $c \mid a$.

Moreover, for $j = 1, 2, \ldots, n$, we have

$$a_i \in \langle a_1, \ldots, a_n \rangle = \langle a \rangle$$

so that

 $a \mid a_i$.

This justifies calling *a* "a greatest common divisor" of a_1, \ldots, a_n . The elements a_1, \ldots, a_n are called relatively prime if (a_1, \ldots, a_n) is a unit, that is,

$$\langle a_1,\ldots,a_n\rangle=\langle 1\rangle=D.$$

It is easy to verify that

$$(a_1,\ldots,a_{n-1},a_n)=((a_1,\ldots,a_{n-1}),a_n),$$

so that a greatest common divisor can be obtained by finding a succession of greatest common divisors of pairs of elements, that is, if $(a_1, a_2) = b$ then $(a_1, a_2, a_3) = (b, a_3)$, etc.

In the next theorem we use our knowledge of primes and irreducibles in a principal ideal domain to give conditions under which a prime p can be expressed as $u^2 - mv^2$ or $mv^2 - u^2$ for some integers u and v, where m is a given nonsquare integer.

Theorem 1.4.4 *Let m* be a nonsquare integer such that $\mathbb{Z} + \mathbb{Z}\sqrt{m}$ is a principal ideal domain. Let p be an odd prime for which the Legendre symbol

$$\left(\frac{m}{p}\right) = 1$$

Then there exist integers u and v such that

$$p = u^2 - mv^2$$
 if $m < 0$, or if $m > 0$,

and there are integers T, U such that $T^2 - mU^2 = -1$,

$$p = u^2 - mv^2 \text{ or } mv^2 - u^2, \text{ if } m > 0,$$

and there are no integers T, U with $T^2 - mU^2 = -1$.

12

Proof: As $\left(\frac{m}{p}\right) = 1$, there exists an integer x such that $x^2 \equiv m \pmod{p}$. Thus

$$p \mid (x + \sqrt{m})(x - \sqrt{m})$$

in $\mathbb{Z} + \mathbb{Z}\sqrt{m}$. Clearly $\frac{x \pm \sqrt{m}}{p} = \frac{x}{p} \pm \frac{1}{p}\sqrt{m} \notin \mathbb{Z} + \mathbb{Z}\sqrt{m}$ so that $p \nmid x \pm \sqrt{m}$.

Hence p is not a prime in $\mathbb{Z} + \mathbb{Z}\sqrt{m}$. As $\mathbb{Z} + \mathbb{Z}\sqrt{m}$ is a principal ideal domain, by Theorem 1.4.3 p is not irreducible in $\mathbb{Z} + \mathbb{Z}\sqrt{m}$. Hence

$$p = (u + v\sqrt{m})(w + t\sqrt{m})$$
 (1.4.1)

for some $u + v\sqrt{m} \in \mathbb{Z} + \mathbb{Z}\sqrt{m}$ and $w + t\sqrt{m} \in \mathbb{Z} + \mathbb{Z}\sqrt{m}$, where neither $u + v\sqrt{m}$ nor $w + t\sqrt{m}$ is a unit in $\mathbb{Z} + \mathbb{Z}\sqrt{m}$. From (1.4.1) we deduce that

$$p - (uw + tvm) = (ut + vw)\sqrt{m}.$$

As *m* is not a square, $\sqrt{m} \notin \mathbb{Q}$, so that

$$p - (uw + tvm) = ut + vm = 0.$$

Then

$$p^{2} = (uw + tvm)^{2} = (uw + tvm)^{2} - m(ut + vm)^{2}$$

so that

$$p^{2} = (u^{2} - mv^{2})(w^{2} - mt^{2}).$$
(1.4.2)

As $m, u, v, w, t \in \mathbb{Z}$ and $m \in \mathbb{N}$, we see that $u^2 - mv^2 \in \mathbb{Z}$ and $w^2 - mt^2 \in \mathbb{Z}$. Moreover, $u^2 - mv^2 \neq \pm 1$ and $w^2 - mt^2 \neq \pm 1$, as $u + v\sqrt{m}$ and $w + t\sqrt{m}$ are not units in $\mathbb{Z} + \mathbb{Z}\sqrt{m}$. Thus, from (1.4.2), as p is a prime, we must have $\pm p = u^2 - mv^2 = w^2 - mt^2$. Hence there are integers u and v such that $p = u^2 - mv^2$ or $-(u^2 - mv^2)$.

If m < 0 then $u^2 - mv^2 > 0$, so we must have $p = u^2 - mv^2$. If m > 0, $p = -(u^2 - mv^2)$, and there exist integers T and U such that $T^2 - mU^2 = -1$ then $p = u'^2 - mv'^2$ with u' = Tu + mUv, v' = Uu + Tv.

In Chapter 2 we give some nonsquare values of *m* for which $\mathbb{Z} + \mathbb{Z}\sqrt{m}$ is a principal ideal domain. Then, by Theorem 1.4.4, we know that for those odd primes *p* for which $\left(\frac{m}{p}\right) = 1$ there are integers *u* and *v* such that $p = u^2 - mv^2$ or $mv^2 - u^2$. For a general positive integer *m* it is a difficult problem to decide which primes are expressible as $u^2 - mv^2$ with $u, v \in \mathbb{Z}$. The reader interested in knowing more about this problem should consult Cox [2].

In the next theorem we give conditions that ensure that a prime p can be expressed in the form $u^2 + uv + \frac{1}{4}(1-m)v^2$ or $-(u^2 + uv + \frac{1}{4}(1-m)v^2)$