
The Ultimate VB .NET
and ASP.NET Code Book

KARL MOORE

*1062_ch00_CMP3 6/3/03 9:45 AM Page i

The Ultimate VB .NET and ASP.NET Code Book

Copyright ©2003 by Karl Moore

All rights reserved. No part of this work may be reproduced or transmitted in any form or by

any means, electronic or mechanical, including photocopying, recording, or by any information

storage or retrieval system, without the prior written permission of the copyright owner and

the publisher.

ISBN (pbk): 1-59059-106-2

Printed and bound in the United States of America 12345678910

Trademarked names may appear in this book. Rather than use a trademark symbol with every

occurrence of a trademarked name, we use the names only in an editorial fashion and to the

benefit of the trademark owner, with no intention of infringement of the trademark.

Technical Reviewer: Franky Wong, Stjepan Pejic

Editorial Board: Dan Appleman, Craig Berry, Gary Cornell, Tony Davis, Steven Rycroft,

Julian Skinner, Martin Streicher, Jim Sumser, Karen Watterson, Gavin Wright, John Zukowski

Assistant Publisher: Grace Wong

Project Manager: Nate McFadden

Copy Editor: Tom Gillen of Gillen Editorial, Inc.

Production Manager: Kari Brooks

Proofreader: Lori Bring

Compositor: Diana Van Winkle, vwdesign.com

Indexer: Valerie Perry

Cover Designer: Kurt Krames

Manufacturing Manager: Tom Debolski

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 175 Fifth

Avenue, New York, NY, 10010 and outside the United States by Springer-Verlag GmbH & Co. KG,

Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States: phone 1-800-SPRINGER, email orders@springer-ny.com, or visit

http://www.springer-ny.com. Outside the United States: fax +49 6221 345229, email

orders@springer.de, or visit http://www.springer.de.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219,

Berkeley, CA 94710. Phone 510-549-5930, fax 510-549-5939, email info@apress.com, or visit

http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every

precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall

have any liability to any person or entity with respect to any loss or damage caused or alleged to

be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Downloads

section. You will need to answer questions pertaining to this book in order to successfully

download the code.

*1062_ch00_CMP3 6/3/03 9:45 AM Page ii

CHAPTER 7

More .NET Secrets

I HAD TO OVERCOME two big obstacles in writing this book. The first was the three
years I invested in discovering these secrets, then writing and debugging to ensure
they worked on every platform and in every possible situation. The second was
organizing them.

The .NET world is a huge one, and not everything can be easily categorized.
We’ve already covered some of the biggies: Windows applications, Web sites, data-
bases, and special project types. This chapter covers most of the other stuff.

Split into seven subsections, the following pages examine working with the
Internet; manipulating files and folders; dates, numbers, and strings; graphics and
fonts; using the registry and event log; distributed computing; and useful Visual
Studio .NET tips.

It was, probably, one of most exciting chapters to write. It provides ready-to-run
golden code snippets that show you how to give your application extra intelligence
through the use of clever code. It shows you how to do things most .NET developers
will never even be aware that the language is capable of.

I’ll show you how to convert HTML to pure text, and in just a couple of lines of
code. You’ll be given a function to add a Web shortcut to the Favorites menu. I’ll
demonstrate how to transform bytes into an English file size, like 1.44MB. You’ll
uncover the secrets of generating memorable user passwords, plus discover how
to put together your own .NET screensaver and learn the tricks of encrypting data
with just twelve simple lines of Visual Basic code. The advanced stuff is covered
here too: XML, transactions with COM+, MSMQ, and more.

It’s diverse, but it’s fun. These are the code snippets you’ll learn once and
never forget.

Developer Secrets

Wanting to dive into all those beefy miscellaneous tips and techniques? Here’s a
rundown of what we’re going to cover in this jam-packed chapter....

221

*1062_ch07_CMP2 5/31/03 6:13 PM Page 221

Working with the Internet

• Creating Your Own Web Browser

• How to Snatch the HTML of a Web Page

• How to Snatch HTML, with a Timeout

• Tricks of Parsing a Web Page for Links and Images

• Converting HTML to Text, Easily

• Real Code for Posting Data to the Web

• Adding a Web Shortcut to the Favorites

• Retrieving Your IP Address—And Why You May Want To

• Is an Internet Connection Available?

Manipulating Files and Folders

• Two Easy-to-Use Functions for Reading and Writing Files

• Files: Moving, Deleting, Attributes, and More!

• Checking Whether Two Files Are Identical

• The Trick to Temporary Files

• Doing Directories

• “Watching” a Directory for Changes

• How Big Is That File—in English?

• Retrieving Special Folder Paths

• Which Program Handles That File Extension?

• Retrieving a Drive Serial Number

• The .NET Replacement for App.Path

• INI Files Will Never Die: How to in .NET

Chapter 7

222

*1062_ch07_CMP2 5/31/03 6:13 PM Page 222

Dates, Numbers, Strings

• Is That a Whole Number, or Not?

• Checking for a Date the Intelligent .NET Way

• 1st, 2nd, 3rd: Using Ordinal Numbers in Your App

• Random Numbers… That Work!

• Finding the Number of Days in a Month

• Adding and Subtracting Days, Months, Years

• Calculating the Next Working Day

• Easy Check for a Leap Year

• Figuring out Quarters

• Calculating the Years Between Two Dates

• Converting a String to “Proper Case”

• Storing Text Snippets on the Clipboard

• Generating Memorable Passwords, Automatically

• Encryption in Just Twelve Lines of Code

• Implementing Powerful MD5 Encryption

• Converting a String into the Color Type

• Binding a Combo Box to Enumeration Values

Graphics and Fonts

• Designing Your Own Arty Icons

• The Basics of Working with Fonts

• Crafty Conversion Between Graphic Formats

• Rotating and Flipping Is Easy!

More .NET Secrets

223

*1062_ch07_CMP2 5/31/03 6:13 PM Page 223

• Drawing with Windows Forms

• Add an Exciting Gradient Backdrop, in Code!

• Starting Your Own Screensaver

Using the Registry and Event Log

• How to Read and Write the Registry

• Putting Messages in the Event Log

Distributed Computing

• The Cheat’s Guide to XML

• Six Steps to Basic Transactions with COM+

• Quick Guide to Using MSMQ

• Which to Choose: Web Services vs. Remoting

Visual Studio Tips

• Writing a Developer TODO: List

• Storing Often-Used Code in the Toolbox

• Organizing Your Project with Folders

• Figuring out the Command Window

• Discovering Whether You’re Running in the IDE

• Saving Time by Recording Macros

• Using the VS .NET Command Prompt

• The Old School: Upgrading, COM, and the API

Chapter 7

224

*1062_ch07_CMP2 5/31/03 6:13 PM Page 224

Working with the Internet

From parsing a Web page for links to adding your shortcut to the Favorites, this
section contains a whole bundle of techniques for utilizing the Internet with your
favorite programming language.

Creating Your Own Web Browser

The WebBrowser control we became oh-so-familiar with in Visual Basic 6 has no
.NET equivalent. To use it, we need to step back into the world of COM.

To add a WebBrowser control to a Windows form, right-click on the toolbox
and select Customize Toolbox. Browse the list of available COM components and
check the Microsoft Web Browser option, then click on OK. This will automatically
create a “wrapper” for you, allowing you to use the COM component in .NET.

At the bottom of your toolbox control list, you’ll now see an Explorer item.
Draw an instance of this onto your form, and that’s your browser window!

So, what can you do with it? Everything you could before. Let’s review the most
popular methods, most of which are self-explanatory:

AxWebBrowser1.Navigate ("http://www.vbworld.com/")

AxWebBrowser1.GoBack

AxWebBrowser1.GoForward

AxWebBrowser1.Stop

AxWebBrowser1.Refresh

AxWebBrowser1.GoHome ' Visits the homepage

AxWebBrowser1.GoSearch ' Visits the default search page

TOP TIP It may be a neat control, but the WebBrowser is prone to generating
whopping great big error messages for any silly little matter. As such, don’t feel
bad for using those old “On Error Resume Next” statements liberally.

We also have a number of particularly interesting properties:

strPageTitle = AxWebBrowser1.LocationName

strURL = AxWebBrowser1.LocationURL

AxWebBrowser1.Document... ' Accessing page HTMLDocument object

More .NET Secrets

225

*1062_ch07_CMP2 5/31/03 6:13 PM Page 225

You’ll also find that the browser supports a bundle of cool events,
including DocumentComplete (which fires when any Web page has finished
loading), BeforeNavigate2 (which fires before a page is visited—set the Cancel
property to True to cancel the request), and ProgressChange (which fires whenever
the progress bar in Internet Explorer would change).

That’s all you need to get your favorite Web control into .NET. (See Figure 7-1
for my sample application.) Good luck!

TOP TIP If you want to manipulate data inside a Web page, automatically
filling out forms and extracting data, you’ll need to do some heavy-duty work
with the WebBrowser.Document object. Alternatively, check out the new WebZinc
.NET component at www.webzinc.net for an easier solution.

Figure 7-1. My Web browser application visiting some totally random Web site

Chapter 7

226

*1062_ch07_CMP2 5/31/03 6:13 PM Page 226

How to Snatch the HTML of a Web Page

Download supporting files at www.apress.com.

The files for this tip are in the “Ch7—Snatch HTML” folder.

Need to visit a competitor Web page and parse out the latest rival product prices?
Looking to retrieve data from a company that hasn’t yet figured out Web services?
Whatever your motives, if you’re looking to grab the HTML of a Web page, the fol-
lowing little function should be able to help.

Just call the following GetPageHTML function, passing in the URL of the page you
want to retrieve. It’ll return a string containing the HTML:

Public Function GetPageHTML(ByVal URL As String) As String

' Retrieves the HTML from the specified URL

Dim objWC As New System.Net.WebClient()

Return New System.Text.UTF8Encoding().GetString(_

objWC.DownloadData(URL))

End Function

Here’s an example of its usage:

strHTML = GetPageHTML("http://www.karlmoore.com/")

An extremely short function, but incredibly useful.

How to Snatch HTML, with a Timeout

Download supporting files at www.apress.com.

The files for this tip are in the “Ch7—Snatch HTML with Timeout” folder.

The function I demonstrated in the last tip (“How to Snatch the HTML of a Web
Page”) is great for many applications. You pass it a URL, and it’ll work on grabbing
the page HTML. The problem is that it will keep trying until it eventually either
times out or retrieves the page.

More .NET Secrets

227

*1062_ch07_CMP2 5/31/03 6:13 PM Page 227

Sometimes, you don’t have that luxury. Say you’re running a Web site that
needs to retrieve the HTML, parse it, and display results to a user. You can’t wait
two minutes for the server to respond, then download the page and feed it back to
your visitor. You need a response within ten seconds—or not at all.

Unfortunately, despite numerous developer claims to the contrary, this
cannot be done through the WebClient class. Rather, you need to use some of the
more in-depth System.Net classes to handle the situation. Here’s my offering,
wrapped into a handy little function:

Public Function GetPageHTML(ByVal URL As String, _

Optional ByVal TimeoutSeconds As Integer = 10) _

As String

' Retrieves the HTML from the specified URL,

' using a default timeout of 10 seconds

Dim objRequest As Net.WebRequest

Dim objResponse As Net.WebResponse

Dim objStreamReceive As System.IO.Stream

Dim objEncoding As System.Text.Encoding

Dim objStreamRead As System.IO.StreamReader

Try

' Setup our Web request

objRequest = Net.WebRequest.Create(URL)

objRequest.Timeout = TimeoutSeconds * 1000

' Retrieve data from request

objResponse = objRequest.GetResponse

objStreamReceive = objResponse.GetResponseStream

objEncoding = System.Text.Encoding.GetEncoding(_

"utf-8")

objStreamRead = New System.IO.StreamReader(_

objStreamReceive, objEncoding)

' Set function return value

GetPageHTML = objStreamRead.ReadToEnd()

' Check if available, then close response

If Not objResponse Is Nothing Then

objResponse.Close()

End If

Catch

' Error occured grabbing data, simply return nothing

Return ""

End Try

End Function

Chapter 7

228

*1062_ch07_CMP2 5/31/03 6:13 PM Page 228

Here, our code creates objects to request the data from the Web, setting the
absolute server timeout. If the machine responds within the given timeframe, the
response is fed into a stream, converted into the UTF8 text format we all under-
stand, and then passed back as the result of the function. You can use it a little
like this:

strHTML = GetPageHTML("http://www.karlmoore.com/", 5)

Admittedly, this all seems like a lot of work just to add a timeout. But it does its
job—and well. Enjoy!

TOP TIP Remember, the timeout we’ve added is for our request to be acknowl-
edged by the server, rather than for the full HTML to have been received.

Tricks of Parsing a Web Page for Links and Images

Download supporting files at www.apress.com.

The files for this tip are in the “Ch7—Parse Links and Images” folder.

So, you’ve retrieved the HTML of that Web page and now need to parse out all the
links to use in your research database. Or maybe you’ve visited the page and want
to make a note of all the image links, so you can download at some later point.

Well, you have two options. You can write your own parsing algorithm, con-
sisting of ten million InStr and Mid statements. They’re often slow and frequently
buggy, but they’re a truly great challenge (always my favorite routines to write).

Alternatively, you can write a regular expression in VB .NET. This is where you
provide an “expression” that describes how a link looks and what portion you want
to retrieve (that is, the bit after <a href=" but before the next " for a hyperlink).
Then you run the expression and retrieve matches. The problem with these is that
they’re difficult to formulate. (See Chapter 8, “The Hidden .NET Language” for
more information.)

So, why not cheat? Following you’ll find two neat little functions I’ve already
put together using regular expressions. Just pass in the HTML from your Web page,
and it’ll return an ArrayList object containing the link/image matches:

Public Function ParseLinks(ByVal HTML As String) As ArrayList

' Remember to add the following at top of class:

' - Imports System.Text.RegularExpressions

Dim objRegEx As System.Text.RegularExpressions.Regex

More .NET Secrets

229

*1062_ch07_CMP2 5/31/03 6:13 PM Page 229

Dim objMatch As System.Text.RegularExpressions.Match

Dim arrLinks As New System.Collections.ArrayList()

' Create regular expression

objRegEx = New System.Text.RegularExpressions.Regex(_

"a.*href\s*=\s*(?:""(?<1>[^""]*)""|(?<1>\S+))", _

System.Text.RegularExpressions.RegexOptions.IgnoreCase Or _

System.Text.RegularExpressions.RegexOptions.Compiled)

' Match expression to HTML

objMatch = objRegEx.Match(HTML)

' Loop through matches and add <1> to ArrayList

While objMatch.Success

Dim strMatch As String

strMatch = objMatch.Groups(1).ToString

arrLinks.Add(strMatch)

objMatch = objMatch.NextMatch()

End While

' Pass back results

Return arrLinks

End Function

Public Function ParseImages(ByVal HTML As String) As ArrayList

' Remember to add the following at top of class:

' - Imports System.Text.RegularExpressions

Dim objRegEx As System.Text.RegularExpressions.Regex

Dim objMatch As System.Text.RegularExpressions.Match

Dim arrLinks As New System.Collections.ArrayList()

' Create regular expression

objRegEx = New System.Text.RegularExpressions.Regex(_

"img.*src\s*=\s*(?:""(?<1>[^""]*)""|(?<1>\S+))", _

System.Text.RegularExpressions.RegexOptions.IgnoreCase Or _

System.Text.RegularExpressions.RegexOptions.Compiled)

' Match expression to HTML

objMatch = objRegEx.Match(HTML)

' Loop through matches and add <1> to ArrayList

While objMatch.Success

Dim strMatch As String

strMatch = objMatch.Groups(1).ToString

arrLinks.Add(strMatch)

objMatch = objMatch.NextMatch()

End While

' Pass back results

Return arrLinks

End Function

Chapter 7

230

*1062_ch07_CMP2 5/31/03 6:13 PM Page 230

Here’s a simplified example using the ParseLinks routine. The ParseImages
routine works in exactly the same way:

Dim arrLinks As ArrayList = ParseLinks(_

"" & _

"Visit MarkSandler.com")

' Loop through results

Dim shtCount As Integer

For shtCount = 0 To arrLinks.Count - 1

MessageBox.Show(arrLinks(shtCount).ToString)

Next

One word of warning: many Web sites use relative links. In other words, an
image may refer to /images/mypic.gif rather than
http://www.mysite.com/images/mypic.gif. You may wish to check for this in code
(perhaps look for the existence of “http”)—if the prefix isn’t there, add it program-
matically.

And that’s all you need to know to successfully strip links and images out of
any HTML. Best wishes!

Converting HTML to Text, Easily

Download supporting files at www.apress.com.

The files for this tip are in the “Ch7—HTML to Text” folder.

Whether you want to convert an HTML page into pure text so you can parse out
that special piece of information, or you simply want to load a page from the Net
into your own word processing package, this mini function could come in handy.

It’s called StripTags and accepts an HTML string. Using a regular expression, it
identifies all <tags>, removes them, and returns the modified string. Here’s the code:

Public Function StripTags(ByVal HTML As String) As String

' Removes tags from passed HTML

Dim objRegEx As _

System.Text.RegularExpressions.Regex

Return objRegEx.Replace(HTML, "<[^>]*>", "")

End Function

More .NET Secrets

231

*1062_ch07_CMP2 5/31/03 6:13 PM Page 231

Here’s a simple example demonstrating how you could use this function in
code (see Figure 7-2 for my sample application):

strData = StripTags("<body>Welcome!</body>")

I admit, it doesn’t look like much, but this little snippet can be a true lifesaver,
especially if you’ve ever tried doing it yourself using Instr and Mid statements.
Have fun!

Figure 7-2. My sample application, retrieving HTML from www.bbc.co.uk, then con-
verting it to text

Real Code for Posting Data to the Web

One of my early tasks when working with .NET was figuring out how to take a
stream of data (in my case, an XML document) and post it to a CGI script, in code.

It wasn’t easy. I ended up with two pages of code incorporating practically
every Internet-related class in the .NET Framework. Months later now, and I’ve
managed to refine this posting technique to just a few generic lines of code. And
that’s what I’d like to share with you in this tip.

Chapter 7

232

*1062_ch07_CMP2 5/31/03 6:13 PM Page 232

The following chunk of code starts by creating a WebClient object and setting a
number of headers (which you can change as appropriate). It then converts my
string (MyData) into an array of bytes, and then uploads direct to the specified
URL. The server response to this upload is then converted into a string, which
you’ll probably want to analyze for possible success or error messages.

' Setup WebClient object

Dim objWebClient As New System.Net.WebClient()

' Convert data to send into an array of bytes

Dim bytData As Byte() = System.Text.Encoding.ASCII.GetBytes(MyData)

' Add appropriate headers

With objWebClient.Headers

.Add("Content-Type", "text/xml")

.Add("Authorization", "Basic " & _

Convert.ToBase64String(_

System.Text.Encoding.ASCII.GetBytes(_

"MyUsername:MyPassword")))

End With

' Upload data to page (CGI script, or whatever) and receive response

Dim objResponse As Byte() = objWebClient.UploadData(_

"http://www.examplesite.com/clients/upload.cgi", _

"POST", bytData)

' Convert response to a string

Dim strResponse As String = _

System.Text.Encoding.ASCII.GetString(objResponse)

' Check response for data, errors, etc...

I initially used this code to submit details of new store locations automatically
to mapping solution provider Multimap.com. It accessed the destination CGI
script, providing all necessary credentials, streamed my own XML document
across the wire, and then checked the XML response for any errors.

A few pointers here. Firstly, you can easily remove the “Authorization” header.
This was included to demonstrate how you can upload to a protected source—
which, although a common request, is not everyone’s cup of tea. Secondly, the
content type here is set to “text/xml”. You can change this to whatever content
type you deem fit—“text/html” for example, or perhaps “application/x-www-
form-urlencoded” if you want to make the post look as though it were coming
from a Web form. Finally, you don’t always have to upload pure data like this;

More .NET Secrets

233

*1062_ch07_CMP2 5/31/03 6:13 PM Page 233

you can also upload files with the .UploadFile function, or simulate a true form
post, by submitting key pairs (such as text box names and related values) with
the .UploadValues function.

Adding a Web Shortcut to the Favorites

Download supporting files at www.apress.com.

The files for this tip are in the “Ch7—Adding Favorites” folder.

This is one of those cute little code snippets that you have a use for in practically
every application. Applications that can do this look cool and intelligent—and it
takes just a few simple lines of code. I’m talking about adding an Internet shortcut
to the user’s Favorites menu.

How do you do it? Well, the following function encompasses all the logic for
you. It accepts a page title and a URL. Then it locates the current Favorites folder
(which could vary greatly depending on the machine setup) and creates a URL
file in that folder, based on the title you passed. Inside that file, it includes a little
required text for an Internet shortcut, alongside your URL. And that’s it—shortcut
created!

Here’s the code:

Public Sub CreateShortcut(ByVal Title As String, ByVal URL As String)

' Creates a shortcut in the users Favorites folder

Dim strFavoriteFolder As String

' Retrieve the favorite folder

strFavoriteFolder = System.Environment.GetFolderPath(_

Environment.SpecialFolder.Favorites)

' Create shortcut file, based on Title

Dim objWriter As System.IO.StreamWriter = _

System.IO.File.CreateText(strFavoriteFolder & _

"\" & Title & ".url")

' Write URL to file

objWriter.WriteLine("[InternetShortcut]")

objWriter.WriteLine("URL=" & URL)

' Close file

objWriter.Close()

End Sub

Chapter 7

234

*1062_ch07_CMP2 5/31/03 6:13 PM Page 234

To finish off this snippet, here are a couple of interesting calls to this
procedure (see Figure 7-3 to see the created shortcuts in Internet Explorer):

CreateShortcut("Karl Moore.com", "http://www.karlmoore.com/")

CreateShortcut("Send mail to Karl Moore", "mailto:karl@karlmoore.com")

Figure 7-3. A couple of plug-plug Internet shortcuts added by my sample code

Retrieving Your IP Address—And Why You May Want To

Download supporting files at www.apress.com.

The files for this tip are in the “Ch7—IP” folder.

You may want to discover the IP address of your local machine for a number of
reasons. You may, for example, be developing a messaging-style application using
the .NET equivalent of the Winsock control—the Socket class (look up “Socket
class” in the help index) and need to register the local IP in a central database
somewhere.

More .NET Secrets

235

*1062_ch07_CMP2 5/31/03 6:13 PM Page 235

So, how can you find out your IP address? The code is easy:

Dim objEntry As System.Net.IPHostEntry = _

System.Net.Dns.GetHostByName(_

System.Net.Dns.GetHostName)

Dim strIP As String = CType(_

objEntry.AddressList.GetValue(0), _

System.Net.IPAddress).ToString

Here, we pass our machine name to the GetHostByName function, which returns
a valid IPHostEntry object. We then retrieve the first IP address from the entry
AddressList array and convert it to a string. Simple!

Is an Internet Connection Available?

Download supporting files at www.apress.com.

The files for this tip are in the “Ch7—IsConnectionAvailable” folder.

Checking whether an Internet connection is available isn’t always as easy as it
sounds.

Admittedly, there is a Windows API call that can check whether a connection
exists, but it’s extremely fragile and returns incorrect results if the machine has
never had Internet Explorer configured correctly. Oops.

The best method is to actually make a Web request and see whether it works.
If it does, you’ve got your connection. The following neat code snippet does
exactly that. Just call IsConnectionAvailable and check the return value:

Public Function IsConnectionAvailable() As Boolean

' Returns True if connection is available

' Replace www.yoursite.com with a site that

' is guaranteed to be online - perhaps your

' corporate site, or microsoft.com

Dim objUrl As New System.Uri("http://www.yoursite.com/")

' Setup WebRequest

Dim objWebReq As System.Net.WebRequest

objWebReq = System.Net.WebRequest.Create(objUrl)

Dim objResp As System.Net.WebResponse

Try

' Attempt to get response and return True

Chapter 7

236

*1062_ch07_CMP2 5/31/03 6:13 PM Page 236

objResp = objWebReq.GetResponse

objResp.Close()

objWebReq = Nothing

Return True

Catch ex As Exception

' Error, exit and return False

objResp.Close()

objWebReq = Nothing

Return False

End Try

Here’s how you might use this function in your application:
If IsConnectionAvailable() = True Then

MessageBox.Show("You are online!")

End If

Manipulating Files and Folders

Wanting to “watch” a directory for file changes? Or find out the .NET replacement
for App.Path? Or uncover how big that file is... in English? If you’re looking for the
best file and folder techniques for your VB .NET applications, simply read on.

Two Easy-to-Use Functions for Reading and
Writing Files

Download supporting files at www.apress.com.

The files for this tip are in the “Ch7—Read and Write Files” folder.

Reading and writing to simple text files is perhaps one of the most common tasks
in the programming world. The old VB6 way of doing this is now defunct, and a
new .NET method is here, involving objects within the System.IO namespace.

The following functions help simplify the process of reading and writing to
files. The first is called ReadTextFromFile and accepts a filename as a parameter. It
returns the text from the specified file:

Public Function ReadTextFromFile(ByVal Filename As String) As String

' Returns text from the specified file

On Error Resume Next

Dim strFileText As String

More .NET Secrets

237

*1062_ch07_CMP2 5/31/03 6:13 PM Page 237

' Open the file and launch StreamReader object

Dim MyReader As System.IO.StreamReader = _

System.IO.File.OpenText(Filename)

' Read all text through to the end

strFileText = MyReader.ReadToEnd

' Close the stream

MyReader.Close()

' Return data

Return strFileText

End Function

The second code snippet is a method called WriteTextToFile, and it accepts a
filename and the text to write as parameters:

Public Sub WriteTextToFile(ByVal Filename As String, ByVal Text As String)

' Writes the passed Text into the specified file

' Create file and StreamWriter object

Dim MyWriter As System.IO.StreamWriter = _

System.IO.File.CreateText(Filename)

' Write text to the stream

MyWriter.Write(Text)

' Close the stream

MyWriter.Close()

End Sub

Here is an example of each of these code snippets in action:

WriteTextToFile("c:\myfile.txt", TextBox1.Text)

MessageBox.Show(ReadTextFromFile("c:\myfile.txt"))

Files: Moving, Deleting, Attributes, and More!

If you’re looking to manipulate files using the .NET Framework base classes, you
should be heading to the System.IO.File class, where you’ll find functions to delete
files, copy files, check file attributes, and much more.

Here is a commented example demonstrating the most common uses of the
File class:

Chapter 7

238

*1062_ch07_CMP2 5/31/03 6:13 PM Page 238

Dim objFile As System.IO.File

' Check for existence of a file

Dim blnExists As Boolean

blnExists = objFile.Exists("c:\unlikely.txt")

' Delete a file

objFile.Delete("c:\goodbye.txt")

' Copy a file

objFile.Copy("c:\source.txt", "e:\destination.txt")

' Move a file

objFile.Move("c:\oldlocation.txt", "e:\newlocation.txt")

' Check whether a file is read-only

Dim blnReadOnly As Boolean

blnReadOnly = CType(objFile.GetAttributes("c:\readonly.txt").ReadOnly, Boolean)

' Check whether a file is hidden

Dim blnHidden As Boolean

blnHidden = CType(objFile.GetAttributes("c:\hidden.txt").Hidden, Boolean)

' Check a file creation date

Dim datCreated As DateTime

datCreated = objFile.GetCreationTime("c:\created.txt")

It’s worth noting that you don’t have to create a new File object to use this
functionality. The File class consists of what are known as shared methods,
meaning that you can call them directly without having to instantiate a new
object. This means you can delete a file with one direct line of code, like this:

System.IO.File.Delete("c:\goodbye.txt")

Checking Whether Two Files Are Identical

Download supporting files at www.apress.com.

The files for this tip are in the “Ch7—Check Files Are Identical” folder.

Checking whether the contents of two files are identical is a surprisingly common
request in the programming world, but, beyond simply comparing file sizes, many
developers are unsure about how to actually check this.

There’s no need to worry. This excellent CompareFiles function does it all for
you, initially comparing by size and then byte by byte. If the two file paths you
pass in as arguments match, the function passes back a True; otherwise, it returns
False.

More .NET Secrets

239

*1062_ch07_CMP2 5/31/03 6:13 PM Page 239

Here’s the code:

Public Function CompareFiles(ByVal File1 As String, _

ByVal File2 As String) As Boolean

' Compares contents of two files, byte by byte

' and returns true if no differences

Dim blnIdentical As Boolean = True

Dim objFS1 As System.IO.FileStream = _

New System.IO.FileStream(File1, System.IO.FileMode.Open)

Dim objFS2 As System.IO.FileStream = _

New System.IO.FileStream(File2, System.IO.FileMode.Open)

' Begin by checking length

If (objFS1.Length <> objFS2.Length) Then

blnIdentical = False

Else

' Start looping through, comparing bytes

Dim intByteF1 As Integer

Dim intByteF2 As Integer

Do

intByteF1 = objFS1.ReadByte()

intByteF2 = objFS2.ReadByte()

If intByteF1 <> intByteF2 Then

blnIdentical = False

Exit Do

End If

Loop While (intByteF1 <> -1)

End If

' Close files and set return value

objFS1.Close()

objFS2.Close()

Return blnIdentical

End Function

Here’s how you might call this function in your code:

If CompareFiles("c:\1.txt", "c:\2.doc") Then

MessageBox.Show("Files are identical!")

Else

MessageBox.Show("Files do not match!")

End If

Chapter 7

240

*1062_ch07_CMP2 5/31/03 6:13 PM Page 240

The Trick to Temporary Files

Download supporting files at www.apress.com.

The files for this tip are in the “Ch7—Writing to Temp File” folder.

Temporary files are incredibly useful. Most applications use them to store infor-
mation while running some sort of processing. And you can too. When you’re
finished, either delete the temporary file or leave it for the next Windows “Disk
Cleanup” operation to thwart.

But how do you go about working with temporary files? Well, firstly you need
to get a temporary filename, and the System.IO.Path has a shared function called
GetTempFileName to help you here. Then you simply write to the file as normal.

This handy little function wraps all this functionality up for you into one neat
function. Simply call WriteToTempFile and pass in your data. It’ll return your tem-
porary file path:

Public Function WriteToTempFile(ByVal Data As String) As String

' Writes text to a temporary file and returns path

Dim strFilename As String = System.IO.Path.GetTempFileName()

Dim objFS As New System.IO.FileStream(strFilename, _

System.IO.FileMode.Append, _

System.IO.FileAccess.Write)

' Opens stream and begins writing

Dim Writer As New System.IO.StreamWriter(objFS)

Writer.BaseStream.Seek(0, System.IO.SeekOrigin.End)

Writer.WriteLine(Data)

Writer.Flush()

' Closes and returns temp path

Writer.Close()

Return strFilename

End Function

Here’s how you might call this function in your code:

Dim strFilename As String = WriteToTempFile("My data for the temp file")

MessageBox.Show(strFilename)

More .NET Secrets

241

*1062_ch07_CMP2 5/31/03 6:13 PM Page 241

Doing Directories

When it came to working with directories in Visual Basic 6, we had MkDir, RmDir,
and CurDir. If you wanted anything more complicated, you either had to write
your own API routines and sacrifice a few hours of development time, or reference
the external FileSystemObject DLL and sacrifice the size of your final project, and,
potentially, application speed.

In VB .NET, however, it’s plain sailing... introducing the System.IO.Directory
class!

Cram packed with shared methods, this class provides you with everything
you need to create, move, delete, and check for the existence of directories. It also
allows you to retrieve a list of files from a directory, plus obtain a list of the logical
drives on your system.

Here’s a chunk of sample code showing you how:

Dim objDir As System.IO.Directory

' Creates a directory

objDir.CreateDirectory("c:\mydata")

' Delete a directory, recursively

objDir.Delete("c:\temp", True)

' Get current directory

Dim strCurDir As String = objDir.GetCurrentDirectory

' Check whether a directory exists

Dim blnExists As Boolean = objDir.Exists("c:\mydata")

' Get string array of all directories in a path

Dim strDirectories() As String = objDir.GetDirectories("c:\Program Files\")

' Get files in a directory

Dim strFiles1() As String = objDir.GetFiles("c:\winnt")

' Get all *.DOC files in a directory

Dim strFiles2() As String = objDir.GetFiles("c:\my documents", "*.doc")

' Move a directory

objDir.Move("c:\backup", "c:\original")

' Retrieve array of drives

Dim strDrives() As String = objDir.GetLogicalDrives

As with the System.IO.File class, it’s worth noting that you don’t have to create
a new Directory object to use this functionality. The Directory class consists of
shared methods, meaning that you can call them directly without having to instan-
tiate a new object. This means that you can create a directory with one direct line
of code, like this:

System.IO.Directory.CreateDirectory("c:\mydata")

Chapter 7

242

*1062_ch07_CMP2 5/31/03 6:13 PM Page 242

“Watching” a Directory for Changes

Directory “watching” is one of those really cool techniques that took quite a large
lump of skill to implement successfully in Visual Basic 6. With this latest version
of VB, however, you can get such functionality by utilizing the brand new
FileSystemWatcher class.

The new System.IO.FileSystemWatcher class can be set up either in code or,
rather easier, by dragging and dropping the FileSystemWatcher component from
the toolbox Component tab onto your application.

Next, you need to start setting properties. First, there’s the Path property,
which you need to set to the path of the directory that you wish to monitor, such
as “c:\” or “e:\whitecliff\”. Next, there’s the Filter property, where you specify
which files you want to monitor. You can use “*.*” to keep an eye on everything in
the directory, something like “*.doc” to check Word documents, or simply use an
exact filename, such as “datalog.txt”.

There’s also the NotifyFilter property, which lists exactly what you want
your FileSystemWatcher object to inform you about. The default is “FileName,
DirectoryName, LastWrite,” which means that you’re informed when a filename
or directory name is changed, or a file is written (that is, the LastWrite date and
time changes). You can specify your own in code by typing the options from the
dropdown list, separated by commas, or in code using the bitwise “Or” operator.
Finally, there’s the IncludeSubdirectories property. Change this to True if you want
to monitor all subdirectories—or False otherwise.

And after you’ve set up your FileSystemWatcher object? Simply respond to its
events (ensure that the EnableRaisingEvents property is set to True). You have the
Changed, Created, Deleted, and Renamed events all at your disposal. Each will fire off
whenever a related action occurs. For example, if you’re monitoring “c:\mydata\”,
with a filter of “*.txt” and the default NotifyFilter property value, and your user or
an application edits the contents of “c:\mydata\test.txt”—the Changed event will fire.

From within the event, you can use the “e” argument (the
System.IO.FileSystemEventArgs object) to find out more about the altered file.
You may use the e.FullPath property to find out the filename, for example—or
analyze the ChangeType or Path.

TOP TIP There’s an Error event associated with the FileSystemWatcher com-
ponent, too. It only ever comes into play when far too many changes are being
made at once (typically a result of badly chosen properties, or mass file alter-
ations by the user) and the system just cannot cope. If it ever occurs, you’ll know
the events raised may not cover all items. Not always good to experience, but
certainly a great event to be aware of.

More .NET Secrets

243

*1062_ch07_CMP2 5/31/03 6:13 PM Page 243

And that, quite simply, is how you can easily plug directly into the file system
and directly monitor its contents. Doddle!

TOP TIP Certain users of the FileSystemWatcher component complain they
receive multiple (sometimes delayed) events firing in their application, for even
the simplest of operations. You may receive two or three notifications for a
simple file copy in Windows Explorer, for example. The official explanation is
that each operation consists of a number of simpler actions, which each raise
their own events (see the note in ‘FileSystemWatcher class, about FileSys-
temWatcher class’ in the help index). Unofficially, Microsoft has identified this
as an issue and is working to resolve it. If this problem affects you, you need to
create your own workaround—such as maintaining your own unique list of
alterations and then running your code a few seconds after the last event
has fired.

How Big Is That File—in English?

Download supporting files at www.apress.com.

The files for this tip are in the “Ch7—English File Size” folder.

Humans and computers sometimes just don’t get along. Take file sizes, for
example. What a human being would call one gigabyte, a computer would call
1073741824 bytes. How do you translate one into the other? Pull up a chair.

The following handy function takes a number of bytes and translates it into a
readable “human” string. Here’s the code:

Public Function ConvertBytes(ByVal Bytes As Long) As String

' Converts bytes into a readable "1.44 MB", etc. string

If Bytes >= 1073741824 Then

Return Format(Bytes / 1024 / 1024 / 1024, "#0.00") _

& " GB"

ElseIf Bytes >= 1048576 Then

Return Format(Bytes / 1024 / 1024, "#0.00") & " MB"

ElseIf Bytes >= 1024 Then

Return Format(Bytes / 1024, "#0.00") & " KB"

ElseIf Bytes > 0 And Bytes < 1024 Then

Return Fix(Bytes) & " Bytes"

Else

Return "0 Bytes"

End If

End Function

Chapter 7

244

*1062_ch07_CMP2 5/31/03 6:13 PM Page 244

Here’s an example of the function in use. Here, the length of my file is 3027676
bytes—and the ConvertBytes function returns “2.89MB”. (See Figure 7-4.) Perfect:

Dim objInfo As New System.IO.FileInfo("c:\myfile.bmp")

MessageBox.Show("File is " & ConvertBytes(objInfo.Length))

Figure 7-4. My file size in English—all thanks to this nifty little function!

Retrieving Special Folder Paths

It’s often useful to know the location of a particular folder. For example, you might
want to know where the Favorites folder is, so you can add a link to your company
Web site. Or you may need to know where the Desktop directory is, so you can
save a file directly to it.

For this, the .NET Framework provides the System.Environment.GetFolderPath
function. Simply call this, passing in a SpecialFolder enumeration. This will then
return a string containing the appropriate path.

For example:

Dim MyFolderPath As String

MyFolderPath = System.Environment.GetFolderPath(_

Environment.SpecialFolder.Favorites)

MessageBox.Show(MyFolderPath)

More .NET Secrets

245

*1062_ch07_CMP2 5/31/03 6:13 PM Page 245

Which Program Handles That File Extension?

Download supporting files at www.apress.com.

The files for this tip are in the “Ch7—File Associations” folder.

Looking to open a program in its default application? Simply use the Start class
and let Windows do the rest of the work for you, like this:

System.Diagnostics.Process.Start("c:\myfile.doc")

But sometimes you want a little more. Sometimes you want to retrieve the
exact path to the default program associated with that file type.

With a little rummaging around in the registry, that’s exactly what this next
code snippet manages to achieve. Simply pass it the file extension, and it’ll return
the path of the associated application. Passing in the .doc extension on a machine
running Office XP, for example, will return the exact path to the Microsoft Word
executable.

It’s worth noting that this function automatically handles system defined vari-
ables, plus removes a number of the excess parameters included in some registry
entries. In other words, it works—and well, too, unlike many samples of this tech-
nique currently floating around the Internet.

Here’s the function:

Public Function GetAssociatedProgram(ByVal FileExtension As String) As String

' Returns the application associated with the specified FileExtension

' ie, path\denenv.exe for "VB" files

Dim objExtReg As Microsoft.Win32.RegistryKey = _

Microsoft.Win32.Registry.ClassesRoot

Dim objAppReg As Microsoft.Win32.RegistryKey = _

Microsoft.Win32.Registry.ClassesRoot

Dim strExtValue As String

Try

' Add trailing period if doesn't exist

If FileExtension.Substring(0, 1) <> "." Then _

FileExtension = "." & FileExtension

' Open registry areas containing launching app details

objExtReg = objExtReg.OpenSubKey(FileExtension.Trim)

strExtValue = objExtReg.GetValue("")

objAppReg = objAppReg.OpenSubKey(strExtValue & "\shell\open\command")

' Parse out, tidy up and return result

Dim SplitArray() As String

SplitArray = Split(objAppReg.GetValue(Nothing), """")

Chapter 7

246

*1062_ch07_CMP2 5/31/03 6:13 PM Page 246

If SplitArray(0).Trim.Length > 0 Then

Return SplitArray(0).Replace("%1", "")

Else

Return SplitArray(1).Replace("%1", "")

End If

Catch

Return ""

End Try

End Function

And here’s how you might call it in your application:

Dim strPath As String = GetAssociatedProgram(TextBox1.Text)

System.Diagnostics.Process.Start(strPath)

Retrieving a Drive Serial Number

Download supporting files at www.apress.com.

The files for this tip are in the “Ch7—Get Drive Serial” folder.

The serial number of a drive sounds like a relatively unimportant factor and cer-
tainly not worthy of an entry in this book. But it can actually prove highly useful.

Many developers, for example, check which drive Windows is installed on and
then send the serial number of the drive (alongside other unique system infor-
mation) to their online validation service to “activate” the product. If they spot a
particular user installing their product on a number of machines with different
serial numbers, they suspect piracy and refuse to “activate” the product any
further.

So, you see, retrieving a volume serial number can be very handy indeed.
To begin, you’ll need to set a reference to the System.Management DLL. Click

on Project ➤ Add Reference, find and highlight System.Management, click on
Select, then hit OK.

Next, add the following function to your project:

Public Function GetDriveSerial(ByVal DriveLetter As String) As String

' Returns the serial number of the specified drive

' ie, GetDriveSerial("c:")

Dim strSelectText As String = "Win32_logicaldisk='" & DriveLetter & "'"

Dim objMO As New System.Management.ManagementObject(strSelectText)

objMO.Get()

Return CType(objMO.Properties("VolumeSerialNumber").Value, String)

End Function

More .NET Secrets

247

*1062_ch07_CMP2 5/31/03 6:13 PM Page 247

And this is our GetDriveSerial function. It works by creating an instance of the
ManagementObject, then using an SQL-like string to retrieve details about the spec-
ified disk. We then pick out and return the “VolumeSerialNumber” property.

Here’s how we might call this function in code:

Label1.Text = GetDriveSerial("C:")

The .NET Replacement for App.Path

A lot of confusion surrounds how to find out the startup path of your application
—the .NET equivalent of the App.Path property we had in Visual Basic 6. I’ve per-
sonally written my own elongated routines, when in fact the solution is incredibly
simple.

If you want to find out the application path of your Windows application, just
reference the StartupPath property of the Application object, as so:

Dim strPath As String = Application.StartupPath

Note that the returned path doesn’t include a trailing slash.
If you’re developing a class library or similar project, however, you might

stumble upon a slight problem. You see, not all projects support the Application
object. In these cases, you can use the System.Reflection class to analyze the exe-
cuting assembly and return its location. A little like this:

Dim strPath As String = System.Reflection.Assembly.GetExecutingAssembly().Location

A bit more in depth, but still pretty darn simple.

INI Files Will Never Die: How to in .NET

Download supporting files at www.apress.com.

The files for this tip are in the “Ch7—INI Files” folder.

Microsoft has been trying to get developers to move away from INI files for quite
some time, pithily suggesting using the registry instead... despite the fact that it’s
rarely a suitable replacement. Well, this “hint” persists with .NET, which proudly
boasts absolutely no intrinsic support for INI files.

But, of course, there’s always a workaround.

Chapter 7

248

*1062_ch07_CMP2 5/31/03 6:13 PM Page 248

In previous versions of Visual Basic, you’d access your INI file through the API.
Well, in VB .NET, we can simply do the same. Admittedly, Microsoft would prefer
us to run “safe,” “managed” code within the .NET Framework—it can then auto-
matically handle resources for you and ensure a more error-free environment.

However, you can still access “unmanaged” code, such as functions within the
Windows API and COM components, with great ease.

In fact, here I’ve developed a class to encapsulate the functionality of some of
those older INI file API functions. The fact that they’re wrapped up in a class also
means that, should you ever implement another method of handling such set-
tings, you can simply edit your code while the interfaces remain the same.

Anyway, enough talk—here’s my class code:

Public Class IniFile

' API functions

Private Declare Ansi Function GetPrivateProfileString _

Lib "kernel32.dll" Alias "GetPrivateProfileStringA" _

(ByVal lpApplicationName As String, _

ByVal lpKeyName As String, ByVal lpDefault As String, _

ByVal lpReturnedString As System.Text.StringBuilder, _

ByVal nSize As Integer, ByVal lpFileName As String) _

As Integer

Private Declare Ansi Function WritePrivateProfileString _

Lib "kernel32.dll" Alias "WritePrivateProfileStringA" _

(ByVal lpApplicationName As String, _

ByVal lpKeyName As String, ByVal lpString As String, _

ByVal lpFileName As String) As Integer

Private Declare Ansi Function GetPrivateProfileInt _

Lib "kernel32.dll" Alias "GetPrivateProfileIntA" _

(ByVal lpApplicationName As String, _

ByVal lpKeyName As String, ByVal nDefault As Integer, _

ByVal lpFileName As String) As Integer

Private Declare Ansi Function FlushPrivateProfileString _

Lib "kernel32.dll" Alias "WritePrivateProfileStringA" _

(ByVal lpApplicationName As Integer, _

ByVal lpKeyName As Integer, ByVal lpString As Integer, _

ByVal lpFileName As String) As Integer

Dim strFilename As String

' Constructor, accepting a filename

Public Sub New(ByVal Filename As String)

strFilename = Filename

End Sub

More .NET Secrets

249

*1062_ch07_CMP2 5/31/03 6:13 PM Page 249

' Read-only filename property

ReadOnly Property FileName() As String

Get

Return strFilename

End Get

End Property

Public Function GetString(ByVal Section As String, _

ByVal Key As String, ByVal [Default] As String) As String

' Returns a string from your INI file

Dim intCharCount As Integer

Dim objResult As New System.Text.StringBuilder(256)

intCharCount = GetPrivateProfileString(Section, Key, _

[Default], objResult, objResult.Capacity, strFilename)

If intCharCount > 0 Then GetString = _

Left(objResult.ToString, intCharCount)

End Function

Public Function GetInteger(ByVal Section As String, _

ByVal Key As String, ByVal [Default] As Integer) As Integer

' Returns an integer from your INI file

Return GetPrivateProfileInt(Section, Key, _

[Default], strFilename)

End Function

Public Function GetBoolean(ByVal Section As String, _

ByVal Key As String, ByVal [Default] As Boolean) As Boolean

' Returns a boolean from your INI file

Return (GetPrivateProfileInt(Section, Key, _

CInt([Default]), strFilename) = 1)

End Function

Public Sub WriteString(ByVal Section As String, _

ByVal Key As String, ByVal Value As String)

' Writes a string to your INI file

WritePrivateProfileString(Section, Key, Value, strFilename)

Flush()

End Sub

Public Sub WriteInteger(ByVal Section As String, _

ByVal Key As String, ByVal Value As Integer)

' Writes an integer to your INI file

WriteString(Section, Key, CStr(Value))

Chapter 7

250

*1062_ch07_CMP2 5/31/03 6:13 PM Page 250

Flush()

End Sub

Public Sub WriteBoolean(ByVal Section As String, _

ByVal Key As String, ByVal Value As Boolean)

' Writes a boolean to your INI file

WriteString(Section, Key, CStr(CInt(Value)))

Flush()

End Sub

Private Sub Flush()

' Stores all the cached changes to your INI file

FlushPrivateProfileString(0, 0, 0, strFilename)

End Sub

End Class

After you’ve added this class code to your application, here’s how you may
want to use it:

Dim objIniFile As New IniFile("c:\data.ini")

objIniFile.WriteString("Settings", "ClockTime", "12:59")

Dim strData As String = _

objIniFile.GetString("Settings", "ClockTime", "(none)")

TOP TIP As I mentioned earlier, Microsoft doesn’t really like people using INI
files. It doesn’t fit in with its vision. They would prefer developers use code like
this only as a stop-gap measure while upgrading existing systems, then move
onto an XML-based method of storing settings. Visit www.gotdotnet.com/
userfiles/demeester/XMLINIFile.zip for an INI file replacement, using XML.
But, of course, it’s completely up to you.

Dates, Numbers, Strings

Not all techniques neatly fit under one header. This one covers a whole bundle of
tricks, from the intelligent way to identify a date to an algorithm generating mem-
orable passwords, from encryption in a mere twelve lines of code to random
numbers... that actually work. And then some. Just read on!

More .NET Secrets

251

*1062_ch07_CMP2 5/31/03 6:13 PM Page 251

Is That a Whole Number, or Not?

It’s sometimes useful to check whether the user has entered a whole number, such
as 5, or perhaps a decimal, such as 3.142.

No problem: the following little function will check for you. Simply pass in
your number to IsWholeNumber. It checks whether the item passed is numeric, then
verifies that it’s a whole number. If so, it returns True; anything else and it passes
back False.

Here’s the code:

Public Function IsWholeNumber(ByVal Number As Object) As Boolean

' Returns true if the passed item is a whole number

If IsNumeric(Number) Then

If CInt(Number) = Number Then Return True

End If

End Function

And, finally, here’s how you might use it:

Dim blnIsWhole As Boolean

blnIsWhole = IsWholeNumber(5)

blnIsWhole = IsWholeNumber(3.142)

Checking for a Date the Intelligent .NET Way

Download supporting files at www.apress.com.

The files for this tip are in the “Ch7—IsDate” folder.

Back in good ol’ Visual Basic 6, we had one function dedicated to letting us know
whether something was a date or not. It was called, appropriately enough, IsDate.
With .NET, however, that function has been reserved for the Microsoft.VisualBasic
namespace—and, if you use that, you’re deemed one of the “old crowd.”

A much better way of checking for a date is to write an equivalent .NET
function for the job. Or rather, just copy mine.

The following replacement function is also called IsDate, however is much
smarter than its VB6 equivalent. For example, not only is “01/01/2004” interpreted
as a date, but so are “Jan 1, 2004” and “28 February 1975”—which is something the
old IsDate couldn’t even imagine.

Chapter 7

252

*1062_ch07_CMP2 5/31/03 6:13 PM Page 252

Ready? Here’s the code you’ll need. Just pass in a string and it’ll return a
Boolean result, depending on whether the passed item is in a recognized date
format:

Public Function IsDate(ByVal DateIn As String) As Boolean

Dim datDateTime As DateTime

Dim blnIsDate As Boolean = True

Try

' Attempt to parse date

datDateTime = DateTime.Parse(DateIn)

Catch e As FormatException

' Error parsing, return False

blnIsDate = False

End Try

Return blnIsDate

End Function

And here’s how you might call the function:

If IsDate("Jan 1, 2004") Then

MessageBox.Show("This is a date!")

Else

MessageBox.Show("This is NOT a date!")

End If

But what if you do get someone passing in something like “January 1, 2004”
and want to translate it into a DateTime (Date equivalent) data type—ready for, say,
storing in a database? Simply use the sixth line of code from our function to
change your text into the required data type. Easy!

1st, 2nd, 3rd: Using Ordinal Numbers in Your App

Download supporting files at www.apress.com.

The files for this tip are in the “Ch7—Ordinal Numbers” folder.

As a human being, I like to read my dates properly. That means “December 1st
2002”, rather than “December 1 2002”. But computers don’t have much of a clue
when it comes to such quirks of the English language. They simply care for
numbers—not ordinals, like “2nd” or “43rd”.

More .NET Secrets

253

*1062_ch07_CMP2 5/31/03 6:13 PM Page 253

Something like that requires intelligence. And that’s exactly what the following
neat function builds into your application. Pass it a number and it’ll look up the
appropriate suffix through a series of Select routines, and then return the ordinal
value.

Here’s the code:

Public Function GetOrdinal(ByVal Number As Integer) As String

' Accepts an integer, returns the ordinal suffix

' Handles special case three digit numbers ending

' with 11, 12 or 13 - ie, 111th, 112th, 113th, 211th, et al

If CType(Number, String).Length > 2 Then

Dim intEndNum As Integer = CType(CType(Number, String). _

Substring(CType(Number, String).Length - 2, 2), Integer)

If intEndNum >= 11 And intEndNum <= 13 Then

Select Case intEndNum

Case 11, 12, 13

Return "th"

End Select

End If

End If

If Number >= 21 Then

' Handles 21st, 22nd, 23rd, et al

Select Case CType(Number.ToString.Substring(_

Number.ToString.Length - 1, 1), Integer)

Case 1

Return "st"

Case 2

Return "nd"

Case 3

Return "rd"

Case 0, 4 To 9

Return "th"

End Select

Else

' Handles 1st to 20th

Select Case Number

Case 1

Return "st"

Case 2

Return "nd"

Case 3

Chapter 7

254

*1062_ch07_CMP2 5/31/03 6:13 PM Page 254

Return "rd"

Case 4 To 20

Return "th"

End Select

End If

End Function

Here’s how you may use this GetOrdinal function in code. (See Figure 7-5 for
my sample application.) Enjoy:

Dim strNumber As String

strNumber = "38" & GetOrdinal(38)

MessageBox.Show(strNumber)

Figure 7-5. Enter a number and get its suffix with this sample application.

Random Numbers… That Work!

Download supporting files at www.apress.com.

The files for this tip are in the “Ch7—Random Numbers” folder.

After reading at least a dozen articles on how to generate random numbers, I’m
sorry to say that technical writers are still getting it wrong.

Don’t misunderstand me: generating random numbers is actually very easy.
You simply create a new instance of the System.Random class, passing in a “seed”
value. Then you use the object .Next method to return a fresh value. The problem
is that most developers place the new instance of the Random class inside the
function that generates the number itself.

More .NET Secrets

255

*1062_ch07_CMP2 5/31/03 6:13 PM Page 255

This means that, if the function is run a number of times at speed, the “seed”
(typically a value based on the number of “ticks” for the current date and time)
given to the Random class may be the same each time. Now, the Random class is never
truly random and simply runs a formula to “randomize” the next number. Because
most developers are declaring a new instance of the class inside the function, it
gets created afresh with every single call, follows its same formula with the same
seed to generate a random number—and creates one exactly the same as the last!
(Until, at least, the tick “seed” value alters.)

The trick is to declare the new Random class outside of the function that
retrieves the next random number. This way you generate the seed only once and
are getting the “randomizer” formula to cycle through its formula and ensure the
next chosen number is truly random.

Here’s my code. Note that you no longer have to declare new objects (such as
objRandom, here) at the top of your class or module; you can do it just above the
function, to aid clarity of code:

Dim objRandom As New System.Random(_

CType(System.DateTime.Now.Ticks Mod System.Int32.MaxValue, Integer))

Public Function GetRandomNumber(_

Optional ByVal Low As Integer = 1, _

Optional ByVal High As Integer = 100) As Integer

' Returns a random number,

' between the optional Low and High parameters

Return objRandom.Next(Low, High + 1)

End Function

And here’s how you may use this function in code:

Dim intDiceRoll As Integer

intDiceRoll = GetRandomNumber(1, 6)

MessageBox.Show("You rolled a " & intDiceRoll.ToString)

Finding the Number of Days in a Month

If you knew how many complicated VB6 algorithms I’ve written to calculate the
number of days in a month, you’d think me a crazed developer. I’ve written code
that accepts a month and year, then formats the month so it’s the start of the next
month, then takes away one day, then retrieves the actual day part of the date...
and so on, et cetera.

Chapter 7

256

*1062_ch07_CMP2 5/31/03 6:13 PM Page 256

When I first visited .NET, I continued writing these complicated functions.
Until, that is, I discovered some of the delights of System.DateTime.

This structure includes a shared DaysInMonth function. Just pass it the year and
month and it’ll return an integer containing the number of days in that month,
useful for business applications and calendar-based programs.

Here’s a little sample code demonstrating the function in use:

Dim shtDayCount As Short

shtDayCount = System.DateTime.DaysInMonth("2003", "2")

MessageBox.Show("There are " & shtDayCount.ToString & _

" days in that month")

Easy when you know how, isn’t it?

Adding and Subtracting Days, Months, Years

Many tips never made it to this book, simply because I deemed them “must
knows” that any Visual Studio .NET programmer would easily grasp on their own,
without some strange author regurgitating the obvious. The Replace function of
the String class, for example.

That was almost the case with this tip, but, over the past three months, I’ve
seen five different printed code snippets demonstrating how to add days, months,
and years to a date. And they all looked extremely confusing.

The truth is, adding or subtracting days, months, and years is easy!
Like the String class, the DateTime class includes its own shared supporting

methods and functions—including AddDays, AddMinutes, AddHours, AddYears, and
AddMonths. Simply call them, passing in a number (positive or negative), and it’ll
change your variable value.

For example:

Dim MyDate As DateTime

MyDate = Now

MyDate.AddDays(7) ' Change date to one week from now

MessageBox.Show(MyDate)

Simple, isn’t it?

More .NET Secrets

257

*1062_ch07_CMP2 5/31/03 6:13 PM Page 257

Calculating the Next Working Day

Download supporting files at www.apress.com.

The files for this tip are in the “Ch7—Next Working Day” folder.

Sometimes you don’t just want to add a certain number of days to a date, you want
to take working days into account: five working days until delivery, or two working
days in which the customer needs a response.

Difficult? Not at all. The following nifty AddWorkingDays function does it all for
you. Simply pass in a date, alongside the number of working days you want to shift
the date by. For example, pass in a 5 to get the fifth working day after your date, or
“-1” to return the last working day.

Here’s the code you’ll need:

Public Function AddWorkingDays(ByVal DateIn As DateTime, _

ByVal ShiftDate As Integer) As DateTime

' Adds the [ShiftDate] number of working days to DateIn

Dim datDate As DateTime = DateIn.AddDays(ShiftDate)

' Loop around until we get the need non-weekend day

While Weekday(datDate) = 1 Or Weekday(datDate) = 7

datDate = datDate.AddDays(IIf(ShiftDate < 0, -1, 1))

End While

Return datDate

End Function

And here’s how you might call it in your application:

Dim datNewDate As DateTime = AddWorkingDays(Today, -1)

MessageBox.Show("The last working day was " & datNewDate)

Easy Check for a Leap Year

Checking for a leap year used to be a sticky task. But, after reading the “Finding the
Number of Days in a Month” snippet, you might think it’s as simple as checking
the number of days in February. You’re wrong: it’s even easier.

The System.DateTime class includes a neat little shared IsLeapYear function. It
accepts a year and returns a True or False as appropriate. Here’s a little sample
code showing it in action:

Chapter 7

258

*1062_ch07_CMP2 5/31/03 6:13 PM Page 258

Dim blnIsLeapYear As Boolean

blnIsLeapYear = System.DateTime.IsLeapYear(_

DateTime.Now.Year)

MessageBox.Show("This " & _

IIf(blnIsLeapYear, "is", "is not") & " a leap year")

This code takes the current year and passes it to the IsLeapYear function. It
then displays a message, confirming whether this is a leap year or not. Easy!

Figuring Out Quarters

Download supporting files at www.apress.com.

The files for this tip are in the “Ch7—Quarters” folder.

Business applications often need to figure out quarters, which are the four three-
month periods in any year, beginning at the start of January and going through to
the end of March, then April to June, July to September, and finally, October to
December.

Calculating the opening and closing quarter dates for a particular date is a
common task for programmers. So, to save you from figuring out how to write that
code, the following ready-to-run functions do it all for you:

Public Function FirstDayOfQuarter(ByVal DateIn As DateTime) As DateTime

' Calculate first day of DateIn quarter,

' with quarters starting at the beginning of Jan/Apr/Jul/Oct

Dim intQuarterNum As Integer = (Month(DateIn) - 1) \ 3 + 1

Return DateSerial(Year(DateIn), 3 * intQuarterNum - 2, 1)

End Function

Public Function LastDayOfQuarter(ByVal DateIn As DateTime) As DateTime

' Calculate last day of DateIn quarter,

' with quarters ending at the end of Mar/Jun/Sep/Dec

Dim intQuarterNum As Integer = (Month(DateIn) - 1) \ 3 + 1

Return DateSerial(Year(DateIn), 3 * intQuarterNum + 1, 0)

End Function

To use either of these functions, simply pass in the date you wish to retrieve
the quarter for, and it’ll return the appropriate beginning/end date as a DateTime
data type (an exact equivalent of the Date data type).

More .NET Secrets

259

*1062_ch07_CMP2 5/31/03 6:13 PM Page 259

And here’s an example of how you might call these functions. (See Figure 7-6
for my sample application.)

Dim CurrentQuarterStart As DateTime = FirstDayOfQuarter(Now)

Dim CurrentQuarterEnd As DateTime = LastDayOfQuarter(Now)

MessageBox.Show("Current quarter start: " & CurrentQuarterStart & _

Chr(10) & Chr(13) & "Current quarter end: " & CurrentQuarterEnd)

Figure 7-6. Using the MonthCalendar control to display the current quarter start
and end dates

Calculating the Years Between Two Dates

Download supporting files at www.apress.com.

The files for this tip are in the “Ch7—Years Between Dates” folder.

Business applications often find it useful to calculate the number of years between
two particular dates, such as the date a customer first ordered and the present
date, perhaps to see whether they apply for a “loyalty” discount or a free gift.

Don’t scramble in the code window. Just use my next little snippet. Simply
call YearsBetweenDates, passing in a start date and end date. It’ll return an Integer
containing the number of full years between the specified dates:

Chapter 7

260

*1062_ch07_CMP2 5/31/03 6:13 PM Page 260

Public Function YearsBetweenDates(ByVal StartDate As DateTime, _

ByVal EndDate As DateTime) As Integer

' Returns the number of years between the passed dates

If Month(EndDate) < Month(StartDate) Or _

(Month(EndDate) = Month(StartDate) And _

(EndDate.Day) < (StartDate.Day)) Then

Return Year(EndDate) - Year(StartDate) - 1

Else

Return Year(EndDate) - Year(StartDate)

End If

End Function

Converting a String to “Proper Case”

Download supporting files at www.apress.com.

The files for this tip are in the “Ch7—Proper Case” folder.

Initiating someone into the use of the StrConv function to generate “proper case”
text was always exciting for me. This was built-in intelligence, and I used to use it
to excite every new Visual Basic 6 programmer I taught.

You can still access the StrConv function to capitalize the first letter of every
word and lowercase the rest, like this:

Dim strSentence As String = "MaRlenA on THE WAll"

strSentence = Microsoft.VisualBasic.StrConv(strSentence, _

VbStrConv.ProperCase)

' Returns: Marlena On The Wall

However, this is using the Microsoft.VisualBasic namespace, which was
included to help VB6 programmers shift to .NET. What we really need is a pure
.NET Framework method of converting to title case. And that’s just what I have
here, in this nifty little function:

Public Function ProperCase(ByVal Text As String) As String

' Converts the passed chunk of text to "Proper Case"

Dim objCulture As New System.Globalization. _

CultureInfo("en-US")

Return objCulture.TextInfo.ToTitleCase(Text.ToLower)

End Function

More .NET Secrets

261

*1062_ch07_CMP2 5/31/03 6:13 PM Page 261

Here, we create a new CultureInfo class, passing in the culture code for
America (“en-US”, or “en-GB” for Great Britain—however, this really makes no
difference to this snippet). We then use the TextInfo object within that class,
passing a lowercased version of our text to the ToTitleCase function. We convert to
lowercase first because fully capitalized words are not automatically converted
to title case in this culture. We then return our result.

And that’s it: a true .NET technique for implementing proper case. (See
Figure 7-7 for my sample application.)

Figure 7-7. My sample “proper case” application

Storing Text Snippets on the Clipboard

We’ve all worked with the Windows clipboard before, whether to copy a picture
from Adobe PhotoShop over to PowerPoint, or simply cut and paste a bundle of
text in Microsoft Word.

And adding clipboard integration to your own application isn’t as difficult as it
sounds. You simply need to use the Clipboard object. To set data to the clipboard,
simply pass it as a parameter to the SetDataObject method, as so:

Clipboard.SetDataObject(TextBox1.Text)

You can also retrieve data from the clipboard, using the GetDataObject.GetData
function. Here, we’re retrieving simple text from the clipboard, but you could use
the GetDataObject.GetDataPresent function to find out what’s on the clipboard,
then retrieve and manipulate anything from sound files to bitmaps:

TextBox1.Text = Clipboard.GetDataObject.GetData(DataFormats.Text)

Chapter 7

262

*1062_ch07_CMP2 5/31/03 6:13 PM Page 262

Generating Memorable Passwords, Automatically

Download supporting files at www.apress.com.

The files for this tip are in the “Ch7—Memorable Passwords” folder.

Generating automatic passwords for your users is a common programming sce-
nario. However, due to the techniques typically employed, most autogenerated
passwords end up looking like YPSWW9441—which, although highly secure, also
end up completely unmemorable.

The following function generates a password using alternating friendly conso-
nants and vowels, making for much more memorable passwords. Asking the
function to generate a five-character password, for example, may result in BONES
or LAMOT.

To use this function, call GeneratePassword, passing in the length of your
desired password. The final password will be returned as a string:

Public Function GeneratePassword(ByVal Length As Integer) As String

' Creates a memorable password of the specified Length

Dim blnOnVowel As Boolean

Dim strTempLetter As String

Dim strPassword As String

Dim intCount As Integer

For intCount = 1 To Length

If blnOnVowel = False Then

' Choose a nice consonant - no C, X, Z, or Q

strTempLetter = CType(Choose(CType(GetRandomNumber(1, 17), Double), _

"B", "D", "F", "G", "H", "J", "K", "L", "M", _

"N", "P", "R", "S", "T", "V", "W", "Y"), String)

' Append it to the password string

strPassword += strTempLetter

' Swich to vowel mode

blnOnVowel = True

Else

' Choose a vowel

strTempLetter = CType(Choose(CType(GetRandomNumber(1, 5), Double), _

"A", "E", "I", "O", "U"), String)

' Append it to the password string

strPassword += strTempLetter

More .NET Secrets

263

*1062_ch07_CMP2 5/31/03 6:13 PM Page 263

' Switch back again, ready for next loop round

blnOnVowel = False

End If

Next

Return strPassword

End Function

Dim objRandom As New System.Random(CType((System.DateTime.Now.Ticks _

Mod System.Int32.MaxValue), Integer))

Public Function GetRandomNumber(Optional ByVal Low As Integer = 1, _

Optional ByVal High As Integer = 100) As Integer

' Returns a random number,

' between the optional Low and High parameters

Return objRandom.Next(Low, High + 1)

End Function

You could use the GeneratePassword function as so (see Figure 7-8 for my
sample application):

Dim MyPassword As String

MyPassword = GeneratePassword(5)

MessageBox.Show(MyPassword)

Figure 7-8. Generating a memorable five-character password in just one click

Chapter 7

264

*1062_ch07_CMP2 5/31/03 6:13 PM Page 264

Encryption in Just Twelve Lines of Code!

Download supporting files at www.apress.com.

The files for this tip are in the “Ch7—Simple Encryption” folder.

At times, you may want to very simply encrypt a small piece of text to store in the
registry, a database, or file, but you don’t want the overhead or complexity of a
government-standard encryption technique.

A much simpler encryption method is required, and the following function
provides just that. It’s called Crypt: pass it your plain text and it’ll encrypt it; pass it
your encrypted text and it’ll decrypt it. It’s simple and all in fewer than fifteen lines
of code:

Public Function SimpleCrypt(ByVal Text As String) As String

' Encrypts/decrypts the passed string using a

' simple ASCII value-swapping algorithm

Dim strTempChar As String, i As Integer

For i = 1 To Len(Text)

If Asc(Mid$(Text, i, 1)) < 128 Then

strTempChar = CType(Asc(Mid$(Text, i, 1)) + 128, String)

ElseIf Asc(Mid$(Text, i, 1)) > 128 Then

strTempChar = CType(Asc(Mid$(Text, i, 1)) - 128, String)

End If

Mid$(Text, i, 1) = Chr(CType(strTempChar, Integer))

Next i

Return Text

End Function

It’s not recommended for highly confidential information (as anyone with this
script could also decrypt your data), but it’s nonetheless highly useful. Here’s how
you might use this function (see my sample application in Figure 7-9):

Dim MyText As String

' Encrypt

MyText = "Karl Moore"

MyText = Crypt(MyText)

MessageBox.Show(MyText)

' Decrypt

MyText = Crypt(MyText)

MessageBox.Show(MyText)

More .NET Secrets

265

*1062_ch07_CMP2 5/31/03 6:13 PM Page 265

Figure 7-9. An example that uses our simple Crypt function to both encrypt and
decrypt at once

Implementing Powerful MD5 Encryption

Download supporting files at www.apress.com.

The files for this tip are in the “Ch7—MD5” folder.

So, simple encryption just isn’t good enough for you, huh? Well, you may as well
rocket straight to the top and check out the power of MD5 (Message Digest 5)
encryption, a powerful data security algorithm used by many large organizations
throughout the globe.

Pass data to the MD5 algorithm and it’ll return a small “fingerprint” of the
data. If the data changes, no matter how small the alteration, the fingerprint
changes. This is one-way encryption: the fingerprint can’t be turned back into the
original data. You can only compare the fingerprint with the source data and see if
they match.

For example, you may store password fingerprints (“message digests”) in a
database password field. When the user logs on, you simply compare his or her
typed password with the fingerprint using MD5: if they match, you grant the user
access.

It’s all ultra-secure: you aren’t storing the actual password anywhere, only the
fingerprint.

Sound powerful? The .NET Framework includes cryptography classes directly
supporting the MD5 standard, and I’ve created two functions to perform its two
most common operations.

Chapter 7

266

*1062_ch07_CMP2 5/31/03 6:13 PM Page 266

The first, GetMD5Hash, accepts your data as a simple string. It then calculates
and passes back the MD5 fingerprint—the “message digest”, the “hash”—as an
array of bytes ready for you to perhaps store in your database. Don’t forget, this is
one-way. Once something is encrypted, you can’t decrypt it.

The second, CheckMD5Hash, accepts an array of bytes (your hash) and a string,
such as the byte array from your database password field and the password that
your user has entered. The string is then converted into a hash itself and the indi-
vidual bytes compared, bit by bit. If it all matches, you’ve got a winner—and a True
is returned.

Here’s the code:

Public Function GetMD5Hash(ByVal Text As String) As Byte()

' Generates an MD5 hash for the specified Text

On Error Resume Next

Dim objAscii As New System.Text.ASCIIEncoding()

Dim bytHash As Byte() = _

New System.Security.Cryptography.MD5CryptoServiceProvider(). _

ComputeHash(objAscii.GetBytes(Text))

Return bytHash

End Function

Public Function CheckMD5Hash(ByVal OriginalHash As Byte(), _

ByVal Text As String) As Boolean

' Checks an MD5 hash against the specified Text

' Returns True if we have a match

On Error Resume Next

Dim objAscii As New System.Text.ASCIIEncoding()

Dim intCount As Integer, blnMismatch As Boolean

Dim bytHashToCompare As Byte() = GetMD5Hash(Text)

If OriginalHash.Length <> bytHashToCompare.Length Then

Return False

Else

For intCount = 0 To OriginalHash.Length

If OriginalHash(intCount) <> bytHashToCompare(intCount) Then

Return False

End If

Next

Return True

End If

End Function

More .NET Secrets

267

*1062_ch07_CMP2 5/31/03 6:13 PM Page 267

Here’s a simple example using the two preceding functions. The first line
generates an MD5 hash, and the second checks it against our password:

Dim bytHash() As Byte = GetMD5Hash("password")

Dim blnMatch As Boolean = CheckMD5Hash(bytHash, "password")

Remember that this is highly powerful, currently unbreakable encryption. And
all in just a few lines of cool .NET code. Exciting stuff.

Converting a String into the Color Type

It’s often useful to be able to convert from a string into an actual type, and vice
versa—a technique that may seem especially difficult when it comes to colors.
Imagine, for example, that your program allows users to customize their appli-
cation colors. You need a method of storing the settings, probably as strings in the
registry. Maybe your program actually prompts the user to type in a color. They
may request green, or aqua, or just plain old gray, but you need a method of con-
verting this value into an actual Color type.

Thankfully, the .NET Framework team figured you might want to do that, and
include a neat ColorConverter class to help you.

Here’s an example designed for a Windows application. The first chunk takes
the string “Green” and changes it into a Color type, finally setting it as the BackColor
of your form (“Me”). The second takes a Color type and displays a matching color
string:

' Instantiate ColorConverter class

Dim objCConv As New System.Drawing.ColorConverter()

' Retrieve a Color object from a string

Dim objColor As System.Drawing.Color = _

CType(objCConv.ConvertFromString("Green"), Color)

Me.BackColor = objColor

' Retrieve a string from a Color object

Dim strColor As String = _

objCConv.ConvertToString(Me.BackColor)

MessageBox.Show(strColor)

That’s it! Don’t forget: Windows applications also have access to the Color-
Dialog control, which allows the user to select a color and returns a Color type. You
may wish to integrate this into applications that use such color conversion code.
Good luck!

Chapter 7

268

*1062_ch07_CMP2 5/31/03 6:13 PM Page 268

Binding a Combo Box to Enumeration Values

Download supporting files at www.apress.com.

The files for this tip are in the “Ch7—Enum Binding” folder.

By their very nature, enumerations lend themselves easily to being displayed in
list controls, such as the combo box. You want to take their text entries and display
them to the user, with the related values being stored alongside each item.

This was impossible in previous versions of Visual Basic, but it’s easily done
with .NET.

Firstly, let’s look at a Web example. Here, we have a custom function that
accepts a System.Type object, along with the actual list control you want popu-
lated. It then clears the box and adds all items from the enumeration, along with
their related item values. You can then use and reference the items (and values) in
the box as you would normally.

Here’s the code:

Public Sub AddEnumToList(ByVal GetSystemType As System.Type, _

ByVal List As System.Web.UI.WebControls.ListControl)

' Populates the specified list with the

' names and values of the passed system type

Dim strNames As String(), arrValues As System.Array

Dim intCount As Integer

strNames = [Enum].GetNames(GetSystemType)

arrValues = [Enum].GetValues(GetSystemType)

List.Items.Clear()

For intCount = LBound(strNames) To UBound(strNames)

List.Items.Add(New _

System.Web.UI.WebControls.ListItem(strNames(intCount), _

arrValues.GetValue(intCount)))

Next

End Sub

And here’s an example of how you could use this function. Note the use of
GetType surrounding the name of your enumeration:

AddEnumToList(GetType(NameOfEnum), DropDownList1)

With Windows forms, it works a little differently. The provided list controls do
not inherently support individual item values, unless you’re performing a more
complex binding operation; therefore, the simplest method is to list the text items
from the enumeration, then figure out the related values later (if required at all).

More .NET Secrets

269

*1062_ch07_CMP2 5/31/03 6:13 PM Page 269

So, to get the list of items, set the DataSource equal to a string array con-
taining the items from your enumeration. You can obtain this through the
System.Enum.GetNames function. Here’s a code sample demonstrating how to do
this:

ComboBox1.DataSource = System.Enum.GetNames(GetType(NameOfEnum))

This takes the individual text items from your enumeration and adds them
to your list-based control in the order of their related values, from lowest to
highest (and not in the order in which you declared them). Then, when you need
to figure out the underlying value of the selected item, you’ll need to run code a
little like this:

Dim strNames As Array = _

System.Enum.GetValues(GetType(NameOfEnum))

Dim strValue As String = _

strNames(ComboBox1.SelectedIndex)

And that’s how to bind a list control to an enumeration. It sounds difficult, but
once you know how....

Graphics and Fonts

The visual side of your applications can be very exciting, and the following bundle
of drawing code snippets will help you really take advantage of some of the new
graphic capabilities in your VB .NET. Use my ready-to-run code snippets to do
everything from converting file image formats to writing your own screensavers,
designing your own arty icons to adding gradient backdrops in code. Read on,
Rembrandt!

Designing Your Own Arty Icons

You can create your own icons in VB .NET by selecting Project ➤ Add New Item
from the menu, then choosing Icon File and clicking on Open. From here, use any
of the dozen drawing tools to create your perfect ICO file. (See Figure 7-10.)

To change a Windows form to use this icon, click on the ellipsis next to its Icon
property in the Properties window. Then navigate to your project folder and select
the ICO file you just created.

Chapter 7

270

*1062_ch07_CMP2 5/31/03 6:13 PM Page 270

Figure 7-10. Strangely, I didn’t pass art....

The Basics of Working with Fonts

You can list all the currently installed TrueType and OpenType fonts on your system
by cycling through the font families in the System.Drawing.FontFamily.Families
namespace.

For example:

Dim MyFontFamily As FontFamily

For Each MyFontFamily In System.Drawing.FontFamily.Families

ComboBox1.Items.Add(MyFontFamily.Name)

Next

You can set the font for a particular control in code by creating a new Font
object, then setting it to the control Font property. For example:

Dim MyFont As Font

MyFont = New Font("Verdana", 8)

TextBox1.Font = MyFont

More .NET Secrets

271

*1062_ch07_CMP2 5/31/03 6:13 PM Page 271

Crafty Conversion Between Graphic Formats

Download supporting files at www.apress.com.

The files for this tip are in the “Ch7—Convert Image Format” folder.

Need a function to convert between bitmap, GIF, EMF, JPEG, PNG, WMF, and ICO
image formats, among others? Don’t buy a third-party control: this conversion is
exactly what my next crafty little snippet does. And all in a mere dozen lines of
code.

Just call ConvertImage, passing in the filename of your current file, the desired
format of your new file (using the enumeration), and your new filename. And
that’s it:

Public Sub ConvertImage(ByVal Filename As String, _

ByVal DesiredFormat As System.Drawing.Imaging.ImageFormat, _

ByVal NewFilename As String)

' Takes a filename and saves the file in a new format

Try

Dim imgFile As System.Drawing.Image = _

System.Drawing.Image.FromFile(Filename)

imgFile.Save(NewFilename, DesiredFormat)

Catch ex As Exception

Throw ex

End Try

End Sub

Here’s an example of using this to convert a GIF image into a Windows
bitmap:

ConvertImage("c:\img1.gif", _

System.Drawing.Imaging.ImageFormat.Bmp, "c:\img2.bmp")

Chapter 7

272

*1062_ch07_CMP2 5/31/03 6:13 PM Page 272

Rotating and Flipping Is Easy!

Download supporting files at www.apress.com.

The files for this tip are in the “Ch7—Rotate Image” folder.

Back in the golden olden days of programming, rotating and flipping an image
either meant performing complicated bit-by-bit image swaps or getting out your
wallet to plunk down for a third-party control.

With the .NET Framework, the System.Drawing namespace makes it much
easier. As we saw in the last tip, the Image class provides functionality that will bowl
over graphic developers of old.

This book isn’t about graphics, however, and so it isn’t my intention to focus
on them. But rotating and flipping images is a relatively common business
requirement, especially with the number of letters scanned into modern applica-
tions and faxes received through the Internet, so this little tip is designed to
demonstrate just how easy it can be.

Firstly, load your image into your application—either directly into an Image
object or into the PictureBox control, as so:

PicBox.Image = System.Drawing.Image.FromFile("c:\sample.gif")

PicBox.SizeMode = PictureBoxSizeMode.StretchImage

Then, behind your rotate buttons, add functions similar to the following:

Dim objImage As Image = PicBox.Image

objImage.RotateFlip(RotateFlipType.Rotate90FlipNone)

PicBox.Image = objImage

Here, we extract the graphic from behind our PictureBox control as an Image
object. We then run the .RotateFlip method, passing in one of many possible enu-
meration arguments: here, we’re using Rotate90FlipNone, meaning that it should
rotate the image 90 degrees and not flip it. We could, however, have chosen
RotateNoneFlipX for a horizontal flip. Or any of the other fourteen options.

Finally, we set the Image property of our PictureBox back to our Image object,
and the control displays our newly rotated image. A complete doddle!

More .NET Secrets

273

*1062_ch07_CMP2 5/31/03 6:13 PM Page 273

Drawing with Windows Forms

Download supporting files at www.apress.com.

The files for this tip are in the “Ch7—Drawing” folder.

This book deals primarily with the business world. We’ve talked about databases,
setting up Web services, and utilizing powerful encryption algorithms. But we
haven’t discussed drawing in your application. So, in the interest of developing
your all-round super programmer mindset, let this tip serve as a quick overview.

First off, you may have noticed that there’s no Shape control with .NET. If you
want to draw, you need to revert to code. Thankfully, it’s not all sticky API code
anymore. Microsoft has repackaged all that old drawing functionality, added a
little more, and christened it GDI+ (the old system was known as the GDI,
standing for graphical device interface).

How can you use it? Basic drawing is actually pretty simple. You need to know
just three core pieces of information. First, when drawing, you need a digital
“sheet of paper” to work with. This is an object based on the Graphics class, and, if
you worked a lot with graphics in VB6, you’re probably best imagining this as an
encapsulated Windows device context.

When you have this area to work on, you need to know what tools to work
with, and there are really only two possibilities here. There’s our second item, the
Pen class, which allows you to set up the style of line you want. And then there’s our
third item, the Brush class, which is designed for filling in areas and defining how
that “fill” will look.

Once you have the items, you use methods of the Graphics object (our sheet of
paper) to put the tools into work. All the Draw... methods take your pen style and
draw something, and all the Fill... methods take your brush style and fill some-
thing. So, for example, I may call the FillRectangle function of my Graphics object,
passing in a purple Brush object and various dimensions, and a purple rectangle
would be drawn for me.

Let’s look at a little sample code to help explain away this weird-sounding
phenomenon. This commented snippet is intended to run behind a Windows
form:

' Get Graphics object from our form, our "sheet of digital drawing paper"

Dim objGraphics As System.Drawing.Graphics = Me.CreateGraphics

' Create new Pen, color blue, width 10

Dim objPen As New Pen(Color.Blue, 10)

' Draw line using pen from

Chapter 7

274

*1062_ch07_CMP2 5/31/03 6:13 PM Page 274

' 45 across, 45 down to 95 across, 95 down

objGraphics.DrawLine(objPen, 45, 45, 95, 95)

' Draw arc, this time using built-in green pen

' 8 across, 10 down to 30 across, 30 down

' with a 90 degree start angle and 180 degree sweep

objGraphics.DrawArc(Pens.Green, 8, 10, 30, 30, 90, 180)

' Create new Brush-based object, color purple

Dim objBrush As New SolidBrush(Color.Purple)

' Draw rectangle area using brush

' start at 100 across, 100 down,

' carry on for 50 across, 50 down

objGraphics.FillRectangle(objBrush, 100, 100, 50, 50)

' Draw ellipse, this time using built-in orange brush

objGraphics.FillEllipse(Brushes.Orange, 10, 10, 30, 30)

Understand what is happening here? We’re just setting up our Pen- or Brush-
inherited objects, then passing them along with parameters to methods of the
Graphics object. (See Figure 7-11 for the result.)

Figure 7-11. The colorful result of our lines of code

More .NET Secrets

275

*1062_ch07_CMP2 5/31/03 6:13 PM Page 275

Speaking of the Graphics object, here’s a reference list of the most popular
drawing methods, alongside their core parameters (most of which have multiple
overloaded implementations):

• DrawArc: Draws part of an ellipse. Parameters are Pen object, list of coordi-
nates, and start/end angle values for the arc in degrees.

• DrawBezier: Draws a Bezier curve. Parameters are Pen object and list of
control points from which the curve is generated.

• DrawLine: Draws a straight line. Parameters are Pen object and list of coordi-
nates.

• DrawString: Draws text to your area. Parameters are text to add, Font object,
Brush-inherited object, and coordinates.

• FillEllipse: Draws a filled ellipse (circle). Parameters are Brush-inherited
object (such as the SolidBrush) and list of coordinates (or Rectangle object
defining those points).

• FillPie: Draws a pie section. Parameters are Brush-inherited object, list of
coordinates (or Rectangle object), and start/end angle values for the pie
segment in degrees.

• FillPolygon: Draws a polygon (think a circle with eight sides). Parameters
are Brush-inherited object, array of seven points, and fill mode. The seventh
point automatically connects to the last to create the polygon.

• FillRectangle: Draws a rectangle. Parameters are Brush-inherited object and
list of coordinates.

Of course, that’s not all. You can create transparent brush fills, for example.
You can also use the GraphicsPath and Transform classes, which form the real “plus”
part of GDI+. You can even incorporate DirectX to give your graphics real spunk.

Look up “drawing” (and related subitems) in the help index for more infor-
mation. Alternatively, check out http://msdn.microsoft.com/vbasic/donkey.asp for
“Donkey .NET”—a rehash of a classic game, created in Visual Basic .NET and
incorporating graphics to blow your socks off.

Chapter 7

276

*1062_ch07_CMP2 5/31/03 6:13 PM Page 276

Add an Exciting Gradient Backdrop, in Code!

Download supporting files at www.apress.com.

The files for this tip are in the “Ch7—Gradient” folder.

Want to add a little more visual impact to your application? How about adding an
appealing gradient backdrop to your forms and in just a few lines of code?

That’s exactly what this next snippet of code does for you. It accepts top and
bottom gradient colors as arguments, then defines the brush and area to paint and
displays the effect. Here’s the code you’ll need:

Private Sub DrawFormGradient(ByVal TopColor As Color, ByVal_

BottomColor As Color)

' Draws a gradient using the specified colors

' on the entire page

Dim objBrush As New Drawing2D.LinearGradientBrush _

(Me.DisplayRectangle, _

TopColor, _

BottomColor, _

Drawing2D.LinearGradientMode.Vertical)

Dim objGraphics As Graphics = Me.CreateGraphics()

objGraphics.FillRectangle(objBrush, Me.DisplayRectangle)

objBrush.Dispose()

objGraphics.Dispose()

End Sub

Next, you need to call the code—typically in response to the Paint event of
your Form, like this:

Private Sub Form1_Paint(ByVal sender As Object, _

ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

DrawFormGradient(Color.Blue, Color.AliceBlue)

End Sub

More .NET Secrets

277

*1062_ch07_CMP2 5/31/03 6:13 PM Page 277

Here, we’re running our function each time that our form is “painted” (that is,
“drawn” on the computer screen). It then paints our gradient: a rich blue mixing
into a lighter blue. (See Figure 7-12.) Of course, if that’s too bold, you may opt for
the more subtle White blending into PapayaWhip. Or the mysterious Black merging
into DarkOrchid. Or the XP-styled White into CornflowerBlue. But the coloring is, of
course, up to you.

Two quick tips: with a little editing, you can change the brush from painting
Vertical to Horizontal, ForwardDiagonal, or BackwardDiagonal; and, in the interest of
general usability, don’t overuse gradients. It could be scary.

Figure 7-12. My blue to alice blue form. In black and white.

Starting Your Own Screensaver

Download supporting files at www.apress.com.

The files for this tip are in the “Ch7—Screensaver” folder.

Screensavers are often seen as a no-go area for VB .NET programmers. They’re not
even EXE files and surely fall more within the realm of graphic designers and game
developers. Incorrect.

The simple fact is that a screensaver, with a .scr file extension, is nothing more
than a renamed executable. It’s a regular Windows application that has tradi-
tionally been developed to display images and look pretty, warding off the terrors
of now nonexistent screen burnout.

Chapter 7

278

*1062_ch07_CMP2 5/31/03 6:13 PM Page 278

If you view the Display options through the control panel, you’ll see a list of
existing screensavers. These are simply files with the .scr extension found in the
Windows system directory (that is, c:\Windows\System32).

But how do these applications know to respond to do things such as display
the settings box or launch the screensaver? By using parameters. (See “The Power
of Command-Line Parameters” tip in Chapter 2 to find out how to read these.)
Imagine you click on the Preview button—Windows launches the related SCR file,
along with the parameter “/p”. The application then needs to look at this value and
“preview” display the screensaver.

Other standard parameters are available as well: “/s” informs the screensaver
that it needs to display its settings box, and “/a” tells you to display a “change
password” dialog box. Then there’s the big one: the “/s” parameter indicates that
you should run your full screensaver, perhaps displaying graphics in code and
exiting when the user moves his or her mouse.

Seem simple enough? Matters like this are almost always best demonstrated
through example—and, thankfully, Microsoft has made that task a little easier for
me. Surf over to http://msdn.microsoft.com/vbasic/downloads/samples/ and click
the screensaver sample link, or access it directly at http://msdn.microsoft.com/
library/en-us/dnvssamp/html/vbcs_CreateaScreensaverwithGDI.asp. (The files are
also available at www.apress.com, alongside the source for this entire book.)

It doesn’t demonstrate the more-advanced features, such as password support
or utilizing preview mode, but it does provide a solid grounding on the basics. I’ve
personally written articles on some of the more-advanced features; you may want
to check out Developer.com at www.developer.com to dig these up, or you can
download existing .NET screensaver code by performing a quick search at
www.googlegroups.com.

And that’s it: a screensaver is just an EXE file renamed with an .scr extension
and placed in the Windows system directory. It accepts parameters and responds
accordingly.

Your task is to merge this knowledge together with a little nifty graphics code
to create your own screensaver: perhaps a logo-based application that scrolls
company news across the screen, or a saver that displays family photographs,
selectable through the settings screen. Good luck!

Using the Registry and Event Log

Want to store your settings in the registry? Or are you looking for a ready-to-run
function for writing to the Event log? Then sit back and begin reading: this is the
section for you!

More .NET Secrets

279

*1062_ch07_CMP2 5/31/03 6:13 PM Page 279

How to Read and Write the Registry

Download supporting files at www.apress.com.

The files for this tip are in the “Ch7—Registry” folder.

The registry is a great place to store your application settings. It’s used by almost
every Windows application, and you can view its entire contents by selecting
Start ➤ Run and launching regedit.exe.

To manipulate the registry in your code, you need to use objects inside the
Microsoft.Win32 namespace. To simplify this process, the following functions
encapsulate all the required code for you, allowing you to read from or write to
the registry in just a line of code.

The first function is called ReadFromRegistry. It accepts a location and name of
the key to retrieve, returning a string value:

Public Function ReadFromRegistry(ByVal Location As String, _

ByVal Name As String) As String

' Returns a value from the registry

Dim MyKey As Microsoft.Win32.RegistryKey

MyKey = Microsoft.Win32.Registry.CurrentUser.OpenSubKey(Location)

ReadFromRegistry = CType(MyKey.GetValue(Name), String)

MyKey.Close()

End Function

The second block of code is a method called WriteToRegistry. It accepts a
location, key name, and the actual string to store with the key:

Public Sub WriteToRegistry(ByVal Location As String, _

ByVal Name As String, ByVal Data As String)

' Writes a value to the registry

Dim MyKey As Microsoft.Win32.RegistryKey

MyKey = Microsoft.Win32.Registry.CurrentUser.CreateSubKey(Location)

MyKey.SetValue(Name, Data)

MyKey.Close()

End Sub

You could use the preceding functions as follows:

WriteToRegistry("Software\White Cliff\MyApp", "Username", "John")

MessageBox.Show(ReadFromRegistry("Software\White Cliff\MyApp", _

"Username"))

Chapter 7

280

*1062_ch07_CMP2 5/31/03 6:13 PM Page 280

Note that my sample functions save and retrieve data specific to the current
user in the CurrentUser (HKEY_CURRENT_USER) portion of the registry. If you
wish to store global data, accessible by whomever is logged in, simply change this
to use the LocalMachine class.

You can also store other types of data in the registry. For more information,
look up “Registry class, about Registry class” in the help index, or check out the
Microsoft MSDN feature at http://msdn.microsoft.com/library/en-us/
dv_vstechart/html/vbtchaccessingregistrywithvisualbasicnet.asp.

Putting Messages in the Event Log

Download supporting files at www.apress.com.

The files for this tip are in the “Ch7—Event Log” folder.

The event log is a haven for system administrators. All the great programs use it to
record details of how everything went: the batch update completed successfully,
the midnight virus update failed, peak usage on Monday occurred at 13:37 P.M.

Now, you too can plug into and place your entry in the log. Here’s my own
little function to show you how:

Public Function WriteToEventLog(ByVal Entry As String, _

Optional ByVal AppName As String = "VB.NET Application", _

Optional ByVal EventType As _

EventLogEntryType = EventLogEntryType.Information, _

Optional ByVal LogName As String = "Application") As Boolean

' Writes an entry to the Event Log

Dim objEventLog As New EventLog()

Try

' Register app as an Event Source

If Not objEventLog.SourceExists(AppName) Then

objEventLog.CreateEventSource(AppName, LogName)

End If

objEventLog.Source = AppName

' Send entry

objEventLog.WriteEntry(Entry, EventType)

Return True

Catch Ex As Exception

Return False

End Try

End Function

More .NET Secrets

281

*1062_ch07_CMP2 5/31/03 6:13 PM Page 281

To use, simply call the WriteToEventLog function, passing in an empty string.
You can also optionally specify the application name, event type, and the log to
use (that is, “Application”). If you specify a nonexistent log, one will be created for
you. The function returns a Boolean dependent on its success.

To finish us off, here are examples of WriteToEventLog in use (see Figure 7-13
to see what this does in the event log):

' Simple event log addition

WriteToEventLog("Application has failed to find STARTUP.INI")

' Slightly more complex sample

WriteToEventLog("Unable to parse request LOGON", _

"Authenticator", EventLogEntryType.Error, "Special Log")

TOP TIP If you take time to explore the EventLog class, you’ll find many inter-
esting properties to take your work with the event log even further. Most
importantly, you’ll find .Clear and .Delete methods at your disposal, allowing
you to perform actions even the Event Viewer doesn’t support.

Figure 7-13. Our complex event log sample shown in the Event Viewer

Chapter 7

282

*1062_ch07_CMP2 5/31/03 6:14 PM Page 282

Distributed Computing

It’s a term that covers a whole bundle of technologies. So here’s a section to match:
a whole mound of secrets dedicated to the world of distributed computing. From
the quick guide to using MSMQ, to the cheat’s guide to XML, to the five steps to
transactions with COM+, and more!

The Cheat’s Guide to XML

They write entire books on it. They hold conferences dedicated to it. I know at
least three cafés named after it. It’s XML, it’s eXtensible Markup Language, it’s an
excellent addition to your résumé

But just what is it, really? XML is a method of storing structured data in a pure
text format. It uses a system of tags to embed its information, such as a list of cus-
tomers and their orders. And, as an XML “document” is simply one chunk of text
(no matter how in depth or complex the information it holds or the relationships
among the individual chunks of information), it is still simply text, making XML an
ideal cross-platform data storage mechanism.

TOP TIP You can learn more about the official XML specification by checking
out documents from the World Wide Web Consortium at www.w3.org/XML/.

To demonstrate this concept, here’s a sample, relatively simple XML document:

<?xml version="1.0"?>

<articles>

<article id="10">

<site>VB World</site>

<type>codesnippet</type>

<title>The Cheat's Guide to XML</title>

<shortname>xmlcheat</shortname>

<description>Need to learn XML fast? .e.t.c. </description>

<author>Karl Moore</author>

<authorEmail>karl@karlmoore.com</authorEmail>

<pages>

<page number="1">

<title>Introduction</title>

<body>Yadda ... yadda ... yadda ...</body>

</page>

More .NET Secrets

283

*1062_ch07_CMP2 5/31/03 6:14 PM Page 283

<page number="2">

<title>Getting More Complicated</title>

<body>Etc ... etc ... etc ... </body>

</page>

</pages>

</article>

<article id="11">

<site>VB Square</site>

<type>review</type>

<title>Review of WebZinc .NET</title>

<shortname>webzinc</shortname>

... and so on ..

</article>

</articles>

Here, you can see we have a top-level <articles> tag, containing numerous
<article> items. Each item contains an associated unique id attribute, plus
numerous subelements that list details such as the site, author name, and a
related <pages> segment, listing individual pages and the body text. See how it
works? Articles, to article, to pages, to page. It’s relational data, stored in a pure text
format.

TOP TIP One simple way to demonstrate the relational style of XML document
is to add an XML file (Project ➤ Add New Item) to your Visual Studio .NET
project, type in something similar to the preceding XML, then click on Data.
You’ll be shown your data in grid format—ready for viewing, editing, or
adding to!

So, you pretty much understand what an XML document is: it looks a bit like
HTML, stores relational data in tags, plus it’s pure text so it can be used cross-
platform. What can you use it for? Imagine it as the new, cooler, slightly younger
brother of the comma-separated or tab-delimited file format. Anything they can
do, XML can do better.

How can you integrate XML with your VB .NET applications? Well, there are
five key techniques:

• Create a Web service to expose data from your application. (See Chapter 4,
“The Lowdown on Web Services.”)

• Read an XML document in code.

Chapter 7

284

*1062_ch07_CMP2 5/31/03 6:14 PM Page 284

• Write an XML document in code.

• Use XML with your DataSets.

• Use XML with SQL Server.

The rest of this tip provides working examples of these last four techniques.

Reading an XML Document in Code

The XmlDocument class in the System.Xml namespace provides everything you need
to parse XML data. To use, simply create a new instance of the class, use the .Load
or .LoadXml method to get data into the object, then start parsing using the
available methods and functions.

Such techniques are typically best demonstrated through sample code—so
here’s a snippet that uses a common method of cycling through various nodes in
the XmlDocument object, retrieving key pieces of information. It’s based on the
sample XML document shown earlier, and, with a little cross-referencing, should
be relatively easy to follow through:

' Create new XmlDocument object

Dim objDoc As New System.Xml.XmlDocument()

' Load actual XML

objDoc.Load("c:\filename.xml")

' Create placeholders for node list and individual nodes

Dim objNodeList As System.Xml.XmlNodeList

Dim objNode, objNodeChild As System.Xml.XmlNode

' Retrieve list of article elements

objNodeList = objDoc.GetElementsByTagName("article")

' Cycle through all article elements

For Each objNode In objNodeList

' Display article ID numbers

MessageBox.Show(objNode.Attributes("id").InnerText)

' Cycle through all child node of article

For Each objNodeChild In objNode

' Display article site names

If objNodeChild.Name = "site" Then

MessageBox.Show(objNodeChild.InnerText)

End If

Next

Next

More .NET Secrets

285

*1062_ch07_CMP2 5/31/03 6:14 PM Page 285

After a little reviewing, you can see this is really pretty simple, and this
recursive-style code can be easily ported to practically any situation. No matter
whether you’re handling an XML file created by another application or parsing an
XML stream straight from the Net (for example, www.slashdog.org/slashdot.xml),
the XmlDocument object can help you out.

TOP TIP When loading an XML document, you may want to check its structure,
ensuring that it adheres to the expected . You do this through an XML schema.
We don’t cover this here, but you can learn more by looking up “XML, validating
XML” in the help index.

Writing an XML Document in Code

The XmlTextWriter class in the System.Xml namespace can be jolly useful when it
comes to outputting XML. To use it, create a new instance of the class, passing a
new filename or an appropriate stream in the constructor, plus a potential
“encoding” option.

Next, start your document with the .WriteStartDocument method and
continue using others, such as .WriteStartElement, .WriteAttributeString,
WriteElementString, and .WriteEndElement to create the document. When you’re
finished, .WriteEndDocument to close all open tags, .Flush to save changes to the
file, then .Close.

This is another beast best explained by example, so here goes:

' Create a new XmlTextWriter object

Dim objWriter As New System.Xml.XmlTextWriter(_

"c:\mydocument.xml", System.Text.Encoding.UTF8)

With objWriter

' Set the formatting to use neat indentations

.Formatting = Xml.Formatting.Indented

' Write document opening

.WriteStartDocument()

' Begin core XML

.WriteStartElement("articles")

' First article...

.WriteStartElement("article")

.WriteAttributeString("id", "10")

.WriteElementString("site", "VB-World")

.WriteElementString("type", "codesnippet")

.WriteElementString("author", "Karl Moore")

Chapter 7

286

*1062_ch07_CMP2 5/31/03 6:14 PM Page 286

' Write list of associated pages

.WriteStartElement("pages")

.WriteStartElement("page")

.WriteAttributeString("number", "1")

.WriteElementString("title", "My Title")

.WriteElementString("body", "This is my body text")

.WriteEndElement()

.WriteStartElement("page")

.WriteAttributeString("number", "2")

.WriteElementString("title", "My Second Title")

.WriteElementString("body", "This is my 2nd body text")

' Close open elements

.WriteEndElement()

.WriteEndElement()

.WriteEndElement()

.WriteEndElement()

' ... Add any further articles here ...

' Close document

.WriteEndDocument()

.Flush()

.Close()

End With

Simple enough? It’s a very straightforward procedural method of creating an
XML file that should suit all XML developers. (See Figure 7-14 for the results of this
sample, displayed in Internet Explorer.)

But why not simply build your own XML string and write it straight to a file?
Three reasons. First, there are situations in which extra XML tags need to be added
to adhere to the official specification. For example, you may be storing HTML in
one of your elements. HTML, of course, contains <tags> that may be misinter-
preted as actual XML elements. As such, the XmlTextWriter follows the official
specification and adds CDATA clauses to the statement, ensuring that any readers
correctly identify this as text, not actually part of the document structure. So,
firstly, it’s a bit more intelligent than a quick file-write routine.

Second, it’s very good at automatically handling developer cock-ups,
which means, if you have any tag that you’ve forgotten to close correctly, the
XmlTextWriter will automatically step in and fill the gap for you. How kind.

And third—well, it can save data in that pretty indented manner. Personally,
I’d prefer not to attempt implementing this with just a regular string. Way too
messy.

That’s it: the XmlTextWriter. Simple, elegant, procedural. An understated class
that could save you hours.

More .NET Secrets

287

*1062_ch07_CMP2 5/31/03 6:14 PM Page 287

Figure 7-14. Our produced XML document, viewed in Internet Explorer

Using XML and DataSets

DataSets were covered back in Chapter 4 (“Working with Data”). They’re basically
multitable Recordsets with a few extra frills—and one of those frills is their ability
to both accept and output XML with ease.

But how? You need to know about three key DataSet members.
First, there’s .GetXml. This excellent function returns an XML representation of

the data in your DataSet. It’s simple to use and returns a string containing data
from all the tables in your DataSet. For example:

Chapter 7

288

*1062_ch07_CMP2 5/31/03 6:14 PM Page 288

<MyDataSet xmlns="http://www.karlmoore.com/MyDataSetSchema.xsd">

<wc_vbwn_article_listing>

<id>5</id>

<tag>bettersplit</tag>

<siteListingid>1</siteListingid>

<type>3</type>

<userLevel>3</userLevel>

<title>VB: A Better Split Function</title>

<description>When using the Split function ...</description>

<authorCommunityListingid>3</authorCommunityListingid>

<added>2002-10-20T13:38:00.0000000+01:00</added>

<live>true</live>

</wc_vbwn_article_listing>

</MyDataSet>

The second useful member is the .WriteXml method, which accepts a stream
or filename and essentially writes the results of .GetXml directly to it. It saves you
writing a separate file-save routine and automatically applies all the fancy
indenting, too.

Well, we’ve had two methods of getting XML out of the DataSet, so now here’s
our third handy DataSet member—the .ReadXml function, which loads XML into
the DataSet. You can use this function with practically any XML source, but I’d rec-
ommend sticking to either a simple XML stream, or one that you’ve previously
extracted from the DataSet or have an XSD schema for. It’s not required; it’s simply
a recommendation from experience: complex XML structures aren’t as easily
manipulated through a DataSet.

TOP TIP If you’re creating a DataSet and want to read straight from an XML
file, you may want to first specify an XML schema definition (XSD) so you can
catch any data errors. To do this, simply use the schema equivalents of the
members we’ve covered here—.GetXmlSchema, .WriteXmlSchema, and .ReadXmlSchema
—passing your XSD filename as appropriate. If you don’t have an XML schema,
you can create one manually in VS .NET (Project ➤ Add New Item ➤ XML
Schema), or allow it to generate one for you by creating a typed DataSet. See the
“Quick, Editable Grid” tips in Chapter 4 (“Working with Data”) for a demon-
stration of generating this XSD “template.” If you’re completely confused and
have no idea what an XML schema is, imagine it as a rulebook for the data in
your XML document. Look up “XML Schema, about XML Schema” for more
information.

More .NET Secrets

289

*1062_ch07_CMP2 5/31/03 6:14 PM Page 289

The Three Words to SQL Server XML Success

Three simple words: For XML Auto. Adding these to the end of your SQL statement
will result in SQL Server 2000 (and above) returning an XML representation of your
data, rather than your regular table of information.

For example, a statement such as SELECT username, password FROM users FOR
XML AUTO may return something like this:

... <users username="KarlMoore" password="TEST123"/>

<users username="SuzanneVega" password="MARLENA123"/> ...

How can you extract and use this data? My favorite method is simply
extracting the XML from the first returned field using .ExecuteScalar, then
slapping it straight into an XmlDocument object. After that, I can do what I like
—save it, edit it, XSL it, whatever:

' Setup Command

Dim objCommand As New System.Data.SqlClient.SqlCommand(_

"SELECT field1, field2, field3, field4 " & _

"FROM table1 FOR XML AUTO", _

MyConnection)

' Retrieve XML

Dim strXML As String = _

objCommand.ExecuteScalar

' Load data into XmlDocument, adding root level <data> tags

Dim objDoc As New System.Xml.XmlDocument()

objDoc.LoadXml("<data>" & strXML & "</data>")

' … continue as appropriate …

The SqlCommand object actually provides its own method—.ExecuteXmlReader—
specifically for handling XML data coming back from SQL Server. This function
returns an XmlReader object, a sort of forward-only, read-only version of the
XmlDocument. Here, I cycle through a few entries, then close the reader:

' Setup Command

Dim objCommand As New System.Data.SqlClient.SqlCommand(_

"SELECT field1, field2, field3, field4 " & _

"FROM table1 FOR XML AUTO", _

SqlConnection1)

' Retrieve XMLReader object

Dim objReader As System.Xml.XmlReader = _

objCommand.ExecuteXmlReader

Chapter 7

290

*1062_ch07_CMP2 5/31/03 6:14 PM Page 290

' Loop round entries

Do While objReader.Read

MessageBox.Show(objReader.GetAttribute("field3"))

Loop

' Close XMLReader, freeing up connection

objReader.Close

Personally, I don’t like working with the XMLReader like this—it’s relatively
inflexible and ties up your connection until you close the object—but it has
certain niche uses, so is listed here for completeness.

Quick XML Review

XML is an interesting topic. Although a lot of unwarranted industry hype sur-
rounds what is still simply a chunk of HTML-like text, there’s no denying that that
chunk of text is still a great idea and one that won’t be fading away anytime soon.

Here, in this rather elongated tip, we’ve covered the basics of working with
XML. There’s still much more you might want to learn, however. You may wish to
take a further look at more-complex schemas and really understand how they can
help you validate your XML, for example. (Look up “XML Schemas, ADO. NET
datasets and” and “XML Schemas, creating” in the help index to assist in solidi-
fying these concepts.)

Or you may wish to explore the whole bundle of extra classes in the System.Xml
namespace we haven’t covered here (the XmlValidatingReader class, for example) or
check out the extra XML-related features of SQL Server (the XMLDATA parameter, for
instance).

And that’s not all. There’s also the world of XSL (Extensible Style Sheet Lan-
guage). You can imagine this almost like a “mail merge” document for your XML. It
contains HTML and various XSLT (XSL Transformation) elements, and tells it how
to process your XML: put this there, change that to this, cycle through these ele-
ments and display them here. It’s practically a mini programming language on its
own. Find out more for yourself by following a VS .NET walkthrough; look up “XSL,
identity transformation” in the help index.

Not everyone will use XML, and fewer still will go all the way with schemas
and XSL, so we’re going to end this tip here. But remember: XML is a growing
standard and beginning to infiltrate all areas of development. So, whether you
think it concerns you or not, it might be worthwhile giving XML a peek. You might
just surprise yourself.

Further reading: check out www.apress.com for the latest XML titles.

More .NET Secrets

291

*1062_ch07_CMP2 5/31/03 6:14 PM Page 291

Six Steps to Basic Transactions with COM+

It took me a good few weeks to get my head around the world of transactions in
.NET. I spent an absolute age trying to figure out what had happened to Microsoft
Transaction Server (MTS).

If you’re in the same boat, I’m sorry to inform you that MTS died some time
ago. It was merged into a host of services christened COM+ (“We didn’t commu-
nicate that very well,” a Microsoft publicist told me) and is now incorporated in
classes under the System.EnterpriseServices namespace. It’s all done very differ-
ently from the days of yesteryear, too: transactional components in .NET require
no complicated configuration nor manual registration. Transactions can be set up
and performed entirely in code.

TOP TIP Many developers used MTS for the database connection pooling it
offered. If that’s all you’re wanting, good news: in .NET, all the SqlConnection
objects used on a machine are automatically pooled for you, regardless of
whether you’re using COM+ (the “new MTS”). Look up “connection pooling,
ADO. NET connections” in the help index for more information.

ANOTHER TOP TIP If you’re looking to implement transactions and are only
using one database on one machine, you probably don’t need the power nor
overhead of COM+ transactions. Check out the SQL Server transaction sample
in the Essentials section of Chapter 4 for more information.

But let’s start at the beginning. What exactly is a transaction? A transaction
is an operation that must be undertaken as a whole, or not at all. The age-old
example of a bank still stands: if your application takes money out of one account
to deposit in another, and your machine crashes halfway through, you really don’t
want to lose that money. You either need to do it all or nothing. If an error occurs
during any part of that process, the whole thing needs to be undone.

That’s what COM+ enables you to do: implement a stable, time-tested undo
mechanism in your code, easily. It can automatically “roll back” your edits in any
transaction-aware application, such as SQL Server or Microsoft Message Queue—
even if the edits are made on different machines. On the other hand, if all goes
well, all edits (no matter which machine they are made upon) are “committed.”

Chapter 7

292

*1062_ch07_CMP2 5/31/03 6:14 PM Page 292

How can you put all this into play? Well, you need to start with a class that
inherits the “ServicedComponent” class, the base functionality of any transaction.
You can then add attributes to your class and its methods, depending on how you
want to implement your transaction. You can also work with a ContextUtil object,
to commit or abort the transaction.

TOP TIP Looking for a walkthrough guide to creating your first
transaction? Surf to the MSDN article at http://support.microsoft.com/
default.aspx?scid=kb;en-us;Q315707 for a simple Northwind database
sample project.

Six core steps are involved in setting up an automatically registering COM+
transactional class. Simply open your project—Windows application, class library,
or other—and follow this to-do list:

1. Reference the System.EnterpriseServices DLL. Click on Project ➤ Add
Reference, select System.EnterpriseServices, then click on OK.

2. Create your core transaction-aware class. Click on Project ➤ Add New
Item, and select Transactional Component. Enter a name, click on
Open, and then alter the TransactionOption.Supported value to
TransactionOption.Required. Alternatively, click on Project ➤ Add Class
and use the following “neater” base for your work.

' Automatic transaction template

Imports System.EnterpriseServices

<Transaction(TransactionOption.Required)> _

Public Class ClassName

Inherits ServicedComponent

End Class

TOP TIP Here, we have the Transaction attribute set with the value
TransactionOption.Required, the most common setting. This means that, if
you are already inside a transaction and call a member of this class, it runs its
code and informs the parent transaction how the operation went (and, if it
failed, will likely rollback the results of parent transactions, a sort of code
domino effect). On the other hand, if you are not in a transaction, this option
will create one for you. Other possible options here are Disabled, NotSupported,
RequriesNew, and Supported.

More .NET Secrets

293

*1062_ch07_CMP2 5/31/03 6:14 PM Page 293

3. Add your transaction-aware methods and functions. If you want to take
advantage of automatic committing, which ‘saves’ all changes if no error
occurs, or performs a rollback if an exception does occur, then use code
similar to the following:

<AutoComplete()> Public Sub MemberName()

' Do processing here, such as accessing

' a transaction-aware database.

' If exception occurs, transaction fails.

End Sub

4. Use ContextUtil if you wish to control transactions manually. Instead of
relying on an exception to be caught, you may wish to control the whole
transaction manually. You do this using the ContextUtil object, with code
similar to the following:

Public Sub MemberName()

' Do processing here, maybe with error handling

' When you’re satisfied all has worked, run...

ContextUtil.SetComplete()

' If, however you have experienced problems or caught

' an exception, roll everything back by running...

ContextUtil.SetAbort()

End Sub

5. Generate a “strong name” for your application. To take part in a trans-
action, COM+ requires your application to have a strong name. This is a
random public/private key, merged with your application name, version
number, and culture information (if available). To generate the strong
name key pair, click on Programs ➤ Microsoft Visual Studio .NET ➤ Visual
Studio .NET Tools ➤ Visual Studio .NET Command Prompt. From the
DOS-style window, type “sn –k c:\mykeyname.snk” and press Return. You
should get a “Key pair written” success message. Open the directory (in
this case, the root of the c: drive) to check the file is there—this is your
random public/private key pair file. Next, add the following line to Assem-
blyInfo.vb, telling the application which key pair to utilize for the strong
name (for simplicity, we’re using a hard coded reference to the path here;
using a relative path appears to behave inconsistently between certain
VS .NET builds):

<Assembly: AssemblyKeyFileAttribute("c:\mykeyname.snk")>

Chapter 7

294

*1062_ch07_CMP2 5/31/03 6:14 PM Page 294

TOP TIP If you plan to use your transactional component outside of the .NET
world, you’ll need to do three things at this point: provide your assembly with a
title in the AssemblyInfo.vb file (used for the COM+ Catalog), manually expose
your .NET assembly to COM (see “exposing .NET Framework components to
COM”), and register your component in the COM+ Catalog (see “automatic
transactions, .NET Framework classes”, step four).

6. Start using your transactional component! If you’ve developed an internal
class, simply call it directly from within your application. Or if you’ve
created the class inside a Class Library project, compile your assembly
and then reference from another application.

And that’s all there is to implementing basic cross-machine transactions in
your applications. Don’t get me wrong: COM+ supports many, many more fea-
tures, such as object and thread pooling, nested transactions, remoting, true
MSMQ integration, special security mechanisms, and more. But these simple
steps at least provide a handy reference to the base method of handling transac-
tions across multiple machines, our method of ensuring it all happens together...
or not at all.

For further reading, check out Distributed .NET Programming in VB.NET from
Apress (ISBN 1-59059-068-6).

TOP TIP You can view your COM+ transactional components by clicking on
Programs ➤ Administrative Tools ➤ Component Services, and then navigating
down to Component Services ➤ Computers ➤ My Computer ➤ COM+ Applica-
tions. (See Figure 7-15.) Here, you should be able to view your automatically
registered transactional component, plus see any transactions in progress.
(Look out for those exciting animated icons!)

More .NET Secrets

295

*1062_ch07_CMP2 5/31/03 6:14 PM Page 295

ANOTHER TOP TIP By simply running our application like this, our COM+
transactional component is automatically registered for us the first time it is
used. This isn’t a bad thing, but you should be aware of a few things about it.
First, your transactional component is registered as a library component,
meaning you can’t view success/failure statistics via the Distributed Transaction
Coordinator. (In Component Services, navigate to My Computer ➤ Distributed
Transaction Coordinator). You can change this manually through your appli-
cation properties (in Component Services, navigate to My Computer ➤ COM+
Applications, view properties for your app, select Activation tab)—or look up
“COM+ services, registering serviced components” in the help index for more
information. Second, if you change the type of your transaction component
(that is, from RequiresNew to Supported), you’ll need to reregister your assembly
(see the preceding help topic), or alter the COM+ application properties. COM+
does not automatically comprehend that you’ve changed the transaction attri-
bute. Third, due to a number of interoperability issues, Windows XP and 2000
machines will not show the animated Component Services icon when a library
component is involved in a transaction. It’s not a huge issue, but certainly one
worry to cross off your list of debugging concerns.

Figure 7-15. Viewing our transactional components in Component Services

Chapter 7

296

*1062_ch07_CMP2 5/31/03 6:14 PM Page 296

Quick Guide to Using MSMQ

Download supporting files at www.apress.com.

The files for this tip are in the “Ch7—MSMQ Sample” folder.

Microsoft Message Queue (MSMQ) is one of those widgets a lot of developers have
heard about, but few really feel confident playing with. It’s a tool for the big boys,
or so many will have you believe, and not a technology that those working in com-
panies turning over less than ten billion a year should be using.

This, as you may suspect, is balderdash.
But, just in case you haven’t heard of MSMQ, let’s start at the beginning. What

exactly is it? MSMQ is a product now integrated into Windows 2000 and 2003. It
allows your applications to send messages and for other applications to pick up
those messages. The message may be sent to applications on the same computer,
or on a different computer. The other computer doesn’t even have to be online
when the message is sent; it will be automatically delivered when a connection
is made.

In other words, MSMQ is email for your code.
Here’s how it works. To send a message, you set up a MessageQueue object, spec-

ifying a queue “path.” (If you’re playing along with the email analogy, imagine this
as the mail address.) You check whether the queue path exists: if not, you create it.
Next, you simply send your message. It’ll then wait in your analogical Outbox and
send itself to that queue when possible (say, immediately, or the next time you
connect to the network).

So that’s how you send a message. But how about receiving one?
To receive a message, your application needs to “tune in” to your queue path

and turn up the volume. When your application notices that a message has been
received, your MessageQueue object fires off an event for you to respond to. You may
look at the message and confirm payment on a customer order, add a comment to
the user profile, or update existing stock levels. Your message doesn’t just have to
be pure text either: you can “serialize” objects and send those as well.

Let’s look at how we can implement MSMQ technology in our applications in
six easy steps:

1. Check that Microsoft Message Queue is installed. It’s likely you’ve already
got MSMQ on your machine, but, just in case, open up the control panel
and go to Add/Remove Programs. Click on the Add/Remove Windows
Components button and ensure that Message Queuing is checked. If not,
check it and follow through the wizard. If you’re using Windows NT 4,
download the option pack from www.microsoft.com/NTServer/nts/downloads/
recommended/NT4OptPk/ and select to install Microsoft Message Queue
Server 1.0.

More .NET Secrets

297

*1062_ch07_CMP2 5/31/03 6:14 PM Page 297

2. Reference System.Messaging.dll. With your project open, click on Project
➤ Add Reference and select the System.Messaging.dll, then click on OK.

3. Add a MessageQueue object to your class. Drag and drop the MessageQueue
item from the Components tab on the toolbox onto your form or class in
Design mode.

4. Change the Path property. Alter the Path property to the queue you wish to
use. This is a combination of the machine name and the queue (“mailbox”)
name. On my machine, for example, I’m using “nemean\private$\testapp”
as my Path property. Nemean is the name of the other computer on the
network, testapp is the name of my queue, and the private$ bit in the
middle indicates that this is a private queue. (Public queues are also
available, and these work in exactly the same way, but are “published”
throughout the network, unlike private queues. They also require that
your administrator first set up a special MSMQ network. A sample queue
Path for a public queue might be nemean\testapp.)

TOP TIP You can browse the existing queues, either on your local machines or
machines on your network, by clicking on View ➤ Server Explorer, then navi-
gating to a machine and viewing the Message Queues node. (See Figure 7-16.)

5. In your client application, add the code to send your message. The fol-
lowing chunk of sample code demonstrates checking for the existing of a
queue, creating it if it isn’t available, and then sending a message. The
message is split into two parts: the body and a “label” (the equivalent of
an email subject line), as shown here:

' Check for existence of queue

If MessageQueue1.Exists(MessageQueue1.Path) = False Then

MessageQueue1.Create(MessageQueue1.Path)

End If

' Send message - body and "label"

MessageQueue1.Send(_

"ConfirmOrderTotal: $69.95", _

"Customer:952")

Chapter 7

298

*1062_ch07_CMP2 5/31/03 6:14 PM Page 298

6. In your server application, add code to “receive” your message. First,
you’ll need to tune in by running the .BeginReceive function of your
MessageQueue object. You may do this when your application starts, say,
in response to the form Load event:

' Run this at the beginning to

' "listen" for new messages

MessageQueue1.BeginReceive()

When a message drops in, the ReceiveCompleted event of the MessageQueue
object kicks in, passing with it a “handle” to the message. You then use this to
receive the whole message, process it, then once again begin “listening” for any
new messages. Here’s sample code to do just that, to be used in response to the
ReceiveCompleted event:

' Receive message

Dim objMsg As System.Messaging.Message = _

MessageQueue1.EndReceive(e.AsyncResult)

' Process the message -

' here, we're simply showing it to the user

MessageBox.Show(objMsg.Label & " - " & objMsg.Body)

' Begin "listening" again

MessageQueue1.BeginReceive()

That’s it: this is literally all you need to do to send and receive messages in
your application. These, of course, are just the facts. To bring them to life in the
real world, you need to add imagination. Which applications would benefit from
being able to communicate through messages? How can this technology help
those with laptops, those who are often on the road and offline for most of the
day? Where in your company is there a need to perhaps serialize and queue up
Customer, Order, or Stock objects, waiting to be processed? And that is where you
come in.

For further reading, check out www.apress.com for the latest MSMQ titles.

More .NET Secrets

299

*1062_ch07_CMP2 5/31/03 6:14 PM Page 299

TOP TIP There’s more to be discovered in the world of MSMQ. To learn more
about serializing objects so they can be sent through MSMQ, look up “serial-
izing messages” in the help index. To “peek” at messages without actually
removing the message from the original queue, look up “peeking at messages”
in the help index. To find out about receiving a delivery acknowledgment for a
message you sent, look up “message queues, acknowledging delivery to” in the
help index.

Figure 7-16. Viewing available queues through the Server Explorer

Which to Choose: Web Services vs. Remoting

Web services and remoting are both methods of getting computers to commu-
nicate and share data with each other. Both techniques can work through IIS, both
can pass data through firewalls, both can use HTTP for communication, and both
can use SOAP-compliant data formatting. But, ever since Microsoft dropped the
curtains on the .NET Framework, developers have been asking, “Erm, so what’s
the difference between the two?”

Chapter 7

300

*1062_ch07_CMP2 5/31/03 6:14 PM Page 300

It’s a good question—and one that few Microsoft support engineers enjoy
answering. However, there is a difference, and this tip will reveal all.

Web services are part of ASP.NET and hosted in IIS. With Web services, you can
expose stateless functions to the world, which are typically called through HTTP
and a SOAP XML-based response automatically returned.

Remoting is a technology that allows .NET applications to talk to each other,
instantiating classes running on another machine. Remoting is more flexible than
Web services, but it doesn’t necessarily conform to any open standard. It can be
thought of as the most flexible replacement for DCOM and requires a program
running on the target machine as the “server.”

Yes, there’s some overlap between the two technologies, but the decision over
which to choose is relatively simple.

Do you need to expose your data to the outside world using open standards?
Do you need to utilize caching easily? Are your clients working on a non-.NET
platform? Do you need any of the special IIS features, such as security and logging?
Are you unable to run a remoting “server” program on the target machine? If you
answered yes to any of these questions, then you need to use Web services. Check
out Chapter 5 for more information. Sample Web services include an online tele-
phone directory or a product query service.

Do you need to use stateful objects in your development work? Do you require
the use of properties and events? Do you need to use the raw binary TCP socket
for faster communication? Do you need a custom “server” host for your program?
Are 100% of your clients going to be .NET applications? Would you prefer not to
use IIS, but rather peer-to-peer communication? If you answered yes to any of
these questions, then you need to use .NET remoting. Try looking up “remoting
communication” in the help index to learn more. Sample uses for .NET remoting
include a proprietary instant messaging application or the excellent Terrarium
project (www.gotdotnet.com/terrarium/).

If, however, you’re somewhat indifferent to all of these questions, go for Web
services. They’re easier to get started with and, seasoned with a few custom hacks,
can be expanded upon to do most things.

So there we have it: Web services are easy, they’re for open standards, they’re
for SOAP and IIS. Remoting is for .NET-to-.NET applications, it’s for complex
objects, it’s for speed and customization. They are different, but they do overlap.
That’s just the way it is.

For further reading, check out Distributed .NET Programming in VB.NET from
Apress (ISBN 1-59059-068-6).

More .NET Secrets

301

*1062_ch07_CMP2 5/31/03 6:14 PM Page 301

Visual Studio Tips

Figure out how to really use your Visual Studio development environment to the
max with this ace collection of secrets. From your quick guide to upgrading, COM
and the API, to the tricks behind the VS .NET Command window, from a little-
known place you can store often-used code to how you can tell if you’re running in
the IDE—and much more.

Writing a Developer TODO: List

The Task window in VB .NET is a great way of keeping track of tasks that are related
to your project. For example, if you have code issues or compile errors, VB .NET
will automatically list them here.

You can also add your own comments to the Task list, with the TODO keyword.
To use this feature, simply add a comment to your code that starts with the TODO
keyword. It will automatically be added to your existing Task list. For example:

' TODO: Rewrite function so works with .DOC files

To view the Task list, select View ➤ Other Windows ➤ Task List from the
menu, or press Ctrl+Alt+K. The Task list often filters its contents, so it displays
only certain information. To view everything, right-click on your list and select
All Tasks ➤ All. (See Figure 7-17.)

TOP TIP Fed up with the TODO keyword? Users of Visual Studio .NET 2003
(Everett) have automatic support for the “HACK” prefix, which works in the
exact same way as TODO yet attracts much more kudos. You can edit the Task list
keywords yourself by editing the values in Tools ➤ Options ➤ Environment ➤
Task List.

Figure 7-17. If only all TODO lists were this short….

Chapter 7

302

*1062_ch07_CMP2 5/31/03 6:14 PM Page 302

Storing Often-Used Code in the Toolbox

There’s an easy way to store often-used code and templates in VS .NET. Simply
drag and drop your code straight onto one of the toolbox tabs, such as the General
tab. (See Figure 7-18.) When you need to use it again, simply drag and drop back
into your code window. And, best of all, these snippets persist from project to
project, saving even more development time.

Figure 7-18. Adding code to the toolbox

Organizing Your Project with Folders

Overwhelmed with the number of files that now make up your application?
Starting to loose track of which VB files do what? Well, there’s a simple method of
keeping track. Use folders!

Right-click on your project in the Solution Explorer and select Add ➤ New
Folder. Then simply drag and drop your existing code files into the new folders.
For example, you may have one folder called “User Interface” to store your forms,
or a folder called “Database Code” to store your data access classes.

More .NET Secrets

303

*1062_ch07_CMP2 5/31/03 6:14 PM Page 303

Don’t worry: there’s no extra configuration required, and your entire project
compiles as normal with no extra effort. It simply allows you to organize your
project the way it should be.

A simple tip, but one that can turn chaos into control within minutes. (See
Figure 7-19.)

Figure 7-19. One of my company C# projects, really taking advantage of folders

Figuring out the Command Window

The Command window in Visual Studio .NET allows you to both perform
command operations as well as evaluate statements (see Figure 7-20), depending
on its mode. To open the Command window, select View ➤ Other Windows ➤
Command Window from the menu, or press Ctrl+Alt+A.

Chapter 7

304

*1062_ch07_CMP2 5/31/03 6:14 PM Page 304

The Command mode allows you to access common Visual Studio .NET com-
mands. To enter this mode, type “>cmd” into the window and press the Enter key.
After this, you can access the various menu commands by typing them directly
into this window (for example, Window.CloseAllDocuments to close all current docu-
ments). Type “alias” for a full list of alias shortcuts (for example, CloseAll).

The more-useful Immediate mode is used for evaluating and executing state-
ments while your code is paused at runtime. To enter this mode, type “immed” into
the window and press Enter. After this, you can use the window to run commands,
set variables, or read values (for example, MyVariable = "Etc" or ? MyVariable).
Visual Studio .NET 2003 users also get the popup properties/methods list, allowing
them to browse an object.

Press the F1 key while inside the Command window for more information on
the commands available.

Figure 7-20. A sample command window in use

Discovering Whether You’re Running in the IDE

Previous versions of Visual Basic made it easy to figure out whether you were
running your application through the IDE (Integrated Development Environment).
It simply allowed you to check which “mode” your application was in. VB .NET,
however, isn’t quite as easy going.

The most common method of figuring out whether the application is running
in the .NET IDE is to check the System.Diagnostics.Debugger.IsAttached property
to determine whether if a debugger is attached to the currently executing code. If
so, you can safely assume your code is running from within the IDE.

If you’re designing your own controls, you might also run into the situation
where your code is running in design mode—while you want it to execute only
during “full” runtime. In this situation, simply check the DesignMode property of
your component (that is, from inside your control: Me.DesignMode). If it returns
True, you’re running in the IDE—so cut your code short.

Simple solutions to common questions, and definitely worth remembering.

More .NET Secrets

305

*1062_ch07_CMP2 5/31/03 6:14 PM Page 305

Saving Time by Recording Macros

If you have a repetitive task that you often perform in the Visual Studio .NET
development environment, you might want to consider creating it as a macro and
running it when you require that functionality once more.

For example, you might create a macro to print all the open documents, add
customized revision markers, change project properties to standardize your devel-
opment, or insert common routines.

You can get highly in-depth with macros, writing code to perform almost
any task. However, the simplest method is to simply record your activities and
have Visual Studio .NET write the code for you. You can do this by selecting
Tools ➤ Macros ➤ Record TemporaryMacro. To play it back, select Run
TemporaryMacro from the same menu, or press Ctrl+Shift+P.

For more information on recording macros, look up “macros, recording” in
the help index. For more information on macros in general, look up “macros,
Visual Studio .NET” in the help index.

Using the VS .NET Command Prompt

As you work through the Visual Studio .NET documentation, you’ll start to realize
just how many tools require you to run them from the command line for full
control.

However, setting the proper directory and locating the exact EXE file required
via the command prompt can prove troublesome. Thankfully, Visual Studio .NET
comes with a feature that automatically sets up a command prompt with all the
correct environment variables ready for you to use.

To access this, select Start ➤ Programs ➤ Microsoft Visual Studio .NET ➤
Visual Studio .NET Tools ➤ Visual Studio .NET Command Prompt. (See Figure 7-21.)
Task complete!

Figure 7-21. The command prompt, ready for use

Chapter 7

306

*1062_ch07_CMP2 5/31/03 6:14 PM Page 306

The Old School: Upgrading, COM, and the API

Most books like to dedicate a good couple of chapters to moving from the old
school of Visual Basic 6 programming. This one is different, of course. In the
interest of saving your time and cutting all those excess pages, I’m going to chop it
all down to just three simple paragraphs—one dedicated to each of the main
topics: upgrading, COM, and the API.

First, upgrading. Yes, you can do it; simply open your existing Visual Basic 6
project in VS .NET, and an upgrade wizard will pop up and do its darned hardest to
move your code to .NET. Most of the time it simply alters your functions so they
use those in the rather uncool Microsoft.VisualBasic namespace, implemented in
the .NET Framework to allow VB6 people to upgrade without feeling lost. On the
whole, I’d recommend only fresh development work be undertaken in .NET:
simple “ports” like this never really work or are done for all the wrong reasons.

Second, COM. Frankly, it’s just too big to die. If you want to use a COM
DLL/EXE in your application (for automating Word, say), click on Project, Add
Reference, and select your item through the COM tab, then click OK. If you want
to use a COM control, right-click on the toolbox, select Customize Toolbox, check
a COM component, and click on OK. Note that you may experience a slight per-
formance knock due to .NET having to interoperate with the world of COM, but
on the whole things should work pretty much the same as they did before. Also, if
you want COM-supporting languages to see your .NET widgets, that’s possible too.
Look up “exposing .NET Framework components to COM” in the help index for
more information.

Finally, the Windows API. Although it’s still available on Windows machines,
Microsoft is trying to drag everyone into the .NET Framework, which allows you to
write “managed” code, with resources monitored and allocated for you automati-
cally. It also fits in with the long-term Microsoft vision of a “sort of”
platform-independent programming language (that is, one based on a framework,
not Windows). You can, however, still call the API directly with ease (as demon-
strated in the “INI Files Will Never Die: How to in .NET” tip earlier in this chapter).
You can read more about this by looking up “Windows API, calling” in the help
index. Still, if possible, I’d recommend that you figure out a .NET alternative to the
API; either search the newsgroups at www.googlegroups.com or check out the .NET
section of www.allapi.net, a Web site listing API functions and their related
.NET equivalents. (Although the site has unfortunately stopped updating
its pages, it still serves as a highly useful reference.)

More .NET Secrets

307

*1062_ch07_CMP2 5/31/03 6:14 PM Page 307

