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1

Integral Domains

1.1 Integral Domains

In this chapter we recall the definition and properties of an integral domain and
develop the concept of divisibility in such a domain. We expect the reader to be
familiar with the elementary properties of groups, rings, and fields and to have a
basic knowledge of both elementary number theory and linear algebra over a field.

Definition 1.1.1 (Integral domain) An integral domain is a commutative ring that
has a multiplicative identity but no divisors of zero.

An integral domain D is called a field if for each a ∈ D, a �= 0, there exists
b ∈ D with ab = 1.

Example 1.1.1 The ring Z = {0, ±1, ±2, . . .} of all integers is an integral domain.

Example 1.1.2 Z + Zi = {a + bi | a, b ∈ Z} is an integral domain. The ele-
ments of Z + Zi are called Gaussian integers after the famous mathematician Carl
Friedrich Gauss (1777–1855), who developed their properties in his work on bi-
quadratic reciprocity. Z + Zi is called the Gaussian domain.

Example 1.1.3 Z + Zω = {a + bω | a, b ∈ Z}, where ω is the complex cube
root of unity given by ω = (−1 + √−3)/2, is an integral domain. The elements of
Z + Zω are called Eisenstein integers after Gotthold Eisenstein (1823–1852), who
introduced them in his pioneering work on the law of cubic reciprocity. Z + Zω is
called the Eisenstein domain. The other complex cube root of unity is ω2 = ω =
(−1 − √−3)/2. Note that Z + Zω = Z + Zω2 as ω2 = −ω − 1. Also Z + Zω =
Z + Z

(
1+√−3

2

)
.

Example 1.1.4 Z + Z
√

m = {a + b
√

m | a, b ∈ Z}, where m is a positive or
negative integer that is not a perfect square, is an integral domain. As

√
m is a

root of an irreducible quadratic polynomial (namely x2 − m), Z + Z
√

m is called

1
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a quadratic domain. If k is a nonzero integer such that k2 divides m then

Z + Z
√

m ⊆ Z + Z
√

m/k2

with equality if and only if k2 = 1. Z + Z
√

m is called a subdomain of Z +
Z

√
m/k2. Thus Z + 2Zi ⊂ Z + Zi .

Example 1.1.5 Z + Z
(

1+√
m

2

)
= {a + b

(
1+√

m
2

)
| a, b ∈ Z}, where m is a non-

square integer (positive or negative), which is congruent to 1 modulo 4, is an

integral domain. We emphasize that Z + Z
(

1+√
m

2

)
is not an integral domain if

m �≡ 1 (mod 4) since in this case it is not closed under multiplication as(
1 + √

m

2

) (
1 −

(
1 + √

m

2

))
=

(
1 + √

m

2

) (
1 − √

m

2

)
= 1 − m

4
�∈ Z.

Again as 1+√
m

2 is a root of an irreducible quadratic polynomial (namely x2 − x +(
1−m

4

)
), Z + Z

(
1+√

m
2

)
is called a quadratic domain. We note that the elements of

the integral domain Z + Z
(

1+√
m

2

)
can also be written in the form 1

2 (x + y
√

m),

where x and y are integers such that x ≡ y (mod 2). Clearly the domain Z + Z
√

m

is a subdomain of Z + Z
(

1+√
m

2

)
.

Example 1.1.6 F[x] = the ring of polynomials in the indeterminate x with coef-
ficients from a field F is an integral domain.

Example 1.1.7 Z[x] = the ring of polynomials in the indeterminate x with integral
coefficients is an integral domain.

Example 1.1.8 D[x] = the ring of polynomials in the indeterminate x with coef-
ficients from the integral domain D is an integral domain.

Example 1.1.9 F[x, y] = the ring of polynomials in the two indeterminates x and
y with coefficients from the field F is an integral domain.

Example 1.1.10 Z + Zθ + Zθ2 = {a + bθ + cθ2 | a, b, c ∈ Z}, where θ is a root
of the cubic equation θ3 + θ + 1 = 0, is an integral domain. It is called a cubic
domain.

Example 1.1.11 D = {a + b
√

2 + ci + di
√

2 | a, c integers; b, d both integers
or both halves of odd integers} is an integral domain. Clearly Z + Z

√
2 ⊂ D, Z +

Zi ⊂ D, Z + Zi
√

2 ⊂ D.
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Properties of an Integral Domain

Let D be an integral domain. Then the following properties hold.

(a) The identity element of D is unique, for if 1 and 1′ are two identities for D then

1 = 1 · 1′ (as 1′ is an identity) = 1′ (as 1 is an identity).

(b) D possesses a left cancellation law, that is,

ab = ac, a �= 0 =⇒ b = c (a, b, c ∈ D)

as well as a right cancellation law

ac = bc, c �= 0 =⇒ a = b (a, b, c ∈ D).

(c) It is well known that if D is an integral domain then there exists a field F , called the
field of quotients of D or the quotient field of D, that contains an isomorphic copy D′

of D (see, for example, Fraleigh [3]). In practice it is usual to identify D with D′ and so
consider D as a subdomain of F . The quotient field of Z is the field of rational numbers
Q. The quotient field of the polynomial domain F[X ] (where F is a field) is the field
F(X ) of rational functions in X .

Definition 1.1.2 (Divisor) Let a and b belong to the integral domain D. The element
a is said to be a divisor of b (or a divides b) if there exists an element c of D such
that b = ac. If a is a divisor of b, we write a | b. If a is not a divisor of b, we write
a � b.

Example 1.1.12 1 + i | 2 in Z + Zi as 2 = (1 + i)(1 − i).

Example 1.1.13 x2 + x + 1 | x4 + x2 + 1 in Z[x] as x4 + x2 + 1 = (x2 + x + 1)
(x2 − x + 1).

Example 1.1.14 (1 − ω)2 | 3 in Z + Zω as 3 = (1 − ω)2(1 + ω) (see Example
1.1.3).

Example 1.1.15 1 + θ − θ2 | − θ − 2θ2 in Z + Zθ + Zθ2 as −θ − 2θ2 = (1 +
θ − θ2)(1 − θ ) (see Example 1.1.10).

Example 1.1.16 2 + √
2 � 3 in Z + Z

√
2 as 3/(2 + √

2) = 3 − 3
2

√
2 �∈ Z + Z

√
2.

Properties of Divisors

Let a, b, c ∈ D, where D is an integral domain. Then the following properties hold.

(a) a | a (reflexive property).
(b) a | b and b | c implies a | c (transitive property).
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(c) a | b and a | c implies a | xb + yc for any x ∈ D and y ∈ D.
(d) a | b implies ac | bc.
(e) ac | bc and c �= 0 implies a | b.
(f) 1 | a.
(g) a | 0.
(h) 0 | a implies a = 0.

Definition 1.1.3 (Unit) An element a of an integral domain D is called a unit if
a | 1. The set of units of D is denoted by U (D).

Properties of Units

Let D be an integral domain. Then U (D) has the following properties.

(a) ±1 ∈ U (D).
(b) If a ∈ U (D) then −a ∈ U (D).
(c) If a ∈ U (D) then a−1 ∈ U (D).
(d) If a ∈ U (D) and b ∈ U (D) then ab ∈ U (D).
(e) If a ∈ U (D) then ±an ∈ U (D) for any n ∈ Z.

Example 1.1.17

(a) i ∈ U (Z + Zi).
(b) ω ∈ U (Z + Zω) (see Example 1.1.3).
(c) θ ∈ U (Z + Zθ + Zθ2) as 1 = θ (−1 − θ2) (see Example 1.1.10).

Theorem 1.1.1 If D is an integral domain then U (D) is an Abelian group with
respect to multiplication.

Proof: U (D) is closed under multiplication by property (d). Multiplication of el-
ements of U (D) is both associative and commutative as D is an integral domain.
U (D) possesses an identity element, namely 1, by property (a). Every element of
U (D) has a multiplicative inverse by property (c). Thus U (D) is an Abelian group
with respect to multiplication. �

Abelian groups are named after the Norwegian mathematician Niels Henrik Abel
(1802–1829), who proved in 1824 the impossibility of solving the general quintic
equation by means of radicals.

Example 1.1.18 Let Zn denote the cyclic group of order n.

(a) U (Z) = {±1} � Z2.
(b) U (Z + Zi) = {±1, ±i} � Z4.
(c) U (F[x]) = F∗, where F is a field and F∗ = F \ {0}.
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(d) U (Z[x]) = {±1} � Z2.
(e) ±(1 + √

2)n ∈ U (Z + Z
√

2), for all n ∈ Z.
(f) 1

2

√
2 + 1

2 i
√

2 ∈ U (D), where D is defined in Example 1.1.11.

We remark that in Chapter 11 we will show that

U (Z + Z
√

2) = {±(1 +
√

2)n | n ∈ Z} � Z2 × Z.

Definition 1.1.4 (Associate) Two nonzero elements a and b of an integral domain
D are called associates, or said to be associated, if each divides the other. If a and
b are associates we write a ∼ b. If a and b are not associates we write a �∼ b.

Properties of Associates

Let a, b, c ∈ D∗ = D \ {0}, where D is an integral domain. The following proper-
ties hold.

(a) a ∼ a (reflexive property).
(b) a ∼ b implies b ∼ a (symmetric property).
(c) a ∼ b and b ∼ c imply a ∼ c (transitive property).
(d) a ∼ b if and only if ab−1 ∈ U (D).
(e) a ∼ 1 if and only if a is a unit.

Properties (a), (b), and (c) show that ∼ is an equivalence relation. The equivalence
class containing a ∈ D is just the set {ua | u ∈ U (D)}.

Example 1.1.19

(a) In Z, a ∼ b if and only if a = ±b, equivalently |a| = |b|.
(b) In Z + Zi we have 1 + i ∼ 1 − i as 1+i

1−i = i ∈ U (Z + Zi).

(c) In Z + Z
√

2 we have 1 + 3
√

2 ∼ 5 − 2
√

2 as 1+3
√

2
5−2

√
2

= 1 + √
2 ∈ U (Z + Z

√
2).

1.2 Irreducibles and Primes

In Z an integer p (≥ 2) that is divisible only by the positive integers 1 and p is
called a prime. Each prime p in Z has the following two properties:

p = ab (a, b ∈ Z) =⇒ a or b = ±1 (1.2.1)

and

p | ab (a, b ∈ Z) =⇒ p | a or p | b. (1.2.2)

Our next definition generalizes property (1.2.1) to an arbitrary integral domain D,
and an element of D with this property is called an irreducible element.
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Definition 1.2.1 (Irreducible) A nonzero, nonunit element a of an integral domain
D is called an irreducible, or said to be irreducible, if a = bc, where b, c ∈ D,
implies that either b or c is a unit.

A nonzero, nonunit element that is not irreducible is called reducible.

Example 1.2.1 2 is irreducible in Z, for if 2 = ab with a ∈ Z and b ∈ Z then
either a = ±1 or b = ±1.

Example 1.2.2 2 is irreducible in Z + Z
√−5. To show this, suppose that 2 =

(a + b
√−5)(c + d

√−5), where a, b, c, d ∈ Z. Taking the modulus of both sides
of this equation, we obtain 4 = (a2 + 5b2)(c2 + 5d2). Thus a2 + 5b2 is a positive
integral divisor of 4 and so we must have

a
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Example 1.2.5 2 is not a prime in Z + Z
√−5 as 2 | (1 + √−5)(1 − √−5) yet

2 � 1 ± √−5.

Example 1.2.6 1 + i is a prime in Z + Zi . To show this, suppose that 1 + i |
(a + bi)(c + di), where a, b, c, d ∈ Z. Then there exist integers x and y such that

(a + bi)(c + di) = (1 + i)(x + yi).

Taking the modulus of both sides of this equation, we obtain

(a2 + b2)(c2 + d2) = 2(x2 + y2).

As 2 is a prime in Z, we have either 2 | a2 + b2 or 2 | c2 + d2. Interchanging a + bi
and c + di , if necessary, we may suppose that 2 | a2 + b2. Thus, either a and b are
both even or they are both odd. In the former case a = 2r and b = 2s, where r and
s are integers, and

a + bi = 2(r + si) = (1 + i)((r + s) + (−r + s)i),

so that 1 + i | a + bi . In the latter case a = 2r + 1 and b = 2s + 1, where r and
s are integers, and

a + bi = 2(r + si) + (1 + i) = (1 + i)((r + s + 1) + (−r + s)i),

so that 1 + i | a + bi . Hence 1 + i is a prime in Z + Zi .

Theorem 1.2.1 In any integral domain D a prime is irreducible.

Proof: Let p ∈ D be a prime and suppose that p = ab, where a, b ∈ D. As ab =
p · 1 we have p | ab, and so, as p is prime, we deduce that p | a or p | b, that is,
a/p ∈ D or b/p ∈ D. Since 1 = a/p · b or 1 = a · b/p, either b is a unit or a is a
unit of D. This proves that p is an irreducible element of D. �

The converse of Theorem 1.2.1 is not true. From Examples 1.2.2 and 1.2.5 we
see that the element 2 of Z + Z

√−5 is irreducible but not prime.
Waterhouse [6] has recently given a class of integral domains in which every

irreducible is prime.

Theorem 1.2.2 Let D be an integral domain that has the following property:

Every quadratic polynomial in D[X ] having roots in the quotient

field F of D is a product of linear polynomials in D[X ]. (1.2.3)

Then every irreducible in D is prime.
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Proof: Let p be an irreducible element in D, which is not prime. Then there exist
a, b ∈ D such that

p | ab, p � a, p � b.

Let r = ab/p ∈ D, and consider the quadratic polynomial

f (X ) = pX2 − (a + b)X + r.

In F[X ] we have

f (X ) = p(X − a/p)(X − b/p).

We show that f (X ) does not factor into linear factors in D[X ]. Indeed, suppose on
the contrary that

f (X ) = (cX + s)(d X + t)

in D[X ]. Then cd = p. As p is irreducible, one of c and d is a unit of D, say d, so
that c = d−1 p. Then the roots of f (X ) in F are −ds/p and −d−1t . But −d−1t ∈ D,
while neither a/p nor b/p is in D. Thus no such factorization can exist. Hence
every irreducible in D is prime. �

1.3 Ideals

Subsets of an integral domain D that are closed under addition and under multipli-
cation by elements of D play a special role and are called ideals.

Definition 1.3.1 (Ideal) An ideal I of an integral domain D is a nonempty subset
of D having the following two properties:

a ∈ I, b ∈ I =⇒ a + b ∈ I,

a ∈ I, r ∈ D =⇒ ra ∈ I.

It is clear that if a1, . . . , an ∈ I then r1a1 + · · · + rnan ∈ I for all r1, . . . , rn ∈ D.
In particular if a ∈ I and b ∈ I then −a ∈ I and a − b ∈ I . Also 0 ∈ I , and if 1 ∈ I
then I = D.

Example 1.3.1 If {a1, . . . , an} is a set of elements of the integral domain D then
the set of all finite linear combinations of a1, . . . , an{

n∑
i=1

ri ai | r1, . . . , rn ∈ D

}

is an ideal of D, which we denote by 〈a1, . . . , an〉.
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Definition 1.3.2 (Principal ideal) An ideal I of an integral domain D is called a
principal ideal if there exists an element a ∈ I such that I = 〈a〉. The element a is
called a generator of the ideal I .

If D is an integral domain the principal ideal 〈a〉 generated by a ∈ D is just the
set {ra | r ∈ D}. Clearly the principal ideal 〈0〉 is just the singleton set {0} and the
principal ideal 〈1〉 is D.

Definition 1.3.3 (Proper ideal) An ideal I of an integral domain D is called a
proper ideal of D if I �= 〈0〉, 〈1〉.

Thus a proper ideal of an integral domain D is an ideal I such that {0} ⊂ I ⊂ D.

Example 1.3.2 For any positive integer k, the set

kZ = {0, ±k, ±2k, . . .}
is an ideal of Z. Indeed kZ is a principal ideal generated by k (or −k) so that

kZ = 〈k〉 = 〈−k〉.

Example 1.3.3 Let

I = { f (x) ∈ Z[x] | f (0) = 0}.
Then I is an ideal of Z[x] and I = 〈x〉.

Example 1.3.4 Let

J = { f (x) ∈ Z[x] | f (0) ≡ 0 (mod 2)}.
Then J is an ideal of Z[x] and J = 〈2, x〉. However, J is not a principal ideal.

Theorem 1.3.1 Let D be an integral domain and let a, b ∈ D∗ = D \ {0}. Then

〈a〉 = 〈b〉 if and only if a/b ∈ U (D).

Proof: If a/b ∈ U (D) then a = bu for some u ∈ U (D). Let x ∈ 〈a〉. Then x = ac
for some c ∈ D. Hence x = buc with uc ∈ D. Thus x ∈ 〈b〉. We have shown that
〈a〉 ⊆ 〈b〉. As a/b ∈ U (D) and U (D) is a group with respect to multiplication, we
have b/a = (a/b)−1 ∈ U (D). Then, proceeding exactly as before with the roles of
a and b interchanged, we find that 〈b〉 ⊆ 〈a〉. Thus 〈a〉 = 〈b〉.

Conversely, suppose that 〈a〉 = 〈b〉. Then a = bc for some c ∈ D and b = ad for
some d ∈ D. Hence b = bcd . As b �= 0 we deduce that 1 = cd so that c ∈ U (D).
Thus a/b = c ∈ U (D). �
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1.4 Principal Ideal Domains

An important class of integral domains are those in which every ideal is principal.

Definition 1.4.1 (Principal ideal domain) An integral domain D is called a prin-
cipal ideal domain if every ideal in D is principal.

We begin by giving an example of an integral domain in which every ideal is
principal.

Theorem 1.4.1 Z is a principal ideal domain.

Proof: Let I be an ideal of Z. If I = {0} then I = 〈0〉 is a principal ideal. Thus we
may suppose that I �= {0}. Hence I contains a nonzero element a. As both a and
−a belong to I , we can suppose that a > 0. Hence I contains at least one positive
integer, namely a.

We let m denote the least positive integer in I . Dividing a by m, we obtain
integers q and r such that a = mq + r and 0 ≤ r < m. As a ∈ I and m ∈ I , we
have r = a − mq ∈ I . This contradicts the minimality of m unless r = 0, in which
case a = mq; that is, I = 〈m〉 = mZ. �

Theorems 1.3.1 and 1.4.1 show that the set of ideals of Z is {kZ | k ∈
{0, 1, 2, . . .}}. Moreover, if I is an ideal of Z then it is generated by the least
positive integer in I .

Other examples of principal ideal domains will be given in Chapter 2 where we
discuss Euclidean domains.

Theorem 1.4.2 In a principal ideal domain, an irreducible element is prime.

Proof: Let p be an irreducible element in a principal ideal domain D. Suppose
that p | ab, where a, b ∈ D. If p � a we let I be the ideal 〈p, a〉 of D. As D is a
principal ideal domain there is an element c ∈ D such that I = 〈c〉. As a ∈ I and
p ∈ I we must have c | a and c | p. If c ∼ p then p | a, contradicting p � a. Hence
c �∼ p, and as p is irreducible, c must be a unit. Thus there exists d ∈ D such that
cd = 1. Now c ∈ 〈a, p〉 so there exist x, y ∈ D such that c = xa + yp. Hence

1 = cd = dxa + dyp,

and so

b = (dx)ab + (bdy)p.

Since p | ab this shows that p | b. Thus p | a or p | b and p is a prime element of
D. �
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Theorem 1.4.3 In a principal ideal domain, an element is irreducible if and only
if it is prime.

Proof: This follows immediately from Theorems 1.2.1 and 1.4.2. �

Example 1.4.1 It was noted in Section 1.2 that 2 is irreducible but not prime
in Z + Z

√−5. Hence, by Theorem 1.4.3, the integral domain Z + Z
√−5 is

not a principal ideal domain. Indeed the ideal 〈2, 1 + √−5〉 of Z + Z
√−5

is not principal. This can be shown directly as follows. Suppose, on the
contrary, that the ideal 〈2, 1 + √−5〉 is principal, that is, 〈2, 1 + √−5〉 =
〈α〉 for some α ∈ Z + Z

√−5. Hence 2 ∈ 〈α〉 and 1 + √−5 ∈ 〈α〉 so that α | 2
and α | 1 + √−5. From the first of these, as 2 is irreducible in Z + Z

√−5, it must
be the case that α ∼ 1 or α ∼ 2. If α ∼ 2 then 2 | 1 + √−5, which is impossible
as 1+√−5

2 = 1
2 + 1

2

√−5 �∈ Z + Z
√−5. Hence α ∼ 1, and so 〈2, 1 + √−5〉 = 〈1〉.

This shows that 1 is a linear combination of 2 and 1 + √−5 with coefficients from
Z + Z

√−5; that is, there exist x, y, z, w ∈ Z such that

1 = (x + y
√−5)2 + (z + w

√−5)(1 + √−5).

Equating coefficients of 1 and
√−5, we obtain

1 = 2x + z − 5w, 0 = 2y + z + w.

The difference of these equations yields

1 = 2(x − y − 3w),

which is clearly impossible as the left-hand side is an odd integer and the right-
hand side is an even integer. Hence the ideal 〈2, 1 + √−5〉 is not principal in
Z + Z

√−5.

Definition 1.4.2 (Greatest common divisor) Let D be a principal ideal domain
and let {a1, . . . , an} be a set of elements of D. Then the ideal 〈a1, . . . , an〉 is a
principal ideal. A generator of this ideal is called a greatest common divisor of
a1, . . . , an.

Let D be a principal ideal domain. If a and b are greatest common divisors of
a1, . . . , an ∈ D then

〈a〉 = 〈a1, . . . , an〉 = 〈b〉,
so that, by Theorem 1.3.1, a ∼ b. We write (a1, . . . , an) for a greatest com-
mon divisor of a1, . . . , an , understanding that (a1, . . . , an) is only defined up to
a unit. We note that (a1, . . . , an) = 0 if a1 = · · · = an = 0. Also (a1, . . . , an) =
(a1, . . . , an−1) if an = 0. Furthermore,

a ∈ 〈a〉 = 〈a1, . . . , an〉,
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so that

a = r1a1 + · · · + rnan

for some r1, . . . , rn ∈ D. Thus if c ∈ D is such that

c | a j ( j = 1, 2, . . . , n)

then

c | a.

Moreover, for j = 1, 2, . . . , n, we have

a j ∈ 〈a1, . . . , an〉 = 〈a〉
so that

a | a j .

This justifies calling a “a greatest common divisor” of a1, . . . , an . The elements
a1, . . . , an are called relatively prime if (a1, . . . , an) is a unit, that is,

〈a1, . . . , an〉 = 〈1〉 = D.

It is easy to verify that

(a1, . . . , an−1, an) = ((a1, . . . , an−1), an),

so that a greatest common divisor can be obtained by finding a succession of greatest
common divisors of pairs of elements, that is, if (a1, a2) = b then (a1, a2, a3) =
(b, a3), etc.

In the next theorem we use our knowledge of primes and irreducibles in a principal
ideal domain to give conditions under which a prime p can be expressed as u2 − mv2

or mv2 − u2 for some integers u and v, where m is a given nonsquare integer.

Theorem 1.4.4 Let m be a nonsquare integer such that Z + Z
√

m is a principal
ideal domain. Let p be an odd prime for which the Legendre symbol(

m

p

)
= 1.

Then there exist integers u and v such that

p = u2 − mv2 if m < 0, or if m > 0,

and there are integers T, U such that T 2 − mU 2 = −1,

p = u2 − mv2 or mv2 − u2, if m > 0,

and there are no integers T, U with T 2 − mU 2 = −1.
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Proof: As
(

m
p

)
= 1, there exists an integer x such that x2 ≡ m (mod p). Thus

p | (x + √
m)(x − √

m)

in Z + Z
√

m. Clearly x±√
m

p = x
p ± 1

p

√
m �∈ Z + Z

√
m so that

p � x ± √
m.

Hence p is not a prime in Z + Z
√

m. As Z + Z
√

m is a principal ideal domain, by
Theorem 1.4.3 p is not irreducible in Z + Z

√
m. Hence

p = (u + v
√

m)(w + t
√

m) (1.4.1)

for some u + v
√

m ∈ Z + Z
√

m and w + t
√

m ∈ Z + Z
√

m, where neither u +
v
√

m nor w + t
√

m is a unit in Z + Z
√

m. From (1.4.1) we deduce that

p − (uw + tvm) = (ut + vw)
√

m.

As m is not a square,
√

m /∈ Q, so that

p − (uw + tvm) = ut + vm = 0.

Then

p2 = (uw + tvm)2 = (uw + tvm)2 − m(ut + vm)2

so that

p2 = (u2 − mv2)(w2 − mt2). (1.4.2)

As m, u, v, w, t ∈ Z and m ∈ N, we see that u2 − mv2 ∈ Z and w2 − mt2 ∈ Z.
Moreover, u2 − mv2 �= ±1 and w2 − mt2 �= ±1, as u + v

√
m and w + t

√
m are

not units in Z + Z
√

m. Thus, from (1.4.2), as p is a prime, we must have ±p =
u2 − mv2 = w2 − mt2. Hence there are integers u and v such that p = u2 − mv2

or −(u2 − mv2).
If m < 0 then u2 − mv2 > 0, so we must have p = u2 − mv2.
If m > 0, p = −(u2 − mv2), and there exist integers T and U such that T 2 −

mU 2 = −1 then p = u′2 − mv′2 with u′ = T u + mUv, v′ = Uu + T v. �

In Chapter 2 we give some nonsquare values of m for which Z + Z
√

m is a
principal ideal domain. Then, by Theorem 1.4.4, we know that for those odd primes

p for which
(

m
p

)
= 1 there are integers u and v such that p = u2 − mv2 or mv2 −

u2. For a general positive integer m it is a difficult problem to decide which primes
are expressible as u2 − mv2 with u, v ∈ Z. The reader interested in knowing more
about this problem should consult Cox [2].

In the next theorem we give conditions that ensure that a prime p can
be expressed in the form u2 + uv + 1

4 (1 − m)v2 or −(u2 + uv + 1
4 (1 − m)v2)


