
3. The MiningMart Approach to Knowledge
Discovery in Databases

Katharina Morik and Martin Scholz

Department of Computer Science, University of Dortmund, Germany

Abstract

Although preprocessing is one of the key issues in data analysis, it is
still common practice to address this task by manually entering SQL state-
ments and using a variety of stand-alone tools. The results are not properly
documented and hardly re-usable. The MiningMart system presented in
this chapter focuses on setting up and re-using best practice cases of pre-
processing data stored in very large databases. A metadata model named
M4 is used to declaratively define and document both, all steps of such a
preprocessing chain and all the data involved. For data and applied oper-
ators there is an abstract level, understandable by human users, and an
executable level, used by the metadata compiler to run cases for given data
sets. An integrated environment allows for rapid development of prepro-
cessing chains. Adaptation to different environments is supported simply
by specifying all involved database entities in the target DBMS. This al-
lows reuse of best practice cases published on the Internet.

3.1 Introduction: Acquiring Knowledge from Existing
Databases

The use of very large databases has evolved in the last years from support-
ing transactions to, additionally, reporting business trends. The interest in
analyzing data has increased. One important topic is customer relationship
management with the particular tasks of customer segmentation, customer
profitability, customer retention, and customer acquisition (e.g., by direct
mailing). Other tasks are the prediction of sales in order to minimize stocks,
and the prediction of electricity consumption or telecommunication services
at particular times of the day in order to minimize the use of external ser-
vices or to optimize network routing, respectively. The health sector demands
several analysis tasks for resource management, quality control, and decision
making. Existing databases which were designed for transactions, such as
billing and booking, are now considered a mine of information, and digging
knowledge from the already gathered data is considered a tool for building up
an organizational memory. Managers of an institution want to be informed
about states and trends in their business. Hence, they demand concise reports
from the database department.

On-line Analytical Processing (OLAP) offers interactive data analysis by
aggregating data and counting the frequencies. This already answers ques-
tions like the following:



48 K. Morik and M. Scholz

– What are the attributes of my most frequent customers?
– Which are the frequently sold products?
– How many returns did I receive after my last direct mailing action?
– What is the average duration of stay in my hospital?

Reports that support managers in decision making need more detailed infor-
mation. Questions are more specific, for instance:

– Which customers are most likely to sell their insurance contract back to
the insurance company before it ends?

– How many sales of a certain item do I have to expect in order not to offer
empty shelves to customers and at the same time minimize my stock?

– Which group of customers best answers to direct mailing advertising a
particular product?

– Who are the most cost-intensive patients in my hospital?

Knowledge Discovery in Databases (KDD) can be considered a high-level
query language for relational databases that aims at generating sensible re-
ports such that a company may enhance its performance. The high-level
question is answered by a data mining step. Several data mining algorithms
exist. However, their application is still a cumbersome process. Several rea-
sons explain why KDD has not yet become a standard procedure. We list
here the three obstacles that – in our view – are the most important ones
and then discuss them.

– Most tools for data mining need to handle the data internally and cannot
access the database directly. Sampling the data and converting it into the
desired format increases the effort for data analysis.

– Preprocessing of the given data is decisive for the success of the data min-
ing step. Aggregation, discretization, data cleaning, the treatment of null
values, and the selection of relevant attributes are steps that still have to
be programmed (usually in SQL) without any high-level support.

– The selection of the appropriate algorithm for the data mining step as well
as for preprocessing is not yet well understood, but remains the result of
a trial and error process.

The conversion of given data into the formats of diverse data mining tools
is eased by toolboxes which use a common representation language for all
the tools. Then, the given data need to be transformed only once and can
be input into diverse tools. A first approach to such a toolbox was the devel-
opment of a Common Knowledge Representation Language (CKRL), from
which translators to several learning algorithms were implemented in the
European Machine Learning Toolbox project [3.3, 3.11]. Today, the WEKA
collection of learning algorithms implemented in JAVA with a common input
format offers the opportunity to apply several distinct algorithms on a data
set [3.15]. However, these toolboxes do not scale up to real-world databases



3. The MiningMart Approach 49

naturally1. In contrast, database management systems offer basic statistical
or OLAP procedures on the given data, but do not yet provide users with
more sophisticated data mining algorithms. Building upon the database facil-
ities and integrating data mining algorithms into the database environment
will be the synergy of both developments. We expect the first obstacle for
KDD applications to be overcome very soon.

The second obstacle is the most important one. If we inspect real-world
applications of knowledge discovery, we realize that up to 80 percent of the
efforts are spent on the clever preprocessing of the data. Preprocessing has
long been underestimated, both in its relevance and in its complexity. If the
data conversion problem is solved, the preprocessing is not at all done. Feature
generation and selection2 (in databases this means constructing additional
columns and selecting the relevant attributes for further learning) is a major
challenge for KDD [3.9]. Machine learning is not restricted to the data mining
step, but is also applicable in preprocessing. This view offers a variety of
learning tasks that are not as well investigated as are learning classifiers. For
instance, an important task is to acquire events and their duration (i.e., a
time interval) on the basis of time series (i.e., measurements at time points).
Another example is the replacement of null values in the database by the
results of a learning algorithm. Given attributes Ai without null values, we
may train our algorithm to predict the values of attribute Aj on those records
which do have a value for Aj . The learning result can then be applied in order
to replace null values in Aj . Records without null values are a prerequisite
for the application of some algorithms. These algorithms become applicable
as the data mining step because of the learning in the preprocessing. With
respect to preprocessing, we are just beginning to explore our opportunities.
It is a field of greatest potential.

The third obstacle, the selection of the appropriate algorithm for a data
mining task, has long been on the research agenda of machine learning. The
main problem is that nobody has yet been able to identify reliable rules pre-
dicting when one algorithm should be superior to others. Beginning with the
Mlt-Consultant [3.13], there was the idea of having a knowledge-based system
support the selection of a machine learning method for an application. The
Mlt-Consultant succeeded in differentiating the nine learning methods of the
Machine Learning Toolbox with respect to specific syntactic properties of the
input and output languages of the methods. However, there was little success
in describing and differentiating the methods on an application level that
went beyond the well known classification of machine learning systems into
classification learning, rule learning, and clustering. Also, the European Stat-
1 Specialized in multi-relational learning algorithms, the ILP toolbox from Stefan

Wrobel (to be published on the network ILPnet2) allows one to try several logic
learning programs on a database.

2 Specialized in feature generation and selection, the toolbox YALE offers the op-
portunity to try and test diverse feature sets for learning with the support vector
machine [3.6]. However, the YALE environment does not access a database.



50 K. Morik and M. Scholz

log-Project [3.10], which systematically applied classification learning systems
to various domains, did not succeed in establishing criteria for the selection of
the best classification learning system. It was concluded that some systems
have generally acceptable performance. In order to select the best system
for a certain purpose, they must each be applied to the task and the best
selected through a test method such as cross-validation. Theusinger and Lind-
ner [3.14] are in the process of re-applying this idea of searching for statistical
dataset characteristics necessary for successful application of tools. An even
more demanding approach was started by Engels [3.4]. This approach not
only attempts to support the selection of data mining tools, but to build a
knowledge-based process planning support for the entire knowledge discovery
process. To date this work has not led to a usable system [3.5]. The Euro-
pean project MetaL now aims at learning how to combine learning algorithms
and datasets [3.2]. Although successful in many respects, there is not enough
knowledge available in order to propose the correct combination of prepro-
cessing operations for a given dataset and task. The IDEA system now tries
the bottom-up exploration of the space of preprocessing chains [3.1]. Ide-
ally, the system would evaluate all possible transformations in parallel, and
propose the most successful sequence of preprocessing steps to the user. For
short sequences and few algorithms, this approach is feasible. Problems like
the collection of all data concerning one customer (or patient) from several
tables, or the generation of most suitable features, enlarge the preprocessing
sequences considerably. Moreover, considering learning algorithms as prepro-
cessing steps enlarges the set of algorithms per step. For long sequences and
many algorithms, this principled approach of IDEA becomes computationally
infeasible.

If the pairing of data and algorithms is all that difficult, can we support
an application developer at all? The difficulty of the principled approaches to
algorithm selection is that they all start from scratch. They apply rules that
pair data and algorithm characteristics, or plan a sequence of steps, or try
and evaluate possible sequences for each application anew. However, there
are similar applications where somebody has already done the cumbersome
exploration. Why not use these efforts to ease the new application develop-
ment? Normally, it is much easier to solve a task if we are informed about
the solution of a similar task. This is the basic assumption of case-based rea-
soning and it is the basis of the MiningMart approach. A successful case of
a full KDD process is described at the meta-level. This description at the
meta-level can be used as a blueprint for other, similar cases. In this way,
the MiningMart project3 eases preprocessing and algorithm selection in or-
der to make KDD an actual high-level query language accessing real world
databases.
3 The MiningMart project is supported by the European Union under the contract

IST-1999-11993.



3. The MiningMart Approach 51

Fig. 3.1. Overview of the MiningMart system

3.2 The MiningMart Approach

Now that we have stated our goal of easing the KDD process, we may ask:
What is MiningMart’s path to reaching the goal? A first step is to implement
operators that perform data transformations such as discretization, handling
of null values, aggregation of attributes into a new one, or collecting of se-
quences from time-stamped data. The operators directly access the database
and are capable of handling large masses of data.

Given database-oriented operators for preprocessing, the second step is to
develop and collect successful cases of knowledge discovery. Since most of the
time is used to find chains of operator applications that lead to good answers
to complex questions, it is cumbersome to develop such chains over and over
again for very similar discovery tasks and data. Currently, in practice even
the same task on data of the same format is implemented anew every time
new data is to be analyzed. Therefore, the reuse of successful cases speeds up
the process considerably. The particular approach of the MiningMart project
is to allow the reuse of cases by means of metadata, also called ontologies.
Metadata describe the data as well as the operator chains. A compiler gen-
erates the SQL code according to the metadata.

Several KDD applications have been considered when developing the op-
erators, the method, and the meta-model. In the remaining part of this chap-
ter, we shall first present the metadata together with their editors and the
compiler. We then describe the case base. We conclude the chapter by sum-
marizing the MiningMart approach and relating it to other approaches.



52 K. Morik and M. Scholz

3.2.1 The Meta-Model of Metadata M4

Ontologies or metadata have been a key to success in several areas. For our
purposes, the advantages of metadata driven software generation are:

Abstraction: Metadata are given at different levels of abstraction, a concep-
tual (abstract) and a relational (executable) level. This makes an abstract
case understandable and re-usable.

Data documentation: All attributes together with the database tables and
views, which are input to a preprocessing chain, are explicitly listed at
both the conceptual and relational part of the metadata level. An on-
tology allows one to organize all data by means of inheritance and rela-
tionships between concepts. For all entities involved, there is a text field
for documentation. This makes the data much more understandable, for
instance by human domain experts, rather than its just referring to the
names of specific database objects. Furthermore, statistics and important
features for data mining (e.g., presence of null values) are accessible as
well. This extends the metadata, as is usual in relational databases, and
gives a good impression of the data sets at hand.

Case documentation: The chain of preprocessing operators is documented,
as well. First of all, the declarative definition of an executable case in the
M4 model can already be considered to be documentation. Furthermore,
apart from the opportunity to use “speaking names” for steps and data
objects, there are text fields to document all steps of a case together with
their parameter settings. This helps to quickly figure out the relevance of
all steps and makes cases reproducible. In contrast, the current state of
documentation is most often the memory of the particular scientist who
developed the case.

Ease of case adaptation: In order to run a given sequence of operators on a
new database, only the relational metadata and their mapping to the
conceptual metadata has to be written. A sales prediction case can for
instance be applied to different kinds of shops, or a standard sequence of
steps for preparing time series for a specific learner might even be applied
as a template in very different mining contexts. The same effect eases the
maintenance of cases when the database schema changes over time. The
user just needs to update the corresponding links from the conceptual to
the relational level. This is especially easy, having all abstract M4 entities
documented.

The MiningMart project4 has developed a model for metadata together with
its compiler, and has implemented human-computer interfaces that allow
database managers and case designers to fill in their application-specific meta-
data. The system will support preprocessing and can be used stand-alone or
in combination with a toolbox for the data mining step.
4 http://mmart.cs.uni-dortmund.de



3. The MiningMart Approach 53

Fig. 3.2. Simplified UML diagram of the MiningMart Meta Model (M4)

This section gives an overview of how a case is represented at the meta-
level, how it is practically applied to a database, and which steps need to be
performed when developing a new case or adapting a given one.

The form in which metadata are to be written is specified in the meta-
model of metadata, M4. It is structured along two dimensions, topic and
abstraction. The topic is either the data or the case. The data is to be an-
alyzed. The case is a sequence of (preprocessing) steps. The abstraction is
either conceptual or relational. Wherever the conceptual level is expected to
be the same for various applications, the relational level actually refers to the
particular database at hand. The conceptual data model describes concepts
like Customer and Product, and relationships between them like Buys. The re-
lational data model describes the business data that is analyzed. Most often



54 K. Morik and M. Scholz

it already exists in the database system in the form of the database schema.
The metadata written in the form as specified by M4 are themselves stored
in a relational database.

Figure 3.2 shows a simplified UML diagram of the M4 model. Each case
contains steps, each of which embeds an operator and parameters. Apart from
values, not shown here, parameters may be concepts, base attributes, or a
multi-column feature, i.e. a feature containing multiple base attributes. This
part is a subset of the conceptual part of M4. The relational part contains
columnsets and columns. Columnsets refer either to database tables or to
virtual (metadata only) or database views. Each columnset consists of a set
of columns, each of which refers to a database attribute. On the other hand,
columns are the relational counterpart of base attributes. For columns and
base attributes, there is a predefined set of data types, which is also omitted
in Fig. 3.2.

3.2.2 Editing the Conceptual Data Model

As depicted in Fig. 3.1, there are different kinds of experts working at different
ends of a knowledge discovery process. First of all a domain expert will define
a conceptual data model using a concept editor. The entities involved in data
mining are made explicit by this expert. The conceptual model of M4 is about
concepts having features, and relationships between these concepts.

Examples for concepts are Customer and Product. Although at the current
stage of development concepts refer to either database views or tables, they
should rather be considered as part of a more abstract model of the domain.
Concepts consist of features, either base attributes or multi-column features.
A base attribute corresponds to a single database attribute, e.g., the name
of a customer. A multi-column feature is a feature containing a fixed set of
base attributes. This kind of feature should be used when information is split
over multiple base attributes. An example is to define a single multi-column
feature for the amount and the currency of a bank transfer, which are both
represented by base attributes.

Relationships are connections between concepts. There could be a rela-
tionship named Buys between the concepts Customer and Product, for exam-
ple. At the database level, one-to-many relationships are represented by for-
eign key references and many-to-many relationships make use of cross tables.
However, these details are hidden from the user at the abstract conceptual
level.

To organize concepts and relationships, the M4 model offers the oppor-
tunity to use inheritance. Modelling the domain in this fashion, the concept
Customer could have subconcepts like Private Customer and Business Customer.
Subconcepts inherit all features of their superconcept. The relationship Buys
could for instance have a subrelationship Purchases on credit.

Figure 3.3 shows a screenshot of the concept editor while it is used to
list and edit base attributes. The right part of the lower window states, that



3. The MiningMart Approach 55

Fig. 3.3. The Concept Editor

the selected concept Sales Data is connected to another concept Holidays by
a relationship week has holiday.

3.2.3 Editing the Relational Model

Given a conceptual data model, a database administrator maps the entities
involved to corresponding database objects. The relational data model of M4
is capable of representing all the relevant properties of a relational database.
The most simple mapping from the conceptual to the relational level is given
if concepts directly correspond to database tables or views. This can always
be achieved manually by inspecting the database and creating a view for each
concept. However, more sophisticated ways of graphically selecting features in
the database and aggregating them to concepts increase the acceptance of the
system by end users and ease the adaptation of cases to other environments.
In the MiningMart project, the relational editor is intended to support this
kind of activity. In general, it should be possible to map all reasonable repre-
sentations of entities to reasonable conceptual definitions. A simple mapping
of the concept Customer, containing the features Customer ID, Name, and



56 K. Morik and M. Scholz

Fig. 3.4. Statistics of a database view

Address of the database would state that the table CUSTOMER holds all
the necessary attributes, i.e., CUSTOM ID, CUST NAME and CUST ADDR.
Having the information about name and address distributed over different
tables (e.g., sharing the key attribute CUSTOM ID) is an example for more
complex mappings. In this case, the relational editor should be able to use a
join operation.

Apart from connecting conceptual entities to database entities, the re-
lational editor offers a data viewer and is capable of displaying statistics
of connected views or tables. Figure 3.4 shows an example of the statistics
displayed. For each view or table the number of tuples and the numbers of
nominal, ordinal, and time attributes are counted. For numerical attributes
the number of different and missing values is displayed, the minimum, max-
imum, average, median, and modal value are calculated together with the
standard deviation and variance. For ordinal and time attributes, the most
reasonable subset of this information is given. Finally, we have information
on the distribution of the values for all attributes.

3.2.4 The Case and Its Compiler

All the information about the conceptual descriptions and about the database
objects involved are represented within the M4 model and stored within re-
lational tables. M4 cases denote a collection of steps, basically performed
sequentially, each of which changes or augments one or more concepts. Each



3. The MiningMart Approach 57

Fig. 3.5. An illustration of the coupling of abstract conceptual and executable
levels

step is related to exactly one M4 operator, and holds all its input arguments.
The M4 compiler reads the specifications of steps and executes the opera-
tor, passing it all the necessary inputs. This process requires the compiler to
translate the conceptual entities, like input concepts of a step, to the corre-
sponding relational entities, like database table name, the name of a view,
or the SQL definition of a virtual view, which are only defined as relational
metadata in the M4 model.

Two kinds of operators are distinct:, manual and machine learning opera-
tors. Manual operators just read the M4 metadata of their input and add an
SQL-definition to the metadata for their output, establishing a virtual table.
Currently, the MiningMart system offers 20 manual operators for selecting
rows, selecting columns, handling time data, and generating new columns for
the purposes of, e.g., handling null values, discretization, moving windows
over time series, and gathering information concerning an individual (e.g.,
customer, patient, shop).

External machine learning operators on the other hand are invoked by
using a wrapper approach. Currently, the MiningMart system offers learn-
ing of decision trees, k-means, and the support vector machine as learning
preprocessing operators5. The necessary business data are read from the re-
lational database tables, converted to the required format, and passed to the
algorithm. After execution, the result is read by the wrapper, parsed, and
either stored as an SQL-function or materialized as additional business data.

In any case, the M4 metadata will have to be updated by the compiler.
A complex machine learning tool to replace missing values is an example for
operators altering the database. In contrast, for operators like a join it is
sufficient to virtually add the resulting view together with its corresponding
SQLstatement to the metadata.

Figure 3.5 illustrates how the abstract and the executable or relational
level interact. First of all, just the upper sequence is given, an input concept, a
5 Of course, the algorithms may also be used in the classical way, as data mining

step operators.



58 K. Morik and M. Scholz

step, and an output concept. The concept definitions contain features, and the
step contains an operator with its parameter settings. Apart from operator-
specific parameters, the input and output concepts are also parameters of the
step. The compiler needs the inputs, e.g., the input concept and its features to
be mapped to relational objects before execution. The mapping may either be
defined manually, using the relational editor, or it may be a result of executing
the preceding step. If there is a corresponding relational database object
for each input, then the compiler executes the embedded operator. In the
example, this is a simple operator named “DeleteRowsWithMissingValues”.
The corresponding executable part of this operator generates a view definition
in the database and in the relational metadata of M4. The latter is connected
to the conceptual level, so that afterward there is a mapping from the output
concept to a view definition. The generated views may be used as inputs to
subsequent steps, or they may be used by other tools for the data mining
step.

Following the overall idea of declarative knowledge representation of the
project, known preconditions and assertions of operators are formalized in
the M4 schema. Conditions are checked at runtime, before an operator is
applied. Assertions help to decrease the number of necessary database ac-
cesses, because necessary properties of the data can be derived from formal-
ized knowledge, saving expensive database scans. A step replacing missing
values might be skipped, for instance, if the preceding operator is known not
to produce any missing values. If a user applies linear scaling to an attribute,
then all values are known to lie in a specific interval. If the succeeding oper-
ator requires all values to be positive, then this pre-condition can be derived
from the formalized knowledge about the linear scaling operator, rather than
by recalculating this property by another database scan.

The task of a case designer, ideally a data mining expert, is to find se-
quences of steps resulting in a representation well suited for the given data
mining task. This work is supported by a special tool, the case editor. Fig-
ure 3.6 shows a screenshot of a rather small example case edited by this
tool. Typically, a preprocessing chain consists of many different steps, usu-
ally organized as a directed acyclic graph, rather than as a linear sequence
as in the example case shown in Fig. 3.6. To support the case designer, a
list of available operators and their overall categories, e.g., feature construc-
tion, clustering, or sampling, is part of the conceptual M4 case model. The
idea is to offer a fixed set of powerful preprocessing operators, in order to
offer a comfortable way of setting up cases on the one hand, and ensuring
re-usability of cases on the other. By modeling real world cases in the scope
of the project, further useful operators will be identified, implemented, and
added to the repository.

For each step the case designer chooses an applicable operator from the
collection, sets all of its parameters, assigns the input concepts, input at-
tributes and/or input relations, and specifies the output. To ease the process



3. The MiningMart Approach 59

Fig. 3.6. A small example case in the case editor

of editing cases, applicability constraints on the basis of metadata are pro-
vided as formalized knowledge and are automatically checked by the human-
computer interface. This way only valid sequences of steps can be produced
by a case designer. Furthermore, the case editor supports the user by auto-
matically defining output concepts of steps according to the metadata con-
straints, and by offering property windows tailored to the demands of chosen
operators.

A sequence of many steps, namely a case in M4 terminology, transforms
the original database into another representation. Each step and its ordering
is formalized within M4, so the system is automatically keeping track of the
performed activities. This enables the user to interactively edit and replay a
case or parts of it.

As soon as an efficient chain of preprocessing has been found, it can easily
be exported and added to an Internet repository of best practice MiningMart
cases. Only the conceptual metadata is submitted, so even if a case handles
sensitive information, as given for most medical or business applications, it
is still possible to distribute the valuable metadata for reuse, while hiding all
the sensitive data and even the local database schema.

3.3 The Case Base

One of the project’s objectives is to set up a case-base of successful cases on
the Internet. The shared knowledge allows all Internet users to benefit from
a new case. Submitting a new case of best-practices is a safe advertisement



60 K. Morik and M. Scholz

Fig. 3.7. The Internet interface to the case base visualizes all cases, their steps,
embedded operators, and parameters in HTML format. Entities related in the M4
schema are connected by hyperlinks. Additionally, a business level is part of the
interface. It describe the available cases in terms like the addressed business goals
of the data analysis. After deciding for a case with the help of conceptual M4 and
business layer descriptions, the user can simply download the one addressing the
most similar problem. The case adaption facilities of The MiningMart system helps
to quickly adjust the case to the user’s environment

for KDD specialists or service providers, since the relational data model is
kept private.

To support users in finding the most relevant cases, their inherent struc-
ture will be exploited. An Internet interface will be accessible, visualizing the
conceptual metadata. It will be possible to navigate through the case-base
and to investigate single steps, i.e., which operators were used on which kinds
of concepts. The Internet interface is supposed to read the data directly from
the M4 tables in the database, eliminating additional efforts and redundan-
cies. Figure 3.7 shows a screenshot of a case’s business level description.



3. The MiningMart Approach 61

In addition to the data explicitly represented in M4, a business level has
been added. This level aims at relating the case to business goals and at
giving several kinds of additional descriptions, such as which success criteria
were important for the case. For instance, the sales prediction answers the
question “How many sales of a particular item do I have to expect?” where the
business goal is that it must not happen that the item is sold out, but that the
stock should be minimized. A particular application need is that the forecast
can only be used if it predicts the sales four weeks ahead because of delivery
times. The more informal descriptions should especially help decision makers
to find a case tailored for their specific domains and problems. The additional
information is stored in an XML-representation directly connected to the M4
entities. On the Internet these connections are represented by hyperlinks.
Figure 3.8 shows the ontology of the business level.

It is possible to start the search for a case at any category of the business
level or conceptual level. In this sense, the cases are indexed by all the cate-
gories that are a part of the conceptual M4 model and the business model. If a
user considers a case useful, then its conceptual data can be downloaded from
the server. The downloadable case is itself a category in the XML framework.
The locally installed MiningMart system offers an import facility, installing
the metadata into the user’s M4 tables. If problems arise or further help is
necessary, the business level holds a category for the case designer or the
company providing the service.

The project has developed four cases:

– analysis of insurance data for direct mailing [3.7, 3.8],
– call center analyisis for marketing,
– analysis of data about calls and contracts for fraud detection in telecom-

munication, and
– analysis of sales data for sales prediction [3.12].

3.4 Conclusions

The relevance of supporting not only single steps of data analysis but se-
quences of steps has long been underestimated. While a large variety of ex-
cellent tools exist which offer algorithms for a data mining step, only very few
approaches exist to tackle the task of making clever choices during prepro-
cessing and combining these choices into an effective and efficient sequence.
The Clementine system offers processing chains to users. However, its focus
lies on the data mining step, not on the preprocessing chain. The common
data format in tool boxes such as, e.g., SPSS or WEKA, provides users with
the prerequisites to formulate their own sequences [3.15]. However, the user
is programming the sequence and has to do this anew for very similar tasks.

Zhong et al. have proposed an agent system, GLS, which supports the
overall KDD process, i.e., preprocessing, knowledge elicitation, and refine-
ment of the result [3.16, 3.17]. In some aspects, this system is similar to



62 K. Morik and M. Scholz

Application ApplicationDescription

Businessdomain
Goal

PreprocessingChain

ConceptualDataModel
Problem

PreprocessingDescription

DomainUnderstanding ProblemDescription

DataUnderstanding

DataExplorationRemark

MethodSelection

Evaluation

BusinessType
SuccessCriteria

ApplicationType

Fig. 3.8. The ontology of the business layer, used to describe M4 cases in business
terms

MiningMart. Its agents are our operators, its controller corresponds to our
compiler, and both systems describe data and operators at the meta-level.
Whereas in MiningMart the operator description entails applicability condi-
tions and pointers to the resulting table, in GLS the pre- and post-conditions
for the application of an agent are stated. The hierarchy of agents in GLS
corresponds to the inheritance hierarchy of operators, as exploited in Min-
ingMart. In addition, MiningMart offers an even more abstract level for the
description of a case in business terms. The planning approach of GLS is
also similar to the use of applicability constraints, as in MiningMart. In con-
trast to IDEA, no comparison of quality is performed for alternative chains
of operators. Hence, both MiningMart and GLS produce valid sequences of
steps, and none of them performs experiments – as does IDEA – in order
to decide between several algorithms or agents. In spite of the similarities,
the two systems do, of course, also differ. First, the set of algorithms (op-
erators or agents) is different. Feature generation and selection – a focus
of MiningMart – is less developed within GLS. Data mining algorithms are
less complete in the MiningMart. However, both systems allow for easily en-
hancing the set of operators. Second, the relationship with the database is
different. The interaction between GLS and the database is not the primary
focus of research [3.16, 3.17]. In contrast, the MiningMart resides to a large
degree within the database, compiles metadata into SQL code, and many of



3. The MiningMart Approach 63

its operators are directly integrated into the database. This allows work on
very large databases. Third, the use of human expertise is different. In GLS,
some user interaction is required to optimize the automatically generated
valid sequences. However, the notion of a complete case at the meta-level is
not part of the meta-model. This means that the diverse trials to establish
an optimal sequence of agent activities are not documented. Hence, expe-
rience of failed selections, groupings, or parameter settings cannot prevent
users from again doing so. Experience of successful cases is not stored at
the meta-level. There is no mechanism to apply a successful chain to similar
but different databases. In contrast, MiningMart compiles a successful case
together with a meta-model of new data into a new running KDD case. We
believe that the reuse of best practice cases and the case documentation is
extremely important.

The recent IDEA system is also similar to the MiningMart approach [3.1].
Chains of operators are composed according to a ranking of algorithms in
order to detect the best choice of an algorithm given data characteristics.
Metadata describing the data as well as the algorithms are used in order
to check the validity of operator sequences or to incorporate an additional
step which allows the application of the best operator. The difference lies
first in MiningMart’s orientation towards very large databases. IDEA uses
the WEKA data format and, hence, is restricted to smaller files. The data
transformations and aggregations incorporated as manual operators in the
MiningMart system are not taken into account in IDEA, because they are
not needed in the single table, small sample representation of WEKA tools.
The second distinction is the approach to determining the best sequence of
preprocessing. Although the MiningMart system exploits applicability con-
ditions of operators in order to check the validity of sequences, it does not
aim at planning the best sequence or at performing a ranking of possible
algorithms at each step of an operator chain, as IDEA can do. Instead, Min-
ingMart exploits the findings of expert case designers. Real-world application
of knowledge discovery comprises hundreds of steps in a KDD run (including
manual operators) and ranking every algorithm at each of the steps would
exhaust computing capacity. We feel that the adaptation of excellently solved
KDD problems best combines human expertise and computational power.

We can now summarize the characteristics of the MiningMart:

Very large databases: It is a database-oriented approach which easily inter-
acts with all SQL-databases and scales up to real-world databases with-
out any problems. Several operators have been re-implemented in order
to make them ready for very large data sets.

Sophisticated operators for preprocessing: Preprocessing can make good use
of learning operators as does the data mining step. For instance, a learn-
ing result can be used to replace missing values by the learned (predicted)
values. Feature generation and selection in the course of preprocessing
enhances the quality of data that are the input to the data mining step.



64 K. Morik and M. Scholz

Metadata driven code generation: The MiningMart approach relies on meta-
driven software generation. Metadata about operators and data are used
by the compiler in order to generate a running KDD application.

Case documentation: Metadata about a case document the overall KDD pro-
cess with all operator selections and their parameter settings. In addition,
a business layer offers the case description in less technical terms so that
end-users of the KDD process are kept informed.

Case adaptation: The notion of a complete case in the meta-model allows
the application of given expert solution to a new database. The user
only needs to provide the system with a new data model and the com-
piler generates the new case. For fine-tuning the new application, the
human-computer interface offers easy access to the meta-model with all
operators.

References

3.1 A. Bernstein, S. Hill, F. Provost: An Intelligent Assistant for the Knowledge
Discovery Process. Technical Report IS02-02, New York University, Leonard
Stern School of Business (2002)

3.2 P. Brazdil: Data Transformation and Model Selection by Experimentation and
Meta-Learning. In: C.G. Carrier, M. Hilario (eds.), Workshop Notes-Upgrading
Learning to the Meta-Level: Model Selection and Data Transformation (Techni-
cal University Chemnitz, April 1998), number CSR-98-02 in Technical Report,
pp. 11-17

3.3 K. Causse, M. Csernel, K. Morik, C. Rouveirol: MLT Deliverable 2.2: Specifica-
tion of the Common Knowledge Representation Language of the MLToolbox.
GMD (German Natl. Research Center for Computer Science, P.O.Box 1240,
W-5205 St. Augustin 1, Germany, September 1990)

3.4 R. Engels: Planning Tasks for Knowledge Discovery in Databases; Performing
Task-Oriented User-Guidance. In: Proc. of th 2nd Int. Conf. on Knowledge
Discovery in Databases, August 1996

3.5 R. Engels, G. Lindner, R. Studer: A Guided Tour through the Data Mining
Jungle. In: Proceedings of the 3rd International Conference on Knowledge Dis-
covery in Databases (KDD-97) pp. 14-17 (August, 1997)

3.6 S. Fischer, R. Klinkenberg, I. Mierswa, O. Ritthoff: Yale: Yet Another Learn-
ing Environment-Tutorial. Technical Report CI-136/02, Collaborative Research
Center 531, University of Dortmund, Dortmund, Germany, 2002. ISSN 1433-
3325

3.7 J.U. Kietz, R. Züecker, A. Fiammengo, G. Beccari: Data Sets, Metadata and
Preprocessing Operators at Swiss Life and CSELT. Deliverable D6.2, IST
Project MiningMart, IST-11993 (2000)

3.8 J.U. Kietz, R. Züecker, A. Vaduva: Mining Mart: Combining Case-Based-
Reasoning and Multi-Strategy Learning into a Framework to reuse KDD-
Application. In: R.S. Michalski, P. Brazdil (eds.), Proceedings of the fifth Inter-
national Workshop on Multistrategy Learning (MSL2000) (Guimares, Portugal,
May 2000)

3.9 H. Liu, H. Motoda: Feature Selection for Knowledge Discovery and Data Mining
(Kluwer Academic Publishers, 1998)



3. The MiningMart Approach 65

3.10 D. Michie, D.J. Spiegelhalter, C.C. Taylor: Machine Learning, Neural and
Statistical Classification (Ellis Horwood, New York u.a., 1994)

3.11 K. Morik, K. Causse, R. Boswell: A Common Knowledge Representation In-
tegrating Learning Tools. In: Proc. of the 1st International Workshop on Mul-
tistrategy Learning (Harpers Ferry, 1991)

3.12 S. Rüeping: Zeitreihenprognose für Warenwirtschaftssysteme unter
Berücksichtigung asymmetrischer Kostenfunktionen. Master’s thesis, Univer-
sität Dortmund (1999)

3.13 D. Sleeman, R. Oehlman, R. Davidge: Specification of Consultant-0 and a
Comparision of Several Learning Algorithms. Deliverable D5.1, Esprit Project,
pp. 2154 (1989)

3.14 C. Theusinger, G. Lindner: Benutzerunterstützung eines KDD-Prozesses an-
hand von Datencharakteristiken. In: F. Wysotzki, P. Geibel, K. Schädler (eds.),
Beiträge zum Treffen der GI-Fachgruppe 1.1.3 Machinelles Lernen (FGML-98)
(Technical University Berlin, 1998) volume 98/11 of Technical Report

3.15 I. Witten, E. Frank: Data Mining-Practical Machine Learning Tools and Tech-
niques with JAVA Implementations (Morgan Kaufmann, 2000)

3.16 N. Zhong, C. Liu, S. Ohsuga: A Way of Increasing both Autonomy and Ver-
satility of a KDD System. In: Z.W. Ras, A. Skowron (eds.), Foundations of
Intelligent Systems (Springer, 1997) pp. 94-105

3.17 N. Zhong, C. Liu, S. Ohsuga: Dynamically Organizing KDD Processes. In-
ternational Journal of Pattern Recognition and Artificial Intelligence, 15(3),
451-473 (2001)



http://www.springer.com/978-3-540-40677-8


