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2. WHY ARE THERE SO MANY TINY SPERM? SPERM 
COMPETITION AND THE MAINTENANCE OF TWO 

SEXES

Geoffrey A. Parker1

ABSTRACT 

It is suggested that sperm competition (competition between the sperm from two or 
more males over the fertilization of ova) may account for the fact that sperm are so small 
and so numerous. In the entire absence of sperm competition, selection may favour an 
increase in sperm size so that the sperm contributes nutriment to the subsequent viability 
and success of the zygote. However, an extremely low incidence of sperm competition is 
adequate to prevent sperm size increasing. Vertebrate sperm should remain at minimal 
size provided that double matings (one female mated by two males) occur more often 
than about 4 times the ratio of sperm size:ovum size. The classical theory that sperm are 
small simply because of the difficulties of ensuring that ova do get fertilized may also 
explain sperm size, and both effects (sperm competition and ensuring fertilization) are 
likely to contribute to the stability of anisogamy. Large numbers of sperm can be 
produced because sperm are tiny and the optimal allocation of reproductive reserves to 
ejaculates is not trivially small even when double matings are rather rare. It is suggested 
that of its total mating effort, a male vertebrate should spend a fraction on sperm that is 
roughly equivalent to a quarter of the probability of double mating.  

1. INTRODUCTION 

Despite the fact that anisogamy is the rule in multicellullar animals and plants, 
biologists have devoted rather little attention to an interpretation of why evolution has 
produced and maintained males and females. Why not, say, five sexes, each producing its 
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own characteristic gamete? Early theories for the evolution of anisogamy (Kalmus, 1932; 
Kalmus & Smith, 1960; Scudo, 1967) assumed that selection would act to favour 
efficiency in fertilization at the species or group level, and considered only isogamy 
versus anisogamy. Recently, Parker, Baker & Smith (1972) proposed that anisogamy 
might result from disruptive selection acting on a continuous range of variants, each 
variant producing gametes of a characteristic size. The assumptions of disruptive 
selective theory are as follows.  

(i)  A large population of adults releases its gametes into an external medium (e.g. sea 
water) so that gametes fuse randomly, independent of size. 

(ii)  There is a fixed energy budget per parent, so that if an adult produces gametes of size 
m, the relative number of gametes produced is proportional to m-1

(iii)  The viability (or other components of fitness) of a zygote increases with its size. 
Thus a zygote produced by the fusion of two large gametes (each with high 
provisioning) survives better than one resulting from the fusion of two intermediate-
sized gametes, or one from a large and small gamete. 

Provided that in (iii) the size of the zygote exerts an important enough effect on its 
survival, the evolutionarily stable strategy (ESS; Maynard Smith, 1974) is anisogamy, i.e. 
a population consisting of males (microgamete producers) and females (megagamete 
producers) will be stable. This result (originally obtained by computer simulation) has 
been confirmed analytically by a number of authors (Bell, 1978; Charlesworth, 1978; 
Maynard Smith, 1978; Hoekstra, 1980). Some empirical support (Knowlton, 1974; Bell, 
1978) is available from the fact that in various groups of algae, a trend towards 
anisogamy (from isogamy) is associated with a trend towards multicellularity (from 
unicellularity). During the evolution of anisogamy, selection is likely to favour sperm that 
fuse disassortatively (with ova), and probably ova that fuse disassortatively (with sperm); 
see Parker (1978). Fisher’s principle (1930) explains why the sex ratio stabilizes at unity. 

 Although the disruptive selection theory forms a basis for the origin and mainte-
nance of the two sexes, assumption (i) above will be adequate as an approximation only 
for many plants, and certain animals with external fertilization (e.g. a large population of 
sessile external fertilizers). Animals with internal fertilization seem perhaps most 
disparate from the concept of the original model. The aim of the present paper is to 
consider reasons why anisogamy remains stable even when the reproductive pattern 
changes from external fertilization to internal fertilization. I argue that it is essentially 
sperm competition that is responsible for maintaining anisogamy. Sperm or ejaculate 
competition is competition between the sperm of different males over the fertilization of 
the ova (Parker, 1970a). In sessile animals with external fertilization, there will be a high 
degree of sperm competition if spawning tends to be synchronous. In species with 
internal fertilization sperm competition may be much reduced, but probably never 
entirely absent. Without sperm competition, anisogamy may be unstable, because it 
would pay males to increase the provisioning in each sperm so as to contribute to the 
survivorship of the zygote.  

There appear to be two central questions. Firstly, what keeps sperm small and devoid 
of any provisioning for the zygote? Secondly, why are so many sperm produced?  
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2. ANISOGAMY IN SMALL GROUPS OF SYNCHRONOUS EXTERNAL 
FERTILIZERS  

I first investigate the robustness of the anisogamy ESS to the effects of group size. 
Suppose that anisogamy and disassortative fusion have evolved in a population of 
synchronous external fertilizers. What happens when there are just n males in each 
spawning group?  

Here and elsewhere we seek conditions under which selection will act against small 
increases in the size of the sperm. Sperm become reduced to the least size because this 
allows so many of them to be produced; high productivity yields an advantage through 
sperm competition. We can assume that ovum size must be stabilized at a unique 
optimum if sperm contribute nothing to the zygote. The anisogamy ESS must conform to 
a Nash equilibrium in which it will not pay the male to supply provisioning in the sperm, 
nor will it pay the female to deviate from her unique optimum specified by zero sperm 
contribution to the zygote. We can test the robustness of the anisogamy ESS by testing 
whether a mutation will spread that contributes some investment to the zygote.  

Let us assume that the provisioning from the ovum contributes an amount F to the 
survival prospects of the zygote. At the anisogamy ESS, the male contributes nothing via 
the sperm to zygote survival. Thus investment in each ovum is optimized at mfopt while 
investment in each sperm is set at an arbitrary minimum level mmin. Suppose a mutant 
male could invest m > mmin in each sperm and thereby raise the survival prospects of the 
zygote by an amount b(m). By so doing, the mutant produces less total sperm than a 
normal male. Normal males produce (relatively) mmin

-1 sperm, whereas the mutant 
produces m-1 sperm. The mutant will therefore obtain less fertilizations than a normal 
male, but produces zygotes that survive better.  

With n males and f females in each group, the expected fitness of a normal male will 
be: 

n
fF .
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and is clearly independent of sex ratio.  
The mmin strategy will be locally stable (i.e. resistant to small increases in the amount 

of provisioning in sperm) if 
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The logic behind this assertion is explained in Fig. 1. Differentiation gives the result that 
result that mmin is stable if  

(2)

FIG. 1. The fitness of a mutant that produces sperm of size m, in a population where all other males play mmin

(minimal sized sperm with no provisioning for zygote) is given by the right hand side of equation (1). In the 
case shown here, mmin would be locally stable since all mutants with m > mmin have lower fitness than the rest of 
the population. The condition for mmin to be locally stable is therefore that the differential coefficient with 
respect to m of the right hand side of (1), evaluated at mmin, is negative.

We can proceed little further until we know more about b'(mmin), which is the rate at 
which provisioning via sperm would contribute to zygote viability. Consider as follows. 
If the male parent supplies no investment to the zygote, the ESS investment in each ovum 
for the female parent, mfopt, is given by the tangent method (Smith & Fretwell, 1974) as 
shown in Fig. 2. Thus if we plot zygote viability b against the provisioning mf supplied        

( ) ( ) .1

min
min nm

nFmb −<′



WHY ARE THERE SO MANY TINY SPERM? 37

FIG. 2. Optimal provisioning mfopt for the female to supply the ovum, assuming that the male will supply 
nothing to the zygote. The optimum is given by the tangent to b'(mf) drawn from the origin (see Smith & 
Fretwell, 1974). This gives the maximum number of surviving offspring by maximizing the gain rate obtainable 
from limited reserves. Obviously, at mfopt, b'(mf) = b(mf)/mf as in equation (3).  

by the female to the ovum, assuming zero sperm provisioning, we expect that at mfopt the 
gradient of the tangent equals the gradient of b(mf). So we can write 

(3) 

Assuming that provisioning via sperm and via ova would affect zygote survival 
equivalently, then it is easy to see that b'(mfopt) = b'(mmin) because females will supply 
mfopt if males supply mmin to the zygote. We can therefore substitute (3) into (2) to give 
the condition that  

(4) 

for mmin to be locally stable.  
Rule (4) states that in order for zero provisioning from sperm to be stable, we need 

roughly the “anisogamy ratio” (ratio of ovum size to sperm size) to be greater than the 
number n of males in each spawning group divided by (n – 1). Obviously, for large 
groups, the sperm size can almost equal the ovum size before a mutant with extra 
provisioning will spread. Even when usually only two males compete for fertilizations, 
sperm size should not increase from mmin unless the anisogamy ratio is less than 2. This 
result is interesting because it implies that once a state has been attained in which there is 
a disassortative fusion and where the ovum supplies all the zygotic reserves, it is unlikely 
to pay males to provision sperm unless there is no sperm competition (n  1). Then it 
will always be favourable to increase zygotic reserves by sperm provisioning.  
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3. SPERM SIZE WITH INTERNAL FERTILIZATION  

I have established that for synchronous external fertilizers (on which the original 
anisogamy model of Parker et al. was based), sperm competition is essential to maintain 
anisogamy with zero sperm provisioning. Internal fertilization must reduce dramatically 
the number of occasions on which sperm competition occurs. How will this affect the 
stability of the anisogamy ESS?  

We retain all the features of the model outlined in section 2, except that sperm 
competition arises on only proportion p of occasions. Thus with frequency p two males 
mate with the same female, with frequency (1 – p) the female is mated by just one male. 
When two males mate with the same female, the success of male i in competition with 
male j is taken as before as 

.
 sperm total
sperm  ofnumber 

 ji 
i

+

Support for this model as an approximation for vertebrates comes from the work of 
Martin et al. (1974) on chickens and Lanier et al. (1979) on rats. For the mmin strategy to 
be stable against a mutant male that invests m > mmin in each sperm requires that  

(5)
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which is directly equivalent to equation (1). By the same technique used in section 1, we 
can see that mmin will be locally stable if the differential coefficient with respect to m of 
the RHS of (5) is negative when evaluated at mmin. This gives the condition that  

(6)

for m to be stable. Remembering again that if the male plays mmin, the female must play 
mfopt and b'(mmin) = F/ mfopt (Fig. 2; equation (3)), we can substitute into (6) to obtain 

(7) 

for mmin to be stable. As expected, if p = 1, the condition is the same as for equation (2) 
with n = 2. If p is small, we obtain the approximation that  
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to retain the mmin ESS. At high anisogamy ratios, sperm competition can be extremely 
rare and yet will still be entirely adequate to prevent invasion by mutants with sperm that 
contain provisioning for the zygote. All that is required is roughly that double matings are 
more frequent than 4 divided by the anisogamy ratio.  

This model appears equally applicable to mobile external fertilizers such as certain 
fish, in which many spawnings involve a single male and female, but some spawnings 
involve a “sneak” male as well as the primary male.  

In most vertebrates, the ovum is vastly larger than the sperm and the anisogamy ratio 
commonly exceeds 106. Suppose sperm were so large as to be equivalent to one 
thousandth the size of an ovum; then anisogamy would be stable provided that double 
mating occurs for at least 0.4% of litters. Thus provided that mobility and internal 
fertilization arose at a stage after a disassortative fusion and high anisogamy ratio had 
evolved, there is no reason to suspect that the reduced potential for sperm competition 
should lead to a change in the minimal investment characteristic of the sperm. 
Anisogamy is a remarkably robust ESS.  

Essentially, the reason it does not pay to increase sperm provisioning is that a unit 
increase in investment in each sperm causes significant cost, but insignificant benefit. For 
example, doubling the sperm size halves the sperm number, which causes significant 
losses when there is sperm competition. But doubling the sperm size would effect a 
virtually insignificant increase in the viability of the zygote.  

Of course, selection will favour mechanisms in the female to consume what are, for 
her, excess sperm. Considerable phagocytosis of sperm appears to take place in the 
female genital tract in vertebrates; the female may therefore profit by male ejaculate 
expenditure. To the extent that the offspring may benefit from the products of the 
phagocytosis, the male may also benefit indirectly if the affected offspring are his own. 
Alternatively, the male may benefit even more directly by adopting various forms of 
parental care. But it will not pay him to increase his provisioning of the zygote by 
increasing the amount of reserves bound up in each sperm.  

For some groups with internal fertilization, double mating may not lead to approxi-
mately equal chances for each male, even when they both transfer equal amounts of 
sperm. For instance, in insects it appears quite common that the last male to mate 
displaces much of the previously-stored sperm from the female’s sperm stores, and 
replaces it with his own (e.g. Lefevre & Jonsson, 1962; Parker, 1970a,b; Waage, 1979). It 
is obvious that provided sperm displacement is not total, some sperm competition still 
occurs. Suppose that the last male displaces proportion z of the previous ejaculate on a 
volumetric basis (some evidence for this comes from Lefevre & Jonsson, 1962; Parker, 
1970b). Then if sperm are small, there will be relatively more of them left in the (1 – z)
volume remaining undisplaced, than if sperm are large. If we apply exactly the same 
model as for vertebrates, and allow that the mutant male with m > mmin can mate first or 
last with equal probability, we need that:  
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if mmin is to be an ESS. 
Applying the usual technique, we find that to retain minimal sperm provisioning 

requires that: 

(8) 

or if p is small, then approximately 

It is easiest to satisfy (8) when a second male displaces half of the first male’s sperm 
z (1 z) is maximized when z = ½). At this level, we need only that double matings are 
more frequent than 8 divided by the anisogamy ratio in order to be stable. This is 
admittedly less easy to satisfy than for vertebrates, but not such that anisogamy will be 
threatened. However, if displacement is very high (or alternatively, very low) then the 
product z (1 z) becomes very small, and condition (8) progressively less easy to satisfy.  

The highest degree of priority achieved by the last male to mate that has so far been 
recorded for an insect is 0.997 for the bug Abedus herberti (Smith, 1979). Even at this 
exceptional level of sperm displacement, the mmin strategy would be relatively safe, since 
the ratio of sperm size/ovum size is several orders of magnitude greater than 0.003, the 
product z (1 z).

In short, variations in the exact pattern of sperm competition are unlikely to affect 
our general conclusion. Provided that even occasionally the sperm from more than one 
male compete over fertilizations, anisogamy is likely to be stable and sperm should not 
contain provisioning for the zygote. They should have minimal size.  

4. AN ALTERNATIVE HYPOTHESIS  

The classical interpretation of small sperm size is that the best chances of ensuring 
that an ovum gets fertilized occur when there are as many sperm as possible. By making 
sperm tiny, a maximum number can be produced; this maximizes the chances that one of 
them will find the egg.  

As Cohen (1973) has plausibly argued, it is not easy to accept this solution for 
vertebrates since ejaculates can often be diluted vastly (for artificial insemination) 
without loss in fertility. It is also difficult to accept for insects because fertility usually 
decreases only when the sperm supply becomes very depleted and normally the female 
would either be dead, or would have remated before this stage is reached (e.g. Parker, 
1970b). However, no model appears to have been devised to examine the classical 
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proposition that sperm are small simply to provide enough of them to ensure a high 
probability of fertilization. Note that this does differ from the sperm competition theory 
for the maintenance of small sperm size. The sperm competition model assumes that the 
probability of fertilization is independent of sperm numbers over a very wide range, and 
argues that sperm are small to produce high numbers to outcompete other ejaculates. The 
classical model ignores sperm competition and suggests that high sperm numbers are 
necessary for fertilization.  

Suppose that the probability g of successful fertilization increases with increasing 
sperm numbers up to an asymptotic value of 1.0 (see Fig. 3). The maximum number of 
sperm that can be contained in an ejaculate is 1

min
−m this gives the highest attainable 

probability of fertilization with a single mating. We again seek the condition under which 
the mmin strategy will be an ESS, and again assume that increasing the size of each sperm 
(by decreasing sperm numbers) can increase the survivorship prospects of the zygote.  

FIG. 3. Probability that an ovum is fertilized in relation to increasing sperm numbers in an ejaculate. There is 
no competition between ejaculates and the maximum number of sperm is proportional to 1

min
−m

Following earlier arguments, mmin will be stable if  
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in which strategy m is again a rare mutant with m > mmin. By the usual technique, stability 
of mmin occurs if 

(9) 

If we take the probability of fertilization to be about 1 at sperm number 1
min
−m  (for 

many species this seems to be a reasonable approximation), then in order for the classical 
theory to explain the maintenance of small sperm, we need the following rule to hold. 
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The anisogamy ratio (ovum size/sperm size) must exceed the reciprocal of the product of 
sperm number ( 1

min
−m ) and the gradient, g'( 1

min
−m ). This gradient is the rate at which 

sperm number contributes to the probability of the fertilization, when sperm have 
minimal size mmin. The fact that sperm dilution has little effect on the probability of 
fertilization suggests that g'( 1

min
−m ) is very small.  

We can see from the case of cattle that condition (9) could possibly account for the 
maintenance of anisogamy. The number of sperm ejaculated by a bull is 5–15 × 109

(Polge, 1972; Bishop, 1961). The sperm is one twenty thousandth the size of the bovine 
egg (Bishop & Walton, 1960), giving an anisogamy ratio of 2 ×104. The maximum 
probability of conception from a normal insemination appears to be around 0.75.  

Substituting into (9), we need  
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for the classical theory to account for the maintenance of anisogamy. Data are available 
(from artificial insemination studies) about the way in which the probability of 
conception declines with increasing dilution of the ejaculate. Very roughly, there appears 
to be only a 1% drop in probability of conception as the number of sperm drops from 17 
× 106 to 7 × 106 (Salisbury & Van Denmark, 1961). Thus g'(m-1) over this range must be 
less than 0.01/107 = 10-9. We would therefore except that with a normal ejaculate, 
containing some thousand times more sperm, the gradient g'( 1

min
−m ) must be well below 

10-9. Until further data are available which justify the fitting of an explicit form to g(m-1), 
we are unable to make a firm conclusion as to whether the classical theory is robust 
enough to explain the extremely small size of the sperm. However, it seems likely that at 
least part of the reason for having tiny sperm relates to increasing the probability of 
conception.  

5. WHY ARE THERE SO MANY SPERM?  

Both sperm competition and the problem of increasing the chalice of conception will 
act to keep sperm size to a minimum. It is therefore easy to see why sperm does not 
contribute to the reserves necessary for zygote survival; i.e. why the male sex persists 
even when there is internal fertilization. Sperm stay tiny because it will pay, on a fixed 
resource budget, to produce as many of them as possible. The models described above 
tell us why the sperm-producing strategy persists, but tell us rather little about the actual 
number, or amount of sperm that should be produced. Why do males produce so many 
sperm?  

Cohen (1969, and elsewhere) has proposed an ingenious and startling answer to this 
question. He suggests that males produce so many sperm because most sperm are 
defective. Defective sperm might arise from errors in meiosis; such errors could be so 
prevalent that only a tiny fraction of the sperm in each ejaculate are suitable for 
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fertilization. As evidence, Cohen found a highly significant correlation between mean 
chiasmata frequency and what he termed “sperm redundancy” (= number of sperm 
ejaculated/number actually used in fertilization).  

However, Cohen’s theory does not really answer the question “why so many tiny 
sperm?”. Ova are also products of meiosis, and therefore should suffer the same risk of 
defectiveness. Cohen argues that this might indeed be the case, and suggests that the high 
prevalence of oocyte atrysia may be due to removal of these defective female gametes. 
Thus although he may be correct that gametes become increasingly defective with 
increasing chiasmata frequency, this is a side issue to the central problem of whether 
gametes should be tiny and unprovisioned, or large and highly provisioned. The 
assumption appears to be that because the ova are costly, it pays the female to sort out 
suitable ones before they are provisioned; sperm on the other hand are not expensive and 
so it need not pay the male to eliminate defective ones. This therefore prejudges the issue 
of why sperm are small and numerous.  

We can best answer the question “why so many sperm?” by considering how much 
of his reproductive resources a male should allocate to an ejaculate. Given that each 
sperm will be tiny because of sperm competition, then if we find a male should invest a 
significant proportion of reproductive resources on an ejaculate, we can explain why vast 
numbers of sperm are produced.  

In some sessile animals with internal fertilization, there may be no alternative 
reproductive strategy to profligate gamete production. Thus where males compete only 
by sperm competition, they will spend all their efforts on sperm and so that the total 
investment per male on sperm may approximate to that invested per female in ova; 
gametic masses should be roughly similar. Hence at high anisogamy ratios, sperm 
numbers will be high relative to ovum numbers.  

The equal gametic expenditure rule breaks down if we allow alternative reproductive 
strategies for males, such as enhanced mobility for mate searching, etc. It also breaks 
down if sperm competition is not prevalent.  

Consider the vertebrate model in which there is internal fertilization, and sperm 
competition occurs perhaps only rarely when the same female mates with two males with 
frequency p. We must trade off expenditure on sperm against expenditure on an 
alternative reproductive strategy such as mobility. Let us assume that if a male expends 
heavily on sperm, he does so at a cost in terms of the number of new females he is likely 
to encounter, because he has less resources left for mate-searching. Thus a mutant 
spending proportion k of his total reproductivity resources on sperm will obtain:  

*1
1

k
k

−
−

matings relative to each obtained by a normal male that expends k* on sperm. In other 
words, the relative number of females encountered is directly proportional to the distance 
a male moves relative to other males. (This model may not be accurate if males obtain 
females by fights, though it may for various reasons serve as a reasonable approximation 
even then.) Once again, we assume that when two ejaculates compete, success is based 
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on the “raffle” principle, i.e. chances of fertilization are equivalent to (self’s sperm 
number)/(total sperm number).  

At the ESS expenditure k* we require that  
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For all k ≠ k*, the mutant fitness should be less than mean population fitness. Thus if we 
plot mutant fitness against k, the result should be a peak at k = k*. Hence if k* is an ESS 
then  

.for ,0
1
1

1
1)1(

d
d

*
***

*

kk
k
k

kk
pk

k
kp

k
k

==
−
−

+
+

−
−−

and the second derivative of the left hand side should be negative, indicating that this is 
indeed a maximum rather than a minimum.  

Differentiating, we obtain  

(10)

or, for small p,

4*
pk ≈

and the second derivative is negative, as required. This result suggests that a male should 
expend, of his total mating effort, a proportion k* that is roughly equivalent to a quarter of 
the probability of double mating.  

Consider red deer. Suppose that hinds are mated by two males as infrequently as 
once in a hundred occasions, which seems a very conservative estimate. Then a stag 
should spend a quarter of a percent of his total mating effort on sperm. Bearing in mind 
his immense energetic expenditure on antlers, roaring and fighting, large body size, and 
mate-searching, the estimate of a quarter percent gametic expenditure seems not to be at 
all excessive. Thus sperm competition may well account for why there are so many 
sperm, as well as accounting for the related question of why sperm are so tiny. Even 
though internal fertilization and reduced sperm competition may usually be associated 
with a reduction in male gametic expenditure, infrequent double matings can lead to non-
trivial expenditures on sperm. 

It would be interesting to investigate the degree to which sperm numbers correlated 
with increased sperm competition in internal fertilizers. Data on the incidence of double 
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matings in nature are not readily available. From Cohen’s (1969) work, it is clear that 
insects produce far fewer sperm than mammals. Sperm storage organs in the female 
insect are highly developed compared to those in mammals. There is therefore little 
purpose in introducing vastly more sperm than can adequately fill these stores, unless 
extra sperm are needed to achieve “sperm flushing” during sperm displacement. In 
mammals, the situation is quite different; there is a vast genital tract in which sperm 
survive for (usually) a relatively short time. Here the “raffle principle” is likely to apply; 
i.e. the more sperm ejaculated, the better the chance of success when another male also 
mates with the same female. 

ACKNOWLEDGEMENTS 

Much of this work was done during a recent Dahlem Conference on Animal Mind–
Human Mind; I hope it may in some way compensate for my singularly undistinguished 
performance there. I am indebted to Miss Jane Farrel for typing. 

NOTE

This manuscript incorporates changes published in an Erratum (1982). Journal of 
Theoretical Biology, 98, Issue 4, 707. 

REFERENCES 

Bell, G. (1978). J. Theor. Biol., 73, 247.  
Bishop, D.W. (1961). In: Sex and Internal Secretions, vol. II, 3rd ed. (Young, W. C. ed.), pp 707–795. London: 

Balliere, Tindall & Cox.  
Bishop, M.W.H. & Walton, A. (1960). In: Marshall’s Physiology of Reproduction, vol. I, part 2, 3rd ed. 

(Parkes, A. S. ed.), pp. 1–29. London: Longmans. 
Charlesworth, B. (1978). J. Theor. Biol., 73, 347. 
Cohen, J. (1969). Sci. Prog., Lond., 57, 23.  
Fisher, R. A. (1930). The Genetical Theory of Natural Selection. Oxford: Clarendon Press. 
Hoekstra, R. (1980). J. Theor. Biol., 87, 785. 
Kalmus, H. (1932). Biol. Zentral., 52, 716.
Kalmus, H. & Smith, C. A. B. (1960). Nature, Lond., 186, 104
Knowlton, N. (1974). J. Theor. Biol., 46, 283  
Lanier, D.L. & Estep, D. Q. & Dewsbury, D. A. (1979). J. Comp. Physiol. Psych., 93, 781.  
Lefevre, G. & Jonsson, U. B. (1962). Genetics, 47, 1719
Martin, P.A., Reimers, T. J., Lodge, J. R. & Dzink, P. J. (1974). J. Reprod. Fertil., 39, 251.  
Maynard Smith, J. (1974). J. Reprod. Fertil., 47, 209. 
Maynard Smith, J. (1978). The Evolution of Sex. Cambridge: Cambridge University Press. 
Parker, G. A. (1970a). Biol. Rev., 45, 525. 
Parker, G. A. (1970b). J. Insect Physiol., 16, 1301.
Parker, G. A. (1978). J. Theor. Biol., 73, 1.  
Parker, G. A., Baker, R. R., & Smith, V. G. F. (1972). J. Theor. Biol., 36, 529.  
Polge, C. (1972). In: Artificial Control of Reproduction (Austin, C. R. & Short, R. V. ed.), p. 1. Cambridge 

University Press. 
Salisbury, G.W. & Vandemark, N. L. (1961). Physiology of Reproduction and Artificial Insemination of Cattle.

1st ed. San Francisco: Freeman.  



G. A. PARKER46

Scudo, F. M. (1967). Evolution, 21, 285.
Smith, C. C. & Fretwell, S. C. (1974). Am. Nat., 108, 499.  
Smith, R. L. (1979). Science, 205, 1029.  
Waage, J. K. (1979). Science, 203, 227. 




