
Matthew Scarpino
Stephen Holder

Stanford Ng
Laurent Mihalkovic

M A N N I N G

SWT/JFace
IN ACTION

How to design graphical applications with Eclipse 3.0

SWT/JFace
in Action

Chapter 4

MATTHEW SCARPINO
STEPHEN HOLDER

STANFORD NG
AND LAURENT MIHALKOVIC

M A N N I N G

Greenwich
(74° w. long.)

For online information and ordering of this and other Manning books, please go to
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact:

Special Sales Department
Manning Publications Co.
209 Bruce Park Avenue Fax: (203) 661-9018
Greenwich, CT 06830 email: orders@manning.com

©2005 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books they publish printed on acid-free paper, and we exert our best efforts to that end.

Manning Publications Co. Copyeditor: Tiffany Taylor
209 Bruce Park Avenue Typesetter: Tony Roberts
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1-932394-27-3

Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – VHG – 08 07 06 05 04

v

brief contents
1 ■ Overview of SWT and JFace 1

2 ■ Getting started with SWT and JFace 13

3 ■ Widgets: part 1 27

4 ■ Working with events 48

5 ■ More widgets 78

6 ■ Layouts 109

7 ■ Graphics 133

8 ■ Working with trees and lists 167

9 ■ Tables and menus 190

10 ■ Dialogs 212

11 ■ Wizards 234

12 ■ Advanced features 253

13 ■ Looking beyond SWT/JFace: the Rich Client Platform 284

Working with events
This chapter covers
■ Event processing with SWT
■ Typed and untyped listeners
■ Mouse and keyboard events
■ Event processing with JFace
■ Actions and contributions
48

Event processing in SWT 49
Without events, the widgets and containers we’ve looked at are only good for dec-
oration. This chapter focuses on how to configure these components to under-
stand and respond to user actions. In particular, it describes the SWT/JFace
framework that acquires these actions and translates them into software con-
structs called events. The process of using a toolset to generate, receive, and
respond to these events is the toolset’s event model. Many books on GUIs leave the
event model until later chapters, but we feel the subject’s importance demands an
early introduction.

 The first part of this chapter describes the SWT data structures that enable
applications to process events. These include the event classes, which are created
when a user carries out actions, and the listener interfaces, which receive event
objects. By combining these appropriately, an application can provide multiple
responses to nearly every form of event that can occur. However, SWT’s powerful
event-processing mechanisms can make coding more complicated than it needs
to be. For this reason, we need to examine how JFace simplifies the process.

 This chapter’s second part deals with using both SWT and JFace to interface
with the user. The JFace library replaces events and listeners with actions and con-
tributions, which perform the same function as their SWT counterparts but in very
different ways. These new classes simplify the process of event programming by
separating the event-processing methods from the GUI’s appearance. Also, actions
and contributions are meant for performing window-oriented interfacing, and
this narrowed scope reduces the developer’s programming burden.

4.1 Event processing in SWT

The SWT event-processing cycle is depicted in figure 4.1. It begins with the operat-
ing system’s event queue, which records and lists actions taken by the user. Once
an SWT application begins running, its Display class sorts through this queue
using its readAndDispatch() method and msg field, which acts as a handle to the
underlying OS message queue. If it finds anything relevant, it sends the event to
its top-level Shell object, which determines which widget should receive the
event. The Shell then sends the event to the widget that the user acted on, which
transfers this information to an associated interface called a listener. One of the lis-
tener’s methods performs the necessary processing or invokes another method to
handle the user’s action, called an event handler.

50 CHAPTER 4
Working with events
When making a widget responsive to events, the main tasks of the GUI designer
are determining which events need to be acted on, creating and associating listen-
ers to sense these events, and then building event handlers to perform the neces-
sary processing. This section will show how to accomplish these tasks using the
SWT data structures contained in the org.eclipse.swt.events package.

4.1.1 Using typed listeners and events

Most of the listener interfaces in SWT only react to a particular set of user actions.
They’re called typed listeners for this reason, and they inherit from the TypedLis-
tener class. Similarly, the events corresponding to these specific actions are typed
events, which subclass the TypedEvent class. For example, a mouse click or double-
click is represented by a MouseEvent, which is sent to an appropriate MouseLis-
tener for processing. Keyboard actions performed by the user are translated into
KeyEvents, which are picked up by KeyListeners. A full list of these typed events
and listeners is shown in table 4.1.

 In order to function, these listeners must be associated with components of the
GUI. For example, a TreeListener will only receive TreeEvents if it’s associated
with a Tree object. But not every GUI component can use each listener. For exam-
ple, as shown in the GUI component column of the table, a Control component
broadcasts many more types of events than a Tracker object. There are also listen-
ers, such as MenuListeners and TreeListeners, that can only be attached to very
specific widgets. This attachment is performed by invoking the component’s
add...Listener() method with the typed listener as the argument.

Operating
Sytem Event

Queue
Top-Level

Shell

Listener
Interface

Display

Event Handling
Method

msg Event Event Invokes

Widget

Figure 4.1 Acquiring events from the operating system and processing them in an SWT application

Event processing in SWT 51
Table 4.1 SWT Event classes and their associated listeners

Event Listener Listener methods GUI component

ArmEvent ArmListener widgetArmed() MenuItem

ControlEvent ControlListener controlMoved()
controlResized()

Control,
TableColumn,
Tracker

DisposeEvent DisposeListener widgetDisposed() Widget

FocusEvent FocusListener focusGained()
focusLost()

Control

HelpEvent HelpListener helpRequested() Control, Menu,
MenuItem

KeyEvent KeyListener keyPressed()
keyReleased()

Control

MenuEvent MenuListener menuHidden()
menuShown()

Menu

ModifyEvent ModifyListener modifyText() CCombo, Combo,
Text, StyledText

MouseEvent MouseListener mouseDoubleClick()
mouseDown()
mouseUp()

Control

MouseMoveEvent MouseMoveListener mouseMove() Control

MouseTrackEvent MouseTrackListener mouseEnter()
mouseExit()
mouseHover()

Control

PaintEvent PaintListener paintControl() Control

SelectionEvent SelectionListener widgetDefaultSelected()
widgetSelected()

Button, CCombo,
Combo, CoolItem,
CTabFolder, List,
MenuItem, Sash,
Scale, ScrollBar,
Slider,
StyledText,
TabFolder, Table,
TableCursor,
TableColumn,
TableTree, Text,
ToolItem, Tree

ShellEvent ShellListener shellActivated()
shellClosed()
shellDeactivated()
shellDeiconified()
shellIconified()

Shell

continued on next page

52 CHAPTER 4
Working with events
Understanding Event classes
The Event column in table 4.1 lists the subclasses of TypedEvent that the Display
and Shell objects send to typed listeners. Although programmers generally don’t
manipulate these classes directly, the classes contain member fields that provide
information regarding the event’s occurrence. This information can be used in
event handlers to obtain information about the environment. These fields, inher-
ited from the TypedEvent and EventObject classes, are shown in table 4.2.

In addition to these, many event classes have other fields that provide more infor-
mation about the user’s action. For example, the MouseEvent class also includes a
button field, which tells which mouse button was pressed, and x and y, which spec-
ify the widget-relative coordinates of the mouse action. The ShellEvent class con-
tains a boolean field called doit, which lets you specify whether a given action will
result in its intended effect. Finally, the PaintEvent class provides additional meth-
ods that we’ll discuss in chapter 7.

Programming with listeners
There are two main methods of incorporating listeners in code. The first creates
an anonymous interface in the component’s add...Listener() method, which

TraverseEvent TraverseListener keyTraversed() Control

TreeEvent TreeListener treeCollapsed()
treeExpanded()

Tree, TableTree

VerifyEvent VerifyListener verifyText() Text, StyledText

Table 4.2 Data fields common to all typed events

TypedEvent

 field
Function

data Information for use in the Event handler

display The display in which the Event fired

source The component that triggered the Event

time The time that the Event occurred

widget The widget that fired the Event

Table 4.1 SWT Event classes and their associated listeners (continued)

Event Listener Listener methods GUI component

Event processing in SWT 53
narrows the scope of the listener to the component only. This method is shown in
the following code snippet:

Button button = new Button(shell, SWT.PUSH | SWT.CENTER);
button.addMouseListener(new MouseListener()
{
 public void mouseDown(MouseEvent e)
 {
 clkdwnEventHandler();
 }

 public void mouseUp(MouseEvent e)
 {
 clkupEventHandler();
 }

 public void mouseDoubleClick(MouseEvent e)
 {
 dblclkEventHandler();
 }
});

static void dblclkEventHandler()
{
 System.out.println("Double click.");
}

static void clkdwnEventHandler()
{
 System.out.println("Click - down.");
}

static void clkupEventHandler()
{
 System.out.println("Click - up.");
}

In the first line, a Button widget is created and added to the application’s Shell.
Then, the addMouseListener() method creates an anonymous MouseListener
interface and associates it with the button. This interface contains three meth-
ods—mouseDown(), mouseUp(), and mouseDoubleClick()—which must be imple-
mented in any instance of a MouseListener. If the user presses the mouse button,
releases the button, or double-clicks, a MouseEvent is sent to one of these meth-
ods, which invokes the appropriate event-handling method. These event handlers
complete the event processing by sending a message to the console. Although the
event-handling routines are simple in this example, they generally demand more
effort than any other aspect of event processing.

 An anonymous interface can be helpful if you need to access objects (declared
with the final keyword) in the outer class. However, the listener can’t be associated

54 CHAPTER 4
Working with events
with other components. You can solve this problem by declaring a separate inter-
face that inherits from MouseListener. An example is shown here:

Button button = new Button(shell, SWT.PUSH | SWT.CENTER);
button.addMouseListener(ExampleMouseListener);

MouseListener ExampleMouseListener = new MouseListener()
{
 public void mouseDoubleClick(MouseEvent e)
 {
 System.out.println("Double click.");
 }

 public void mouseDown(MouseEvent e)
 {
 System.out.println("Click - down.");
 }

 public void mouseUp(MouseEvent e)
 {
 System.out.println("Click - up.");
 }
};

The previous code samples declare all three of the MouseListener’s member meth-
ods. But what if you’re only concerned with the double-click event, and you only
want to work with the mouseDoubleClick() method? If you use the MouseListener
interface, you have to declare all of its methods, just as in any interface. However,
you can eliminate this unnecessary code by using special classes called adapters.

4.1.2 Adapters

Adapters are abstract classes that implement Listener interfaces and provide
default implementations for each of their required methods. This means that
when you associate a widget with an adapter instead of a listener, you only need to
write code for the method(s) you’re interested in. Although this may seem like a
minor convenience, it can save you a great deal of programming time when
you’re working with complex GUIs.

NOTE The adapters mentioned in this section are very different from the model-
based adapters provided by the JFace library, first mentioned in chapter 2.
Here, adapters reduce the amount of code necessary to create listener
interfaces. Although model-based adapters can simplify event process-
ing, as you’ll see in section 4.2, they also help with many other aspects
of GUI programming.

Event processing in SWT 55
Adapters are only available for events whose listeners have more than one mem-
ber method. The full list of these classes is shown in table 4.3, along with their
associated Listener classes.

Adapter objects are easy to code and are created with the same add...Listener()
methods. Two examples are shown here:

button.addMouseListener(new MouseAdapter()
{
 public void mouseDoubleClick(MouseEvent e)
 {
 dblclkEventHandler();
 }
)};

static void dblclkEventHandler()
{
 System.out.println("Double click.");
}

As shown, using the MouseAdapter class allows you to disregard the other methods
associated with the MouseListener interface and concentrate on handling the
double-click event. Similar to listener interfaces, adapters can be coded as anony-
mous classes or local classes.

4.1.3 Keyboard events

Although most of the events in table 4.1 are straightforward to understand and
use, the keyboard event classes require further explanation. Specifically, these

Table 4.3 SWT adapter classes and their corresponding listener interfaces

Adapter Listener

ControlAdapter ControlListener

FocusAdapter FocusListener

KeyAdapter KeyListener

MenuAdapter MenuListener

MouseAdapter MouseListener

MouseTrackAdapter MouseTrackListener

SelectionAdapter SelectionListener

ShellAdapter ShellListener

TreeAdapter TreeListener

56 CHAPTER 4
Working with events
events include the KeyEvent class, which is created any time a key is pressed, and
its two subclasses, TraverseEvent and VerifyEvent. A TraverseEvent results when
the user presses an arrow key or the Tab key in order to focus on the next widget.
A VerifyEvent fires when the user enters text that the program needs to check
before taking further action.

 In addition to the fields inherited from the TypedEvent and EventObject
classes, the KeyEvent class has three member fields that provide information con-
cerning the key that triggered the event:

■ character—Provides a char value representing the pressed key.

■ stateMask—Returns an integer representing the state of the keyboard mod-
ifier keys. By examining this integer, a program can determine whether any
of the Alt, Ctrl, Shift, and Command keys are currently pressed.

■ keyCode—Provides the SWT public constant corresponding to the typed key,
called the key code. These public constants are presented in table 4.4.

The following code snippet shows how to use a KeyListener to receive and pro-
cess a KeyEvent. It also uses the fields (character, stateMask, and keyCode) to
acquire information about the pressed key:

Button button = new Button(shell, SWT.CENTER);
button.addKeyListener(new KeyAdapter()
{
 public void keyPressed(KeyEvent e)
 {
 String string = "";
 if ((e.stateMask & SWT.ALT) != 0) string += "ALT-";
 if ((e.stateMask & SWT.CTRL) != 0) string += "CTRL-";
 if ((e.stateMask & SWT.COMMAND) != 0) string += "COMMAND-";
 if ((e.stateMask & SWT.SHIFT) != 0) string += "SHIFT-";
 switch (e.keyCode)
 {
 case SWT.BS: string += "BACKSPACE"; break;
 case SWT.CR: string += "CARRIAGE RETURN"; break;
 case SWT.DEL: string += "DELETE"; break;
 case SWT.ESC: string += "ESCAPE"; break;
 case SWT.LF: string += "LINE FEED"; break;
 case SWT.TAB: string += "TAB"; break;
 default: string += e.character; break;
 }
 System.out.println (string);
 }
});

Event processing in SWT 57
This code uses the KeyEvent fields and the public constants to create a String that
displays the name of the pressed key and any associated modifier keys. The first
step in the event handler’s operation involves checking the event’s stateMask field
to see whether the Alt, Ctrl, Shift, and Command keys are pressed. If so, the name
of the modifier key is added to the String. The method continues by checking
whether the event’s keyCode corresponds to an alphanumeric character or one of

Table 4.4 Keyboard entries and their SWT code constants

Key Key code

Alt SWT.ALT

Arrow (down) SWT.ARROW_DOWN

Arrow (left) SWT.ARROW_LEFT

Arrow (right) SWT.ARROW_RIGHT

Arrow (up) SWT.ARROW_UP

Backspace SWT.BS

Mouse button 1 SWT.BUTTON1

Mouse button 2 SWT.BUTTON2

Mouse button 3 SWT.BUTTON3

Carriage return SWT.CR

Ctrl SWT.CTRL

End SWT.END

Esc SWT.ESC

F1–F12 SWT.F1–SWT.F12

Home SWT.HOME

Insert SWT.INSERT

Line feed SWT.LF

Mod1–Mod4 SWT.MOD1–SWT.MOD4

Page Down SWT.PAGE_DOWN

Page Up SWT.PAGE_UP

Shift SWT.SHIFT

Tab SWT.TAB

58 CHAPTER 4
Working with events
the support keys. In either case, the name of the key is appended to the String,
which is sent to the console.

 The TraverseEvent fires when the user presses a key to progress from one
component to another, such as in a group of buttons or checkboxes. The two
fields contained in this class let you control whether the traversal action will
change the focus to another control, or whether the focus will remain on the wid-
get that fired the event. The simplest field, doit, is a boolean value that allows
(TRUE) or disallows (FALSE) traversal for the given widget. The second field of the
TraverseEvent class, detail, is more complicated. It’s an integer that represents
the identity of the key that caused the event. For example, if the user presses the
Tab key to switch to a new component, the detail field will contain the SWT con-
stant TRAVERSE_TAB_NEXT.

 Each type of control has a different default behavior for a given traversal key.
For example, a TraverseEvent that results from a TRAVERSE_TAB_NEXT action will,
by default, cause a traversal if the component is a radio button, but not if it’s a
Canvas object. Therefore, by setting the doit field to TRUE, you override the
default setting and allow the user to traverse. Setting the field to FALSE keeps the
focus on the component.

 The use of the VerifyEvent is similar to that of the TraverseEvent. The goal is
to determine beforehand whether the user’s action should result in the usual or
default behavior. In this case, you can check the user’s text to determine whether
it should be updated or deleted in the application. Two of the class fields, start
and end, specify the range of the input, and the text field contains the input
String under examination. Having looked at the user’s text, you set the boolean
doit field to allow (TRUE) or disallow (FALSE) the action.

4.1.4 Customizing event processing with untyped events

Typed events and listeners enable event processing with classes and interfaces
expressly suited to their tasks. Further, typed listeners provide specific methods to
receive and handle these events. By narrowing the scope of listeners and events to
handle only particular actions, the use of typed components reduces the possibil-
ity of committing coding errors.

 However, if you prefer coding flexibility over safety, SWT provides untyped
events and listeners. When an untyped listener, represented by the Listener class,
is associated with a GUI component, it receives every class of event that the com-
ponent is capable of sending. Therefore, you have to manipulate the catch-all
event, represented by the Event class, to determine which action the user per-
formed. The proper event-handling method can then be invoked.

Event processing in SWT 59
 It’s important to note that Eclipse.org recommends against using untyped
events and listeners. In fact, it mentions that they are “not intended to be used by
applications.” These mechanisms also aren’t included with their typed counter-
parts in the org.eclipse.swt.events package. Instead, both the untyped Listener
interface and the Event class are located in the org.eclipse.swt.widgets package.

 Despite this, the SWT code snippets provided by the Eclipse website use
untyped listeners and events exclusively. This makes coding convenient, since you
can create a customized listener that reacts to a specified set of events. An exam-
ple is shown here:

Listener listener = new Listener ()
{
 public void handleEvent (Event event)
 {
 switch (event.type)
 {
 case SWT.KeyDown:
 if (event.character == 'b')
 System.out.println("Key"+event.character);
 break;
 case SWT.MouseDown:
 if (event.button == 3)
 System.out.println("Right click");
 break;
 case SWT.MouseDoubleClick:
 System.out.println("Double click");
 break;
 }
 }
};
Button button = new Button(shell, SWT.CENTER);
button.addListener(SWT.KeyDown, listener);
button.addListener(SWT.MouseDown, listener);
button.addListener(SWT.MouseDoubleClick, listener);

In this code, the Listener object sends any Event instance to its single method,
handleEvent(). Then, the Event’s type field determines what processing needs to
be done. If the event has type SWT.Keydown and the character is the letter b, then a
statement is sent to the console. If the type is SWT.MouseDown and the third mouse
button was pressed (that is, the user right-clicked), then the statement Right click is
shown. If an SWT.MouseDoubleClick event fires, then Double click is displayed.

 You can obtain this capability using typed listeners and events, but the process
is more involved. The button needs to add both a MouseListener and KeyLis-
tener, with corresponding adapters. Then, you need to place the event-handling
routines in the appropriate listener method. Clearly, untyped event processing is

60 CHAPTER 4
Working with events
not only more convenient in this case, but also reduces the number of classes nec-
essary to handle the event.

 In order to take the place of typed events, the Event class contains all the fields
in each typed event. It has the same character field as a KeyEvent and the same
button field as a MouseEvent. As shown in the previous code, it also has a field
called type, which refers to the nature of the event. A listing of these types is pre-
sented in table 4.5.

4.1.5 An SWT listener/event application

Before we discuss the JFace event model, we’ll present an SWT Composite that
integrates and summarizes the material covered. This class, shown in listing 4.1,
contains two buttons, a label, and the necessary event processing. We recommend
creating a com.swtjface.Ch4 package to your project and adding this class to it.

package com.swtjface.Ch4;
import org.eclipse.swt.events.*;
import org.eclipse.swt.widgets.*;
import org.eclipse.swt.*;

public class Ch4_MouseKey extends Composite
{
 Label output;

 Ch4_MouseKey(Composite parent)
 {
 super(parent, SWT.NULL);

Table 4.5 SWT type values for the Event class

Values for type field

SWT.Activate SWT.FocusIn SWT.KeyUp SWT.Move

SWT.Arm SWT.FocusOut SWT.MenuDetect SWT.None

SWT.Close SWT.Expand SWT.Modify SWT.Paint

SWT.Collapse SWT.HardKeyDown SWT.MouseDoubleClick SWT.Resize

SWT.Deactivate SWT.HardKeyUp SWT.MouseEnter SWT.Selection

SWT.DefaultSelection SWT.Help SWT.MouseExit SWT.Show

SWT.Deiconify SWT.Hide SWT.MouseHover SWT.Traverse

SWT.Dispose SWT.Iconify SWT.MouseMove SWT.Verify

SWT.DragDetect SWT.KeyDown SWT.MouseUp

Listing 4.1 Ch4_MouseKey.java

Event processing in SWT 61
 Button typed = new Button(this, SWT.PUSH);
 typed.setText("Typed");
 typed.setLocation(2,10);
 typed.pack();

 typed.addKeyListener(new KeyAdapter()
 {
 public void keyPressed(KeyEvent e)
 {
 keyHandler();
 }
 });

 Button untyped = new Button(this, SWT.PUSH);
 untyped.setText("Untyped");
 untyped.setLocation(80,10);
 untyped.pack();
 untyped.addListener(SWT.MouseEnter, UntypedListener);
 untyped.addListener(SWT.MouseExit, UntypedListener);

 output = new Label(this, SWT.SHADOW_OUT);
 output.setBounds(40,70,90,40);
 output.setText("No Event");

 pack();
 }

 Listener UntypedListener = new Listener()
 {
 public void handleEvent(Event event)
 {
 switch (event.type)
 {
 case SWT.MouseEnter:
 output.setText("Mouse Enter");
 break;
 case SWT.MouseExit:
 output.setText("Mouse Exit");
 break;
 }
 }
 };

 void keyHandler()
 {
 output.setText("Key Event");
 }
}

The first button is associated with an anonymous typed listener that receives key-
board events when selected. An untypedListener interface is added to the second

62 CHAPTER 4
Working with events
button, which catches events that occur when the mouse pointer enters and exits
the button. Whenever either button fires an event, a String is sent to the label.

 By integrating this Composite in the CompViewer application from the previous
chapter, the displayed Shell should resemble figure 4.2.

 The SWT structure of this code allows a widget to receive many types of events
and provides for many different responses. But in the majority of GUIs, this isn’t
necessary. In these cases, SWT’s broad capabilities only increase the complexity of
coding event processing. Those willing to trade power for simplicity will find the
JFace event model very helpful.

4.2 Event processing in JFace

A listener interface can provide the same event handling for different controls, but
its usage depends on the component that launched the event. Listeners that
receive MouseEvents can’t be used for menu bar selections. Even untyped Events are
only useful after the program determines which type of control triggered the event.

 But when you’re dealing with complex user interfaces, it’s helpful to separate
the event-handling capability from the GUI components that generated the event.
This allows one group to work on a GUI’s event handling independently from the
group designing its appearance. Also, if a listener’s capability can be attached to
any component, then its code can be reused more often. Finally, if one section of
a program deals strictly with the GUI’s view and another is concerned only with
event processing, then the code is easier to develop and understand.

 JFace provides this separation with its Action and ActionContributionItem
classes. Put simply, an ActionContributionItem combines the function of a GUI
widget and its attached listener class. Whenever the user interfaces with it, it trig-
gers its associated Action class, which takes care of handling the event. Although
this may seem similar to SWT’s listener/event model, these classes are more
abstract, simpler to use, and narrower in scope.

Figure 4.2
The Ch4_MouseKey Composite.
This example combines many types of
SWT classes and interfaces used for
event handling.

Event processing in JFace 63
 Because these classes are more abstract than their SWT counterparts, it may
take time to appreciate their merits. However, once you understand them, we feel
certain that you’ll use them regularly when handling repetitive event processing.
This can be best proven through coding examples. But first, a technical introduc-
tion is in order.

4.2.1 Understanding actions and contributions

Although it’s interesting to know that you can handle TraverseEvents and
ArmEvents if they occur, few applications use them. Also, it may be fascinating to
attach multiple listeners and event handlers to a widget, but GUI components usu-
ally perform only a single function in response to a single input type. Because
SWT’s structure provides for every conceivable component and combination of
events, even the simplest listener/event code requires complexity.

 It would make event programming easier if a toolset concentrated on only
those few widgets and events that are used most often and made their usage as
simple as possible. JFace’s event-processing structure does exactly this: Its goal is
to make event processing more straightforward, allowing programmers to receive
and use common events with fewer lines of code. In reaching this goal, JFace
makes three assumptions:

■ The user’s actions will involve buttons, toolbars, and menus.

■ Each component will have only one associated event.

■ Each event will have only one event handler.

By taking these assumptions into account, JFace simplifies event processing consid-
erably. The first assumption means that contributions only need to take one of
three forms. The second assumption provides the separation of contributions from
their associated actions; that is, if each contributing component triggers only one
event, then it doesn’t matter what action is triggered or which component fired the
event. The third assumption means that each action needs only one event-handling
routine. This simplified event model for SWT/JFace is shown in figure 4.3.

 Like the SWT event model, the interface process begins with the Display class
keeping track of the operating system’s event queue. This time, though, it passes
information to the ApplicationWindow, which contains the Display’s Shell object.
The ApplicationWindow creates an Actionb class and sends it to the contribution
that generated the original event. The contribution then invokes the run()
method of the Action class as the single event handler.

64 CHAPTER 4
Working with events
The Action class behaves similarly to SWT’s Event class, but the contribution capa-
bility is more complicated. The two main contribution classes are the Contribu-
tionItem class and the ContributionManager class. The ContributionItem class
provides individual GUI components that trigger actions, and the Contribution-
Manager class produces objects capable of containing ContributionItems. Because
these are both abstract classes, event handling is performed with their subclasses.
Figure 4.4 shows these inheritance relationships.

 Although the ActionContributionItem class is one of many concrete subclasses
of ContributionItem, it’s the most important. This class is created and imple-
mented in an ApplicationWindow to connect an action to the GUI. It has no set
appearance, but instead takes the form of a button, menu bar item, or toolbar
item, depending on your use of the fill() method.

 The second way to incorporate contributions in an application involves the
use of a ContributionManager subclass. These subclasses serve as containers for

Operating
System Event

Queue
Application

Window

Display Contribution

run()

msg Action Invokes

Figure 4.3 By combining listeners and widgets into contributions, this event model is much
easier to code.

«interface»
IContributionItem ContributionItem

«interface»
IContributionManager ContributionManager

ActionContributionItem MenuManager Tool Bar Manager

Figure 4.4 The classes and interfaces that provide contribution capability in the SWT/JFace model

Event processing in JFace 65
ContributionItems, combining them to improve GUI organization and simplify
programming. The MenuManager class combines ContributionItems in a window’s
top-level menu, and the ToolBarManager class places these objects in a toolbar
located just under the menu.

4.2.2 Creating Action classes

Listing 4.2 creates a subclass of the abstract Action class called Ch4_StatusAction.
This class functions by sending a String to an ApplicationWindow’s status line when-
ever it triggers. We recommend that you add this class to your project directory.

 Because this class will be implemented in a toolbar, it needs an associated
image. The simplest way to do this is to enter the $ECLIPSE_HOME/plugins/
org.eclipse.platform_x.y.z directory, copy the eclipse.gif file, and paste it into the
current project folder.

package com.swtjface.Ch4;

import org.eclipse.jface.action.*;
import org.eclipse.jface.resource.*;

public class Ch4_StatusAction extends Action
{
 StatusLineManager statman;
 short triggercount = 0;

 public Ch4_StatusAction(StatusLineManager sm)
 {
 super("&Trigger@Ctrl+T", AS_PUSH_BUTTON);
 statman = sm;
 setToolTipText("Trigger the Action");
 setImageDescriptor(ImageDescriptor.createFromFile
 (this.getClass(),"eclipse.gif"));
 }

 public void run()
 {
 triggercount++;
 statman.setMessage("The status action has fired. Count: " +
 triggercount);
 }
}

The first thing to observe in this class is what isn’t present. Although the construc-
tor receives a StatusLineManager object to display output, the Ch4_StatusAction

Listing 4.2 Ch4_StatusAction.java

66 CHAPTER 4
Working with events
class has no idea what components are firing its action. Therefore, any control
that can generate actions can have an associated Ch4_StatusAction without addi-
tional code. Also, there is only one event-handling routine, run(), as opposed to
the multiple handlers associated with SWT events.

 The run() method handles the event processing, but the main work in this
class is performed in the constructor. First, it invokes the constructor of its super-
class, Action, and initializes its TEXT and STYLE fields. This way, if the
Ch4_StatusAction is incorporated in a menu, the item label will read Trigger. The
& before the T means that this letter will serve as the accelerator key for the
action. The Ctrl+T in the TEXT field ensures that the action will fire if the user
presses the Ctrl and T keys simultaneously.

 Beneath the Action constructor, further methods are invoked to configure its
appearance in the GUI. If it’s implemented in a Composite, the Ch4_StatusAction
class will take its form according to the AS_PUSH_BUTTON style, as opposed to the
AS_RADIO_BUTTON or AS_CHECK_BOX style. Next, the setToolTipText() method ini-
tializes the TOOL_TIP_TEXT field of the class, creating the String that will appear
when a mouse pointer hovers over the toolbar item. Finally, the constructor asso-
ciates an image with the Ch4_StatusAction class, which will appear on the toolbar
item and button.

 Every time the Ch4_StatusAction is generated, the run() method is invoked. In
this case, the triggercount accumulator is updated, and a message is sent to the
StatusLineManager object. In most applications, however, this method will be
much more involved in order to serve your event-processing needs.

4.2.3 Implementing contributions in an ApplicationWindow

Because actions and contributions can only be associated with buttons, toolbar
items, and menu items, any application demonstrating their capability must rely
on these components. So, although a formal introduction to these widgets will
have to wait until later chapters, we must include them here for that purpose.

 Listing 4.3 shows how ContributionItem and ContributionManager classes are
added to a window. Three contributor classes, ActionContributionItem, MenuMan-
ager, and ToolBarManager, all trigger the Ch4_StatusAction when acted on. This
action sends a message to the status line at the bottom of the window.

 We recommend that you create the Ch4_Contributions class in com.swtjface.Ch4
and run the executable with the Ch4_StatusAction class in the same directory.

Event processing in JFace 67
NOTE On many platforms, the Contribution operation can’t take place unless
the OSGi library is added. For this reason, we recommend that you cre-
ate an OSGI_LIB variable and match it to the osgi.jar file located at
$ECLIPSE/plugins/osgi_x.y.z/. The full process for adding classpath
variables is described in appendix A.

OSGi refers to the Open Services Gateway Initiative, which was
formed to enable networking for smart devices in consumer electronics,
cars, and homes. Although its widespread adoption seems uncertain at
the time of this writing, it’s certain that IBM wants it to succeed very badly.

package com.swtjface.Ch4;
import org.eclipse.swt.*;
import org.eclipse.swt.widgets.*;
import org.eclipse.jface.window.*;
import org.eclipse.jface.action.*;

public class Ch4_Contributions extends ApplicationWindow
{
 StatusLineManager slm = new StatusLineManager();
 Ch4_StatusAction status_action = new Ch4_StatusAction(slm);
 ActionContributionItem aci = new
 ActionContributionItem(status_action);

 public Ch4_Contributions()
 {
 super(null);
 addStatusLine();
 addMenuBar();
 addToolBar(SWT.FLAT | SWT.WRAP);
 }

 protected Control createContents(Composite parent)
 {
 getShell().setText("Action/Contribution Example");
 parent.setSize(290,150);
 aci.fill(parent);
 return parent;
 }

 public static void main(String[] args)
 {
 Ch4_Contributions swin = new Ch4_Contributions();
 swin.setBlockOnOpen(true);
 swin.open();
 Display.getCurrent().dispose();
 }

 protected MenuManager createMenuManager()
 {

Listing 4.3 Ch4_Contributions.java

b
Assign status_action
contribution

c Add resources to
ApplicationWindow

d Create button
within window

68 CHAPTER 4
Working with events
 MenuManager main_menu = new MenuManager(null);
 MenuManager action_menu = new MenuManager("Menu");
 main_menu.add(action_menu);
 action_menu.add(status_action);
 return main_menu;
 }

 protected ToolBarManager createToolBarManager(int style)
 {
 ToolBarManager tool_bar_manager = new ToolBarManager(style);
 tool_bar_manager.add(status_action);
 return tool_bar_manager;
 }

 protected StatusLineManager createStatusLineManager()
 {
 return slm;
 }
}

The only difference between this JFace application and those in prior chapters is
the introduction of actions and contributions.

Beneath the class declaration, the program constructs an instance of the
Ch4_StatusAction with a StatusLineManager object as its argument. Then, it cre-
ates an ActionContributionItem object and identifies it with the
Ch4_StatusAction instance. This contribution has no form yet, but is simply a
high-level means of connecting an action to the user interface.

The constructor method creates an ApplicationWindow object and adds a menu,
toolbar, and status line.

The createContents() method sets the title and size of the window and then
invokes aci.fill(). This method is important since it places the ActionContribu-
tionItem object in the GUI. In this case, because the fill() argument is a Compos-
ite object, the contributor takes the form of a button that triggers a StatusEvent
whenever it’s pressed.

The last three methods in Ch4_Contributions are also straightforward. The main()
method takes care of creating and opening the window and then disposing of the
GUI resources. Then, the createMenuManager() method creates a menu instance at
the top of the window. Because it’s a subclass of ContributionManager, an Action
object can be associated with it, and the status_action object is added with the
add() method. This method is also used in the createToolBarManager() method to
associate the action instance. In both cases, an ActionContributionItem is

b Assign status_action
contribution

b

b

c

d

Event processing in JFace 69
implicitly created and added to the menu in the form of a menu item and to the
toolbar as a toolbar item.

 Figure 4.5 shows the user interface of Ch4_Contributions. The status line at
the bottom keeps a running count of the number of Ch4_StatusActions that
trigger.

4.2.4 Interfacing with contributions

There are two main ways of incorporating an ActionContributionItem in a GUI.
The first method is to use the add() method of a ContributionManager subclass, as
performed by the MenuManager and ToolBarManager in the Ch4_Contributions
application. The second is to use the fill() method associated with the Action-
ContributionItem class and add an SWT widget as its argument. If the argument is
a Composite, as in Ch4_Contributions, then the contributor will appear as deter-
mined by the STYLE property of the action. If the argument is an SWT Menu object,
then the contributor will take the form of a menu item. Finally, if the argument is
an SWT ToolBar object, then the contributor will appear as an item in a toolbar.
The characteristics of the fill() method are shown in table 4.6.

Figure 4.5 Ch4_Contributions. This application shows the three ways a ContributionItem can
be incorporated in a window.

Table 4.6 Overloaded fill() methods of the ActionContributionItem and their associ-
ated appearances

fill() method GUI implementation (appearance)

fill(Composite) According to Action’s STYLE property

fill(Menu, index) MenuItem with index position

fill(ToolBar, index) ToolBarItem with index position

70 CHAPTER 4
Working with events
An interesting characteristic of the ContributionManager class is that its add()
method is overloaded to accept arguments of both Action and ActionContribution-
Item classes. So, you can associate a ContributionItem with a ContributionManager
implicitly (with the Action) or explicitly (with the ActionContributionItem). But
there’s a fundamental difference: You can perform implicit contribution association
repeatedly with the same Action object, as shown in the Ch4_Contributions class.
Explicit contribution association can be performed only once.

4.2.5 Exploring the Action class

Although Ch4_StatusAction was simple to code and understand, you need to
keep in mind many more aspects of the Action class. The Action class contains a
large number of methods to enhance the capability of your user interface. These
have been divided into categories and listed in the tables that follow.

 The first set of methods, shown in table 4.7, is important in any implementa-
tion of the Action class. The first and most important method is run(). As we men-
tioned earlier, this is the single event-handling routine in an Action class, and it’s
invoked every time the action is triggered. The next method in the table serves as
the default constructor. In addition, constructor methods initialize the member
fields associated with the Action class, which we’ll fully describe shortly.

As shown in the Ch4_StatusAction code sample, an instance of the Action class
contains a number of fields that provide information about displaying the Action
in a GUI. You can access and manipulate these fields using the methods listed in
table 4.8. The TEXT field, set and accessed by the first two methods, contains a
String that displays a title or menu item description in a contributor. The next
two deal with the DESCRIPTION field, which is generally written to a status line to
provide additional help. When the user rests the pointer on a contributor, the

Table 4.7 Important methods of the Action class

Action method Function

run() Performs event processing associated with the Action

Action() Default constructor

Action(String) Constructor that initializes the TEXT field

Action(String, ImageDescriptor) Constructor that initializes the TEXT field and associ-
ates an image with the Action

Action(String, int) Constructor that sets the TEXT and STYLE fields

Event processing in JFace 71
String in the TOOL_TIP_TEXT field is shown. The last two methods in this table set
and access the IMAGE property of the Action class, which contains a String repre-
senting an object of the ImageDescriptor class. As we’ll further explain in
chapter 7, an ImageDescriptor isn’t an image, but an object that holds informa-
tion needed to create one.

The final field contained in the Action class is the STYLE. This integer value is set
by a constructor and accessed through the getStyle() method listed at the top of
table 4.9. The next two methods, setEnabled() and getEnabled(), determine
whether the component(s) associated with the Action object can be acted on by
the user. If not, they are grayed out by default. The final methods, setChecked()
and isChecked(), are useful if the Action is associated with a radio button or
checkbox. They’re used to set the default state of the button or determine
whether the user has checked it.

Table 4.8 Property methods for the Action class

Action property method Function

setText(String) Sets the TEXT field

getText() Returns the TEXT field

setDescription(String) Sets the DESCRIPTION field

getDescription() Returns the DESCRIPTION field

setToolTipText(String) Sets the TOOL_TIP_TEXT field

getToolTipText() Returns the TOOL_TIP_TEXT field

setImageDescriptor(ImageDescriptor) Sets the IMAGE field

getImageDescriptor() Returns the IMAGE field

Table 4.9 Style methods for the Action class

Action style method Function

getStyle() Returns the STYLE field

setEnabled(boolean) Sets the ENABLED field

getEnabled() Returns the ENABLED field

setChecked(boolean) Sets the CHECKED field

isChecked(void) Returns the CHECKED field

72 CHAPTER 4
Working with events
Table 4.10 shows the methods that deal with accelerator keys and keyboard con-
version. Accelerator keys are keyboard shortcuts that accomplish the same function
as a mouse click. As mentioned in section 4.1.4, pressed keys are represented in
SWT with integer key codes, which include all alphanumeric keys and modifier
keys (Alt, Ctrl, Shift, Command). The first method creates an accelerator key for
the Action object and associates it with an SWT key code. The next method pro-
vides the key code for the Action’s accelerator key. The next two methods convert
back and forth between an accelerator key’s key code and its String representa-
tion. The removeAcceleratorKey() method parses text and deletes occurrences of
the Action’s accelerator key. The last four methods in the table provide conver-
sion between Strings representing keyboard characters and modifier keys, and
their SWT code representations.

Although JFace uses actions to replace the SWT listener/event mechanism, the
Action class can still incorporate listeners for special-purpose event handling.
These methods are shown in table 4.11; they mainly concern the IProperty-
ChangeListener interface. This interface pays attention to user-customized Prop-
ertyChangeEvents, which fire whenever a given Object changes into a different
Object in a manner you describe. Although dealing with property changes may
seem complicated, they let you create custom listener/event relationships instead
of being limited to those provided by SWT.

 The first two methods in table 4.11 take care of associating and disassociat-
ing PropertyChangeListeners. You can use the next two methods to test these

Table 4.10 Accelerator key / keyboard methods for the Action class

Keyboard method Function

setAccelerator(int) Set the key code as the Action’s accelerator key

getAccelerator() Returns the key code for the Action’s accelerator key

convertAccelerator(int) Converts the accelerator key to a String

convertAccelerator(String) Converts the String to an accelerator key

removeAcceleratorText(String) Removes the accelerator keys from a given String

findKeyCode(String) Converts the key name to an SWT key code

findKeyString(int) Converts the key code to a key name

findModifier(String) Converts the modifier name to a modifier key code

findModifierString(int) Converts the modifier key code to a modifier name

Event processing in JFace 73
listeners by triggering property changes, based on a precreated event class or a
specified change in a given Object. The final methods in this table relate to
HelpListeners, which deal with the user’s attempt to obtain information con-
cerning a given component.

Table 4.12 lists a group of diverse methods contained in the Action class. The first
four are used to obtain and access identifiers for both the Action class and its def-
inition. The next two, setMenuCreator() and getMenuCreator(), work with IMenu-
Creator interfaces that can be associated with an Action object. This interface
provides a simple way of creating a drop-down or pop-up menu when a particular
action triggers. The last four methods concern more images that can be linked to
an action. When an Action’s ENABLED field is set to FALSE, you can specify which
image will represent the action by using the setDisabledImageDescriptor()
method and retrieve the image with the getDisabledImageDescriptor() method.
Also, if you want to change an image while a pointer hovers above it, the set-
HoverImageDescriptor() method will set this property.

Table 4.11 Listener methods for the Action class

Action listener method Function

addPropertyChangeListener
(IPropertyChangeListener)

Associates a property change listener with the Action

removePropertyChangeListener
(IPropertyChangeListener)

Removes a property change listener from the Action

firePropertyChange(Event) Changes a property according to an event

firePropertyChange
(String, Object, Object)

Changes a property according to old and new objects

setHelpListener(HelpListener) Associates a help listener with the Action

getHelpListener() Returns a help listener associated with the Action

Table 4.12 Miscellaneous methods of the Action class

Method Description

setID(String) Sets an Action identifier

getID() Returns an Action identifier

setActionDefinitionID(String) Sets an Action definition identifier

getActionDefinitionID() Returns an Action definition identifier

continued on next page

74 CHAPTER 4
Working with events
With these methods, the JFace toolset broadens the functionality of the Action
class far beyond the simple Ch4_StatusAction class. Although you may not need
all of them, it’s important to know how they function and how they can be used in
applications.

4.3 Updating the WidgetWindow

To continue populating the WidgetWindow application, this chapter provides a
Composite subclass containing widgets that receive and respond to user actions.
This will incorporate code presented earlier in the chapter.

4.3.1 Building the chapter 4 Composite

Listing 4.4 presents the Ch4_Composite class, which subclasses the Ch4_MouseKey
class from section 4.1 and launches the Ch4_Contributions class developed in sec-
tion 4.2. We recommend that you add this class to the com.swtjface.Ch4 package.

package com.swtjface.Ch4;
import org.eclipse.swt.*;
import org.eclipse.swt.widgets.*;
import org.eclipse.swt.events.*;

public class Ch4_Composite extends Ch4_MouseKey
{
 public Ch4_Composite(Composite parent)
 {
 super(parent);
 Button launch = new Button(this, SWT.PUSH);
 launch.setText("Launch");
 launch.setLocation(40,120);
 launch.pack();

setMenuCreator(IMenuCreator) Sets a menu creator for the Action

getMenuCreator() Returns a menu creator for the Action

setDisabledImageDescriptor(ImageDescriptor) Sets the disabled Action image

getDisabledImageDescriptor() Returns the disabled Action image

setHoverImageDescriptor(ImageDescriptor) Sets the mouse-hovering image

getHoverImageDescriptor() Returns the mouse hovering image

Table 4.12 Miscellaneous methods of the Action class (continued)

Method Description

Listing 4.4 Ch4_Composite.java

Updating the WidgetWindow 75
 launch.addMouseListener(new MouseAdapter()
 {
 public void mouseDown(MouseEvent e)
 {
 Ch4_Contributions sw = new Ch4_Contributions();
 sw.open();
 }
 });
 }
}

The operation of Ch4_Composite is simple to understand. By extending the
Ch4_MouseKey class, it incorporates the typed and untyped SWT listeners associated
with that Composite. It also adds a third button labeled Launch. When clicked,
this button creates an instance of the JFace window that uses actions and contrib-
utors to perform event processing.

4.3.2 Adding Ch4_Composite to the WidgetWindow

Next a tab is added to the WidgetWindow Tabfolder that comprises the Composite
created in this chapter. The code for the main WidgetWindow application is shown
in listing 4.5, with the lines added in this chapter in boldface.

package com.swtjface.Ch2;

import org.eclipse.swt.*;
import org.eclipse.swt.widgets.*;
import org.eclipse.jface.window.*;

import com.swtjface.Ch3.*;
import com.swtjface.Ch4.*;

public class WidgetWindow extends Window {

 public WidgetWindow() {
 super(null);
 }

 protected Control createContents(Composite parent) {
 TabFolder tf = new TabFolder(parent, SWT.NONE);

 TabItem chap3 = new TabItem(tf,SWT.NONE);
 chap3.setText("Chapter 3");
 chap3.setControl(new Ch3Comp(tf));

 TabItem chap4 = new TabItem(tf,SWT.NONE);
 chap4.setText("Chapter 4");
 chap4.setControl(new Ch4_Composite(tf));

Listing 4.5 The updated WidgetWindow

76 CHAPTER 4
Working with events
 getShell().setText("Widget Window");
 return parent;
 }

 public static void main(String[] args) {
 WidgetWindow wwin = new WidgetWindow();
 wwin.setBlockOnOpen(true);
 wwin.open();
 Display.getCurrent().dispose();
 }
}

Once updated, the WidgetWindow should appear similar to the GUI shown in
figure 4.6. Ch4_Contributions appears when the Launch button is clicked.

Figure 4.6
The updated WidgetWindow

Summary 77
4.4 Summary

Event handling is simple in theory but complicated in practice. It’s obvious that
when a user clicks a button or enters text, a software routine should respond. But
the process of keeping track of which widget fired the event, what type of event
occurred, and which software routine should execute isn’t obvious and requires
effort. To an extent, the degree of effort depends on the toolset. If the toolset pro-
vides processing of as many events as possible, for as many widgets as possible, then
you’ll pay for this vast scope by having to comply with a complicated code structure.

 This is the situation with SWT’s event model. Because there are so many differ-
ent types of events, you need tables 4.1 and 4.5 in order to write responsive code.
So many methods are available for responding to events that a separate adapter
class becomes necessary. This event processing demands a fair amount of under-
standing, but when you need to keep track of right-click events and whether the
user can traverse a widget, SWT is the best toolset available.

 The developers of JFace, on the other hand, used the Pareto Rule in designing
the toolset. This rule, applied to GUI programming, states that 80% of the code
needed for event processing will deal with only 20% of the available events. Simi-
larly, the majority of these events will be fired by a small set of widgets. By follow-
ing these rules, the developers of JFace concluded that there is no need for
listeners, adapters, or widgets. Instead, JFace performs event processing with
actions, which are triggered when a user interfaces the GUI, and contributors,
which can take multiple forms but trigger a single action.

 Clearly, a user interface of any complexity must incorporate both event-
processing methods. Although JFace will provide rapid coding for menus, tool-
bars, and buttons, SWT is needed to process keyboard actions as well as events
related to widgets like Shells and tables. Also, JFace’s classes won’t help you when
you need to distinguish between a left click and a right click. Therefore, a GUI
developer seeking to provide a maximum of capability with a minimum of code
should be familiar with both toolsets.

 As shown by the tables in this chapter, effective event programming depends
on keeping track of a myriad of rules, classes, and details. Because of this com-
plexity, we thought long and hard about where to present this material in this
book. We first planned to present the SWT/JFace event model in the later chap-
ters, but then all of the preceding code would be static. So, to ensure that future
code examples will be more helpful to readers, we decided to introduce this con-
voluted subject early on.

 Let’s start building dynamic GUIs!

M A N N I N G $44.95 US/$62.95 Canada

S
WT and JFace—Eclipse’s graphical libraries—enable you to build
nimble and powerful Java GUIs. But this is only the beginning.
With Draw2D and the Graphical Editing Framework, you can

go beyond static applications and create full-featured editors. And
with the Rich Client Platform, you can build customized work-
benches whose capabilities far exceed those of traditional interfaces.

FSWT/JFace in Action covers the territory, from simple widgets to
complex graphics. It guides you through the process of developing
Eclipse-based GUIs and shows how to build applications with features
your users will love. The authors share with you their intimate knowl-
edge of the subject in a helpful and readable style.

This book encourages you to learn through action. Many code sam-
ples show you how SWT/JFace works in practical applications. Not
only do these examples help you understand, they are working
programs you can reuse in your own interfaces.

What’s Inside
n Understanding SWT/JFace design

n Creating workbenches with the Rich Client Platform

n Building editors with Draw2D and
the Graphical Editing Framework

n Integrating SWT with Microsoft’s COM

n And much more

Matthew Scarpino, Stephen Holder, Stanford Ng, and Laurent Mihalkovic
together have a rich and varied background from work on applica-
tions for reconfigurable computing, financial management, and
enterprise development.

JAVA

SWT/JFace IN ACTION
Scarpino • Holder • Ng • Mihalkovic

“An excellent work!
It is timely, comprehensive,
and interestingly presented.”

—Phil Hanna
SAS Institute Inc.
author of JSP: The Complete Reference

“I recommend this book
to anyone getting into
development with the
Eclipse libraries.”

—Steve Gutz
Senior Software Developer, IBM
author of Up to Speed with Swing

“I really enjoyed the authors’
style. It was easy to read,
and the information stayed
with me.”

—Carl Hume
Software Architect

“… a good and useful
treatment. There is no other
book like it in the market.”

—Robert D. McGovern
co-author of Eclipse in Action

,!7IB9D2-djechg!:p;o;O;t;P
ISBN 1-932394-27-3

www.manning.com/scarpino

Ask the Authors Ebook edition

AUTHOR
4

ONLINE

4

Matthew Scarpino
Stephen Holder

Stanford Ng
Laurent Mihalkovic

M A N N I N G

SWT/JFace
IN ACTION

How to design graphical applications with Eclipse 3.0

SWT/JFace
in Action

Chapter 9

MATTHEW SCARPINO
STEPHEN HOLDER

STANFORD NG
AND LAURENT MIHALKOVIC

M A N N I N G

Greenwich
(74° w. long.)

For online information and ordering of this and other Manning books, please go to
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact:

Special Sales Department
Manning Publications Co.
209 Bruce Park Avenue Fax: (203) 661-9018
Greenwich, CT 06830 email: orders@manning.com

©2005 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books they publish printed on acid-free paper, and we exert our best efforts to that end.

Manning Publications Co. Copyeditor: Tiffany Taylor
209 Bruce Park Avenue Typesetter: Tony Roberts
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1-932394-27-3

Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – VHG – 08 07 06 05 04

v

brief contents
1 ■ Overview of SWT and JFace 1

2 ■ Getting started with SWT and JFace 13

3 ■ Widgets: part 1 27

4 ■ Working with events 48

5 ■ More widgets 78

6 ■ Layouts 109

7 ■ Graphics 133

8 ■ Working with trees and lists 167

9 ■ Tables and menus 190

10 ■ Dialogs 212

11 ■ Wizards 234

12 ■ Advanced features 253

13 ■ Looking beyond SWT/JFace: the Rich Client Platform 284

Tables and menus
This chapter covers
■ SWT tables
■ JFace tables
■ Editing table data
■ Creating menus
190

Tables 191
Just about every time we want to go out to eat, we find ourselves sitting in the car,
wracking our brains as we try to think of somewhere to go. We end up naming dif-
ferent styles of food—“Japanese?” “Not bad, but not really what I’m in the mood
for.” “Italian?” “Not tonight.” “Indian?” “That’s a good idea, but let’s keep think-
ing.” Especially when we’re hungry, we have a hard time thinking about what res-
taurants are nearby and coming up with good options.

 Eventually, we came up with a plan: One afternoon, when we weren’t hungry
and had time to think, we wrote up a list of restaurants in the area, organized by
price and type of food. Now, when we decide to go out, we can look at the list and
have concrete options to discuss. It doesn’t help when we’re in the mood for dif-
ferent things, but it makes the process of deciding where to go easier.

 In a software application, a menu provides a function similar to our list of res-
taurants. A finite list of options is presented to users to guide them in deciding
what tasks they wish to perform. Just as we sometimes rediscover a favorite place to
eat that we haven’t visited in a while, users can discover functionality they didn’t
know existed in your application by seeing it listed in a pull-down or context menu.

 We’ll cover two tasks in this chapter. First, we’ll continue our discussion of the
Viewer framework from the previous chapter by covering the last of the basic
viewer widgets, the table. The concepts you’ve already learned are just as applica-
ble to tables as they were to trees and lists, but JFace also provides advanced
options in the form of cell editors to make it easy to implement user-editable
tables. Once you’re familiar with the editing framework, we’ll revisit the Actions
we discussed in chapter 4 and show how to apply them to the creation of menus,
so that you can present functions to your users instead of leaving them to guess or
remember what your application is capable of. Finally, our example in this chap-
ter shows how to apply a context menu to a table by presenting a small user-
editable widget that could be used to edit data in a relational database.

9.1 Tables

To the user, a table looks like a two-dimensional grid composed of many cells.
Often this is a convenient way to display items such as the result of a database
query—each row of the result set maps nicely to a single row in the table. As you’ll
see, however, JFace provides advanced facilities for editing table data as well.

9.1.1 Understanding SWT tables

Continuing SWT’s trend of intuitive widget names, a table is represented by a class
named Table. The Table class isn’t terribly interesting. In general, if you’re using

192 CHAPTER 9

Tables and menus
JFace, you’ll be better off interacting with a Table through the interface provided
by a TableViewer, which we discuss later in the chapter. However, if you need to
manipulate the currently selected table items directly, or you aren’t using JFace,
you’ll need to use the underlying Table.

 The first thing you’ll notice when looking at the methods available on Table is
that although there are plenty of accessor methods to query its state, there is a dis-
tinct lack of setters that would let you customize the Table. In fact, rather than
adding data or columns directly to the Table, you’ll pass a Table instance to the
appropriate dependent class when that dependent is instantiated, similar to the
way Composites are passed to other widgets rather than the widget being added to
the Composite. Other than a few setters for straightforward display properties,
such as header visibility, the critical methods to be aware of when manipulating a
Table are summarized in table 9.1.

It’s also important to remember that Table extends Scrollable and will therefore
automatically come equipped with scrollbars unless you turn them off.

TableItems
To add data to a table, you must use a TableItem. Each instance of TableItem rep-
resents an entire row in the table. Each TableItem is responsible for controlling
the text and image to display in each column of its row. These values can be set
using the setText() and setImage() methods, each of which takes an integer
parameter designating which column to modify.

 As we mentioned, TableItems are associated with a Table in their constructor,
as shown here:

 Table t = ...
 //Create a new TableItem with the parent Table
 //and a style

Table 9.1 Important Table methods

Method Description

addSelectionListener() Notifies you when the table’s selection changes

select()/deselect() Overloaded in several ways to let you programmatically add or
remove the selection on one or more items

getSelection() Retrieves an array of the currently selected items

remove() Removes items from the table

showItem()/showSelection() Forces the table to scroll until the item or selection is visible

Tables 193
 TableItem item = new TableItem(t, SWT.NONE);
 item.setText(0, “Hello World!”);
 ...

According to the Javadocs, no styles are valid to be set on a TableItem, but the
constructor accepts a style parameter anyway. This seems rather unnecessary to us,
but it’s at least consistent with the other widgets we’ve seen.

TableColumn
The final class you’ll need to work directly with tables is TableColumn, which cre-
ates an individual column in the table. As with TableItem, you must pass a Table to
the constructor of TableColumn in order to associate the two objects.

 Each TableColumn instance controls one column in the table. It’s necessary to
instantiate the TableColumns you need, or the Table will default to having only one
column. Several methods are available to control the behavior and appearance of
each column, such as the width, alignment of text, and whether the column is resiz-
able. You can add header text by using the setText() method. Instead of setting the
attributes directly on a column, however, it’s usually easier to use a TableLayout. By
calling TableLayout’s addColumnData() method, you can easily describe the appear-
ance of each column in the table. The ability to pass addColumnData() instances of
ColumnWeightData is key; doing so lets you specify a relative weight for each column
without having to worry about the exact number of pixels required for each one.

 The following snippet shows how to create a table using a TableLayout. The
code creates three columns of equal width and fills two rows with data. The code
produces a table that looks similar to figure 9.1.

 //Set up the table layout
 TableLayout layout = new TableLayout();
 layout.addColumnData(new ColumnWeightData(33, 75, true));
 layout.addColumnData(new ColumnWeightData(33, 75, true));
 layout.addColumnData(new ColumnWeightData(33, 75, true));

 Table table = new Table(parent, SWT.SINGLE);
 table.setLayout(layout);

 //Add columns to the table
 TableColumn column1 = new TableColumn(table, SWT.CENTER);
 TableColumn column2 = new TableColumn(table, SWT.CENTER);
 TableColumn column3 = new TableColumn(table, SWT.CENTER);

 TableItem item = new TableItem(table, SWT.NONE);
 item.setText(new String[] { "column 1",
 "column 2",
 "column 3" });
 item = new TableItem(table, SWT.NONE);
 item.setText(new String[] { "a", "b", "c" });

194 CHAPTER 9

Tables and menus
The first thing to do is set up the structure for this table using a TableLayout. Each
time you call addColumnData(), it adds a new column to the table. We’ll have three
columns, so we add a ColumnWeightData to describe each. The parameters to the
constructor that we use here are weight, minimumWidth, and resizeable. weight
indicates the amount of screen space this column should be allocated, as a per-
centage of the total space available to the table. minimumWidth is, as the name indi-
cates, the minimum width in pixels to use for this column. The resizeable flag
determines whether the user can resize this column.

 After we’ve set up the table, we need to instantiate three columns so they will
be added to the table. It’s important to keep in mind that adding columns is a
two-step process: create a TableLayout that describes how large each column will
be, and then create the columns themselves. Because we allow the TableLayout to
control sizing, we don’t need to use the columns after they’ve been created.

9.1.2 JFace TableViewers

Although it’s possible to use a Table directly in your code, as you can see, doing so
is neither intuitive nor convenient. Similarly to List, however, JFace provides a
viewer class to make using tables easier. The following snippets demonstrate a
basic TableViewer that displays data from a database. The same concepts of filters,
sorters, and label providers that we discussed in chapter 8 apply here as well. Addi-
tionally, we’ll use a ContentProvider to supply the data to our table, because the
same arguments presented in the previous chapter apply here.

 First, the table must be set up. This is similar to the process of setting up a
Table, which you saw in the previous section, using addColumnData() for each col-
umn that will be created:

 final TableViewer viewer = new TableViewer(parent,
 SWT.BORDER | SWT.FULL_SELECTION);

 //configure the table for display
 TableLayout layout = new TableLayout();
 layout.addColumnData(new ColumnWeightData(33, true));
 layout.addColumnData(new ColumnWeightData(33, true));
 layout.addColumnData(new ColumnWeightData(33, true));

 viewer.getTable().setLayout(layout);

Figure 9.1
A simple three-column table

Tables 195
 viewer.getTable().setLinesVisible(true);
 viewer.getTable().setHeaderVisible(true);

Once the table has been configured, we attach the appropriate providers. The
most important one in this example is the content provider, which is responsible
for retrieving data from the database and passing it back to the viewer. Note that
you never return null from getElements()—instead, return an empty array if
there are no more children:

 viewer.setContentProvider(new IStructuredContentProvider() {
 public Object[] getElements(Object input)
 {
 //Cast input appropriately and perform a database query
 ...
 while(results.next())
 {
 //read results from database
 }
 if(resultCollection.size() > 0)
 {
 return new DBRow[] { ... };
 }
 else
 {
 return new Object[0];
 }
 }

 //... additional interface methods
 });

 viewer.setLabelProvider(new ITableLabelProvider() {
 public String getColumnText(Object element, int index) {
 DBRow row = (DBRow)element;
 switch(index)
 {
 //return appropriate attribute for column
 }
 }
 //... additional interface methods
 });

Once the providers have been set up, we can add the columns. The text we set on
each column will appear as a header for that column when the table is displayed:

 TableColumn column1 = new TableColumn(viewer.getTable(),
 SWT.CENTER);
 column1.setText("Primary Key");
 TableColumn column2 = new TableColumn(viewer.getTable(),
 SWT.CENTER);
 column2.setText("Foreign Key");

196 CHAPTER 9

Tables and menus
 TableColumn column3 = new TableColumn(viewer.getTable(),
 SWT.CENTER);
 column3.setText("Data");

Finally, we need to provide input to drive the content provider. The input object
(in this case, a String describing a query) is set on the viewer, which passes it to
the content provider when it’s ready to display the table:

 viewer.setInput(QUERY);

This example simulates retrieving multiple rows from a database and displaying
the results. However, it suffices to get our point across about content providers.
The role of the IStructuredContentProvider implementation is straightforward:
Given an input element, return all the children elements to be displayed. A table
doesn’t maintain parent/child relationships, so this method is called only once
and is given the current input object. The final issue to be aware of when using a
content provider is that it will always execute in the UI thread. This means updates
to the interface will be waiting for your methods to complete, so you definitely
shouldn’t query a database to get your updates. The content provider should
traverse a graph of already-loaded domain objects to select the appropriate con-
tent to display.

A word about error handling
When you’re using JFace—especially the providers that the widgets call inter-
nally—it pays to be careful with your error handling. When JFace makes the
callback to your class, it typically does so inside a try/catch block that catches
all exceptions. JFace does some checks to see whether it knows how to handle
the exception itself before letting the exception propagate. Unfortunately,
these checks rely upon the Platform class, which is tightly coupled with
Eclipse; it’s practically impossible to initialize Platform correctly unless you’re
running Eclipse. This leads to internal assertion failures when JFace tries to
use Platform outside of Eclipse, and these exceptions end up masking your
own errors.

In practical terms, you shouldn’t ever let an exception be thrown out of a
provider method. If it happens, you’re in for strange “The application has not
been initialized” messages. If you ever see one of these, check your code care-
fully—things such as ClassCastExceptions can be hard to spot, and locating
them is even more difficult when JFace hides them from you.

Tables 197
Editing table data
Displaying data can be useful on its own, but eventually you’ll want to let the user
edit it. Often, the most user-friendly way to enable editing is to allow the user to
change it directly in the table as it’s presented. JFace provides a means to support
this editing through CellEditors.

 As we mentioned in the chapter overview, CellEditors exist to help decouple
the domain model from the editing process. In addition, using these editors can
make your UI more user friendly: Users won’t be able to enter values your applica-
tion doesn’t understand, thus avoiding confusing error messages further down
the line. The framework assumes that each domain object has a number of named
properties. Generally, you should follow the JavaBeans conventions, with property
foo having getFoo() and setFoo() methods; but doing so isn’t strictly necessary as
long as you can identify each property given only its name. You begin by attaching
an instance of ICellModifier to your TableViewer. The ICellModifier is responsi-
ble for retrieving the value of a given property from an object, deciding whether a
property can currently be edited, and applying the updated value to the object
when the edit has been completed. The actual edit, if allowed, is performed by a
CellEditor. JFace provides CellEditors for editing via checkbox, combo box,
pop-up dialog, or directly typing the new text value. In addition, you can subclass
CellEditor if you need a new form of editor. After registering CellEditors, you
associate each column with a property. When the user clicks on a cell to change its
value, JFace does all the magic of matching the proper column with the property
to edit and displaying the correct editor, and it notifies your ICellModifier when
the edit is complete.

 We’ll show examples of the important parts of the process here. The rest of the
snippets in this section are taken from the Ch9TableEditorComposite, which is
presented in full at the end of the chapter.

 The first snippet sets up data that the rest of the code will reference. The array
of Strings in VALUE_SET holds the values that will be displayed by our ComboBox-
CellEditor. We’ll need to convert between indices and values several times (see
the discussion later in the chapter):

 private static final Object[] CONTENT = new Object[] {
 new EditableTableItem("item 1", new Integer(0)),
 new EditableTableItem("item 2", new Integer(1))
 };
 private static final String[] VALUE_SET = new String[] {
 "xxx", "yyy", "zzz"
 };

198 CHAPTER 9

Tables and menus
 private static final String NAME_PROPERTY = "name";
 private static final String VALUE_PROPERTY = "value";

Our class contains several different methods that are each responsible for setting up
a different facet of the cell editor. They are called in turn from buildControls. The
first thing this method does is set up the table and the classes required by the viewer:

 protected Control buildControls()
 {
 final Table table = new Table(parent, SWT.FULL_SELECTION);
 TableViewer viewer = new TableViewer(table);
 ... //set up a two column table

Once the table has been initialized, we continue by adding an instance of ITable-
LabelProvider to our viewer. The idea is similar to the label providers we dis-
cussed in chapter 8. However, because each row of a table has many columns, the
signature of our methods must change slightly. In addition to the element, each
method now takes the integer index of the column that is being requested. The
label provider must therefore contain the logic to map column indices to proper-
ties of the domain objects. The next snippet shows how this is done:

 viewer.setLabelProvider(new ITableLabelProvider() {
 public String getColumnText(Object element,
 int columnIndex) {
 switch(columnIndex)
 {
 case 0:
 return ((EditableTableItem)element).name;
 case 1:
 Number index = ((EditableTableItem)element).value;
 return VALUE_SET[index.intValue()];
 default:
 return "Invalid column: " + columnIndex;
 }
 }

 });

 attachCellEditors(viewer, table);
 return table;
 }

The attachCellEditors() method is where we set up our ICellModifier, which is
responsible for translating a property name into data to be displayed, deciding
whether a given property can be edited, and then applying whatever changes the
user makes. When the user double-clicks a cell to edit it, canModify() is called to
determine whether the edit should be allowed. If it’s allowed, getValue() is called
next to retrieve the current value of the property being edited. Once the edit is

Tables 199
complete, modify() is called; it’s modify()’s responsibility to apply the changes the
user made back to the original domain object. While in getValue() and canMod-
ify(), it’s safe to cast parameters directly to the domain objects; this doesn’t work
in modify(). modify() receives the TableItem that’s displaying the row. This
TableItem has had the domain object set as its data, so we must retrieve it using
getData() before we can update it:

 private void attachCellEditors(final TableViewer viewer,
 Composite parent)
 {
 viewer.setCellModifier(new ICellModifier() {
 public boolean canModify(Object element,
 String property) {
 return true;
 }

 public Object getValue(Object element, String property) {
 if(NAME_PROPERTY.equals(property))
 return ((EditableTableItem)element).name;
 else
 return ((EditableTableItem)element).value;
 }
 //method continues below...

When modify() is finished updating the domain object, we must let the viewer
know to update the display. The viewer’s refresh() method is used for this pur-
pose. Calling refresh() with the domain object that changed causes the viewer to
redraw the given row. If we skip this step, users will never see their changes once
the edited cell loses focus:

 public void modify(Object element,
 String property, Object value) {
 TableItem tableItem = (TableItem)element;
 EditableTableItem data =
 (EditableTableItem)tableItem.getData();
 if(NAME_PROPERTY.equals(property))
 data.name = value.toString();
 else
 data.value = (Integer)value;

 viewer.refresh(data);
 }
 });

The items given in the CellEditor array here are matched in order with the col-
umns of the underlying table:

 viewer.setCellEditors(new CellEditor[] {
 new TextCellEditor(parent),

200 CHAPTER 9

Tables and menus
 new ComboBoxCellEditor(parent, VALUE_SET)
 });

Next, the strings in setColumnProperties() are the names of the editable proper-
ties on our domain objects. They’re also matched in order with the table’s col-
umns, so that in our example clicking column 0 will try to edit the name property,
and column 1 will edit the value property:

 viewer.setColumnProperties(new String[] {
 NAME_PROPERTY, VALUE_PROPERTY
 });
 }
}

class EditableTableItem
{
 ... //name and value properties
}

Using a ComboBoxCellEditor as we do here is tricky. The editor’s constructor takes
an array of Strings that are the values presented for the user to choose from.
However, the editor expects Integers from getValue() and returns an Integer to
modify() when the edit is complete. These values should correspond to the index
of the selected value in the array of Strings passed to the ComboBoxCellEditor
constructor. In this simple example we save the Integer directly in the value field,
but in a real application you’ll probably need utilities to easily convert back and
forth between indices and values.

 Again, using CellEditors is an area where it’s smart to pay attention to your
casting and error handling. Especially when different methods require you to cast
to different objects, as in the ICellModifier, it’s easy to make a mistake the com-
piler can’t catch for you. Due to JFace’s exception handling, as we discussed ear-
lier, these issues show up as cryptic “Application not initialized” runtime errors
that can be hard to track down if you don’t know what you should be looking for.

9.2 Creating menus

Every graphical application uses a menu of some sort. You’ll often find File, Edit,
and so on across the top of your application’s window. These menus fill an
important role, because they provide a place for users to browse through the
functionality offered by your application.

 We’ll first discuss creating menus using SWT. We’ll then revisit the JFace Action
classes that we mentioned in chapter 4, to discuss an alternate way to create
menus that allows for easy sharing of common code.

Creating menus 201
9.2.1 Accelerator keys

Before we get too deep into the specifics of menus, let’s discuss how SWT handles
accelerator keys. Accelerator keys are keyboard shortcuts that activate a widget with-
out the user having to click it with the mouse. The best example is the ubiquitous
Ctrl-C (or Open Apple-C if you’re using a Mac) to copy text to the clipboard, the
same as if you selected Copy from the Edit menu that’s present in most applica-
tions. Offering accelerator keys for common tasks can greatly increase advanced
users’ productivity, because their hands don’t have to continually switch between
the keyboard and mouse. The accelerator keystroke for an item customarily
appears next to the item’s name in drop-down menus for the application, making
it easier for users to learn the keystrokes as they use the application.

 In both SWT and JFace, accelerator keys are expressed by using constants from
the SWT class. The concept is the same as for styles: All the constants are bitwise
ORed together to determine the final key combination. Additionally, chars are
used to represent letters or numbers on the keyboard. Because a Java char can be
automatically converted to an int, chars can be used just like the SWT style con-
stants to build a bitmask. This bitmask is passed to the setAccelerator() method
on a Menu to register the combination of keys that will activate that menu item. For
example, a MenuItem whose accelerator is set to SWT.CONTROL | SWT.SHIFT | 't'
will activate when the Ctrl, Shift, and T keys are pressed simultaneously.

9.2.2 Creating menus in SWT

When you’re creating menus using SWT, you’ll use only two classes: Menu and
MenuItem. Although the classes themselves aren’t complicated, several areas of
complexity arise once you begin to use them.

 Menu acts as a container for MenuItems. Menu extends Widget and contains meth-
ods for adding MenuItems and controlling the visibility and location of the menu.
Menu also broadcasts events to implementors of the MenuListener interface, which
receives notification when the menu is shown or hidden.

 Menu supports three different styles, which go beyond controlling the visual
appearance to determine the type of menu created:

■ SWT.POP_UP—Creates a free-floating pop-up menu of the type that typically
appears when you right-click in an application.

■ SWT.BAR—Creates the menu bar at the top of an application window. A
menu bar doesn’t typically have selectable menu items; instead, it acts as a
container for menu items that contain menus of type SWT.DROP_DOWN.

202 CHAPTER 9

Tables and menus
■ SWT.DROP_DOWN—Creates the File, Edit, and other drop-down menus that
we’re all familiar with. These menus may contain a mix of MenuItems and
submenus of their own.

A MenuItem is a widget that either can be selected by the end user or can display
another menu. A MenuItem is always created as a child of a Menu. A variety of styles
are available for MenuItems:

■ SWT.PUSH—Creates a standard menu item with no frills.

■ SWT.CHECK, SWT.RADIO—Add either a checkbox or radio button, as appropri-
ate, which flips between on and off each time the item is selected.

■ SWT.SEPARATOR—Visually separates groups of menu items. It displays the
standard separator for your platform (usually a thin line) and may not be
selected by the user.

■ SWT.CASCADE—Creates a submenu. When a cascading menu item has a
menu assigned to it, highlighting that item results in the submenu being
displayed.

All MenuItems except separators broadcast SelectionEvents that can be listened
for. Figure 9.2 shows the different menu styles.

 Creating Menus is straightforward. Classes are instantiated and configured,
and then assigned to the widgets on which they should be displayed. The follow-
ing snippet shows how to create a File menu attached to the main window of
your application:

Composite parent = ... //get parent
Menu menuBar = new Menu(parent.getShell(), SWT.BAR);

MenuItem fileItem = new MenuItem(menuBar, SWT.CASCADE);
fileItem.setText("&File");

Menu fileMenu = new Menu(fileItem);
fileItem.setMenu(fileMenu);

parent.getShell().setMenuBar(menuBar);

Figure 9.2
Menu types. From top to bottom, SWT.CHECK,
SWT.CASCADE, SWT.PUSH, and SWT.RADIO.

Creating menus 203
Notice that you must first create the root menu bar and then add a menu item to
hold each drop-down menu that will appear on it. At this point, we have a menu
bar that displays File but is empty. Our next task is to populate this menu:

MenuItem open = new MenuItem(fileMenu, SWT.PUSH);
open.setText("Open...");
open.setAccelerator(SWT.CONTROL | 'o');
open.addSelectionListener(new SelectionListener() {
 public void widgetSelected(SelectionEvent event) {
 ... //handle selection
 }
};

Clicking File will now reveal a drop-down menu with an Open option. If Open is
selected, the selection listener we’ve defined is invoked to display an Open File
dialog or do whatever other action is appropriate to the application. We’ve also
set the keyboard accelerator for this option to Ctrl-O by calling setAccelerator()
with a bitmask of the keys we wish to assign. The result is that pressing Ctrl-O
invokes the selection listener just as if it was selected with the mouse.

 Creating a pop-up menu is similar to what we’ve done here, but there is a slight
wrinkle. We don’t need a menu bar, so we can start with the pop-up:

Composite parent = ... //get composite
final Menu popupMenu = new Menu(parent.getShell(), SWT.POP_UP);

Notice that we declare the Menu instance to be final. This is important, because
we’ll need to reference it in a listener later.

 Creating the MenuItems is the same as for a drop-down menu. For variety, we’ll
show how to create a menu item that reveals a submenu when highlighted. The
important point to notice in this process is that after the submenu is created, it
must be assigned to its parent menu item using setMenu(), just as we did with the
menu bar in our earlier example:

MenuItem menuItem = new MenuItem(popupMenu, SWT.CASCADE);
menuItem.setText("More options");

Menu subMenu = new Menu(menuItem);
menuItem.setMenu(subMenu);
MenuItem subItem = new MenuItem(subMenu, SWT.PUSH);
subItem.setText("Option 1");
subItem.addSelectionListener(...);

Unlike a menu bar, a pop-up menu isn’t displayed by default—you must decide
when to display it. Typically this is done in response to a mouse right-click, so we’ll
use a MouseListener on the parent Composite. This is where we need the pop-up
menu instance to be final, so we can reference it within our anonymous inner class:

204 CHAPTER 9

Tables and menus
parent.addMouseListener(new MouseListener() {
 public void mouseDown(MouseEvent event) {
 if(event.button == 2)
 {
 popupMenu.setVisible(true);
 }
 }
 ... //other MouseListener methods
});

MouseEvent contains information about the button that was clicked. The buttons
are numbered: 1 is the left mouse button, and 2 is the right button. If this button
was clicked, we make the pop-up menu visible; it’s displayed at the location that
was clicked. Pressing Esc or clicking anywhere other than on the menu automati-
cally causes the pop-up to be hidden.

 Now that you’ve seen how SWT handles menus, we’ll turn our attention to the
menu options offered by JFace.

9.2.3 Using JFace actions to add to menus

We’ve already discussed the design of JFace’s Action classes in chapter 4. To
review briefly, an action encapsulates the response to a single application level
event, such as “Open a file” or “Update the status bar.” This action can then be
reused and triggered in different contexts, such as a toolbar button or a menu
item. We’ll discuss this last case here. By using actions to create your menus,
instead of doing it by hand, you can simplify the design of your application and
reuse common logic.

 Using actions in a menu is similar to using them anywhere else. Remember
that an IContributionManager is responsible for assembling individual Actions
and transforming them into a form that can be displayed to the user. For menus,
we’ll use the MenuManager implementation of IContributionManager. After adding
whatever actions are needed to the MenuManager, we can tell it to create a new
menu or to add the actions to another menu. The code looks something like this:

Shell shell = ... //obtain a reference to the Shell
MenuManager fileMenuManager = new MenuManager("File");

IAction openAction = new OpenAction(...);
... //create other actions as appropriate

fileMenuManager.add(openAction);
... //add other actions

Menu menuBar = new Menu(shell, SWT.BAR);
fileMenuManager.fill(menuBar, -1);
shell.setMenuBar(menuBar);

Updating WidgetWindow 205
Although we’ve still created the menu bar manually, we can add actions to the
manager and let it worry about how the menu should be built. In this case, we end
up with a File menu on the window’s menu bar, because that is the name we gave
the MenuManager when we instantiated it. The advantage of doing it this way
instead of building menus by hand is that the action classes can be easily reused
elsewhere. For example, if we have a toolbar that includes a button to let users
open files, we can use the same OpenAction class there.

 You must keep one caveat in mind when you’re using menu managers: Once
fill() or createXXX() has been called on a given instance, Menu and MenuItem
instances are created and cached internally. This is necessary so that the manager
can be used to update the menu. However, it also means that you shouldn’t make
further calls to fill() or create(), especially for a different type of menu. For
example, suppose that after the previous code we called createContextMenu() on
fileMenuManager. We would get exceptions when we tried to add the menu to a
composite, because the menu would be the cached instance with type SWT.CAS-
CADE instead of type SWT.POP_UP (which is required by context menus).

9.3 Updating WidgetWindow

Our pane for this chapter combines a table viewer, cell editors, and a context
menu. We’ll expand the snippets of a database editor that we discussed earlier
and add a right-click menu that lets the user insert a new row. The final product
looks like figure 9.3.

 Listing 9.1 is longer than the code for most of our chapter panes, so we’ll point
out the most interesting bits before you begin reading it. The first thing to notice
is the inner class NewRowAction. This class holds the logic to insert a new row into
the table; it’s added to the MenuManager we create in createPane().

 Next is the createPane() method, which is the entry point into the class. After
delegating to methods to lay out the table and attach a label provider, content
provider, and cell editor, we instantiate a MenuManager and use it to build a context

Figure 9.3 Our database table editor

206 CHAPTER 9

Tables and menus
menu that we then attach to the newly created Table. Finally, we pass the initial
content to the viewer.

 After createPane() come the private utility methods. The most important for
our purposes is attachCellEditors(), which contains the logic to allow editing of
individual table cells. Note that these modifications are performed directly on the
domain objects.

 At the end of the listing is the EditableTableItem class, which serves as a
domain object for this example and is included in the same file for convenience.

package com.swtjface.Ch9;

import org.eclipse.jface.action.*;
import org.eclipse.jface.viewers.*;
import org.eclipse.swt.SWT;
import org.eclipse.swt.graphics.Image;
import org.eclipse.swt.layout.FillLayout;
import org.eclipse.swt.widgets.*;

public class Ch9TableEditorComposite extends Composite
{

 private static final Object[] CONTENT = new Object[] {
 new EditableTableItem("item 1", new Integer(0)),
 new EditableTableItem("item 2", new Integer(1))
 };

 private static final String[] VALUE_SET = new String[] {
 "xxx", "yyy", "zzz"
 };
 private static final String NAME_PROPERTY = "name";
 private static final String VALUE_PROPERTY = "value";

 private TableViewer viewer;

 public Ch9TableEditorComposite(Composite parent)
 {
 super(parent, SWT.NULL);
 buildControls();
 }

 private class NewRowAction extends Action
 {
 public NewRowAction()
 {
 super("Insert New Row");
 }

 public void run()
 {

Listing 9.1 Ch9TableEditorComposite.java

b Initial content

c NewRowAction class

d run() method

Updating WidgetWindow 207
 EditableTableItem newItem =
 new EditableTableItem("new row", new Integer(2));
 viewer.add(newItem);
 }
 }

 protected void buildControls()
 {
 FillLayout compositeLayout = new FillLayout();
 setLayout(compositeLayout);

 final Table table = new Table(this, SWT.FULL_SELECTION);
 viewer = buildAndLayoutTable(table);

 attachContentProvider(viewer);
 attachLabelProvider(viewer);
 attachCellEditors(viewer, table);

 MenuManager popupMenu = new MenuManager();
 IAction newRowAction = new NewRowAction();
 popupMenu.add(newRowAction);
 Menu menu = popupMenu.createContextMenu(table);
 table.setMenu(menu);

 viewer.setInput(CONTENT);
 }

 private void attachLabelProvider(TableViewer viewer)
 {
 viewer.setLabelProvider(new ITableLabelProvider() {
 public Image getColumnImage(Object element,
 int columnIndex) {
 return null;
 }

 public String getColumnText(Object element,
 int columnIndex) {
 switch(columnIndex)
 {
 case 0:
 return ((EditableTableItem)element).name;
 case 1:
 Number index = ((EditableTableItem)element).value;
 return VALUE_SET[index.intValue()];
 default:
 return "Invalid column: " + columnIndex;
 }
 }

 public void addListener(ILabelProviderListener listener) {
 }

 public void dispose(){
 }

e Build menu

f getColumnText()
method

208 CHAPTER 9

Tables and menus
 public boolean isLabelProperty(Object element,
 String property){
 return false;
 }

 public void removeListener(ILabelProviderListener lpl) {
 }
 });
 }

 private void attachContentProvider(TableViewer viewer)
 {
 viewer.setContentProvider(new IStructuredContentProvider() {
 public Object[] getElements(Object inputElement) {
 return (Object[])inputElement;
 }

 public void dispose() {
 }

 public void inputChanged(Viewer viewer,
 Object oldInput,
 Object newInput) {
 }
 });
 }

 private TableViewer buildAndLayoutTable(final Table table)
 {
 TableViewer tableViewer = new TableViewer(table);

 TableLayout layout = new TableLayout();
 layout.addColumnData(new ColumnWeightData(50, 75, true));
 layout.addColumnData(new ColumnWeightData(50, 75, true));
 table.setLayout(layout);

 TableColumn nameColumn = new TableColumn(table, SWT.CENTER);
 nameColumn.setText("Name");
 TableColumn valColumn = new TableColumn(table, SWT.CENTER);
 valColumn.setText("Value");
 table.setHeaderVisible(true);
 return tableViewer;
 }

 private void attachCellEditors(final TableViewer viewer,
 Composite parent)
 {
 viewer.setCellModifier(new ICellModifier() {
 public boolean canModify(Object element, String property){
 return true;
 }

 public Object getValue(Object element, String property) {

g getElements()
method

buildAndLayoutTable()
method

H

Updating WidgetWindow 209
 if(NAME_PROPERTY.equals(property))
 return ((EditableTableItem)element).name;
 else
 return ((EditableTableItem)element).value;
 }

 public void modify(Object element,
 String property,
 Object value) {
 TableItem tableItem = (TableItem)element;
 EditableTableItem data =
 (EditableTableItem)tableItem.getData();
 if(NAME_PROPERTY.equals(property))
 data.name = value.toString();
 else
 data.value = (Integer)value;

 viewer.refresh(data);
 }
 });

 viewer.setCellEditors(new CellEditor[] {
 new TextCellEditor(parent),
 new ComboBoxCellEditor(parent, VALUE_SET)
 });

 viewer.setColumnProperties(new String[] {
 NAME_PROPERTY, VALUE_PROPERTY
 });
 }

}

class EditableTableItem
{
 public String name;
 public Integer value;

 public EditableTableItem(String n, Integer v)
 {
 name = n;
 value = v;
 }
}

These constants hold the data we’ll use for our initial content. In a real applica-
tion, this data would likely be read from a database or other external source.

This class contains the logic to insert new rows into the data set. It extends Action
so it can be used by a MenuManager.

i modify() method

j EditableTableItem class

b

c

210 CHAPTER 9

Tables and menus
To perform the necessary logic, we override the run() method defined in Action.
The action framework ensures that this method is invoked at the appropriate
time. Our implementation creates a new domain object and calls add() on the
table viewer. Most real applications will need additional logic here to manage the
collection of domain objects.

We build a simple context menu by creating a new MenuManager and adding the
actions we want to use. In this case, we add the menu directly to the Table. If the
tab contained more controls than just this table, then the menu would appear
only when the user right-clicked on the table. If we wanted it to appear when the
user clicked anywhere on the tab, we would need to add the menu to the par-
ent Composite.

This is a standard LabelProvider implementation, similar to ones you’ve seen ear-
lier. It returns the value of whichever property matches the requested column.

Our content provider assumes that whatever input it’s given is an array of Objects.
It performs the appropriate cast and returns the result.

Here we construct the table. We add two columns and set the header text.

The modify() method is the most important part of our CellModifier implemen-
tation. The element parameter contains the TableItem for the cell that was just
changed. The domain object associated with this item is retrieved with the get-
Data() method. We then check the propertyName parameter to determine what
property was modified; we update the matching property on the domain object
using the value parameter, which contains the date entered by the user.

This small class serves as the domain objects for our example.

Run this example by adding the following lines to WidgetWindow:

TabItem chap9TableEditor = new TabItem(tf, SWT.NONE);
chap9TableEditor.setText("Chapter 9");
chap9TableEditor.setControl(new Ch9TableEditorComposite(tf));

When you run this example, the initial window contains two rows with sample
data. Right-clicking brings up a context menu that lets you insert a new row into
the table. Double-clicking a cell allows you to edit the data, either by typing or by
choosing from a drop-down menu.

d

e

f

g

h

i

j

Summary 211
9.4 Summary

Most of what you’ve seen with Tables and TableViewers should be familiar from
chapter 8. The basic concepts of viewers and providers are identical to those we
discussed earlier. Because tables impose a two-dimensional structure on data, they
require more configuration than some of other widgets we’ve examined. The
TableLayout and TableColumn classes create this structure for each table and con-
trol the details of how the table appears to the user.

 After working through these two chapters, you should be well equipped to
handle any requirement that calls for the use of one of these viewers, or any of the
more esoteric classes such as TableTreeViewer that are included in JFace.

 CellEditors, however, are a useful feature unique to TableViewers. CellEdi-
tors provide a framework for handling updates to specific cells in a table, and the
predefined CellEditor classes provide an easy way to provide discrete options for
the user to choose from.

 Just about any application will need to provide a menu bar, and it’s common to
provide context menus that show only options that are relevant to what the user is
currently doing. For example, right-clicking in a word processor typically brings
up options related to formatting text. SWT makes creating these menus easy, and
JFace adds the action framework to facilitate reusing logic easily regardless of the
context from which it was invoked. We discussed the theory behind actions in
chapter 4, and the examples we’ve shown here should give you a good feel for
how they’re used in practice.

M A N N I N G $44.95 US/$62.95 Canada

S
WT and JFace—Eclipse’s graphical libraries—enable you to build
nimble and powerful Java GUIs. But this is only the beginning.
With Draw2D and the Graphical Editing Framework, you can

go beyond static applications and create full-featured editors. And
with the Rich Client Platform, you can build customized work-
benches whose capabilities far exceed those of traditional interfaces.

FSWT/JFace in Action covers the territory, from simple widgets to
complex graphics. It guides you through the process of developing
Eclipse-based GUIs and shows how to build applications with features
your users will love. The authors share with you their intimate knowl-
edge of the subject in a helpful and readable style.

This book encourages you to learn through action. Many code sam-
ples show you how SWT/JFace works in practical applications. Not
only do these examples help you understand, they are working
programs you can reuse in your own interfaces.

What’s Inside
n Understanding SWT/JFace design

n Creating workbenches with the Rich Client Platform

n Building editors with Draw2D and
the Graphical Editing Framework

n Integrating SWT with Microsoft’s COM

n And much more

Matthew Scarpino, Stephen Holder, Stanford Ng, and Laurent Mihalkovic
together have a rich and varied background from work on applica-
tions for reconfigurable computing, financial management, and
enterprise development.

JAVA

SWT/JFace IN ACTION
Scarpino • Holder • Ng • Mihalkovic

“An excellent work!
It is timely, comprehensive,
and interestingly presented.”

—Phil Hanna
SAS Institute Inc.
author of JSP: The Complete Reference

“I recommend this book
to anyone getting into
development with the
Eclipse libraries.”

—Steve Gutz
Senior Software Developer, IBM
author of Up to Speed with Swing

“I really enjoyed the authors’
style. It was easy to read,
and the information stayed
with me.”

—Carl Hume
Software Architect

“… a good and useful
treatment. There is no other
book like it in the market.”

—Robert D. McGovern
co-author of Eclipse in Action

,!7IB9D2-djechg!:p;o;O;t;P
ISBN 1-932394-27-3

www.manning.com/scarpino

Ask the Authors Ebook edition

AUTHOR
4

ONLINE

4

