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CHAPTER 1

The Architecture 
of Threads

PROGRAMMING JAVA THREADS is not nearly as easy (or platform independent) as most 
books would have you believe, and all Java programs that display a graphical user 
interface must be multithreaded. This chapter shows you why these statements are 
true by discussing the architectures of various threading systems and by discussing 
how those architectures influence how you program threads in Java. Along the way, 
I’ll introduce several key terms and concepts that are not described very well in 
most intro-to-Java books. Understanding these concepts is essential if you expect 
to understand the code in the remainder of the book. 

The Problems with Threads

Burying your head in the sand and pretending that you don’t have to worry about 
threading issues is a tempting strategy when writing a Java program, but you can’t 
usually get away with it in real production code. Unfortunately, virtually none of 
the books on Java address threading issues in sufficient depth. If anything, the books 
go to the opposite extreme, presenting examples that are guaranteed to cause 
problems in a multithreaded environment as if the code is flawless. 

In fact, multithreading is a problem that infuses all your Java code, because 
you have no way of predicting in exactly what context a particular object or method 
will be used. Going back after the fact and trying to make non-thread-safe code 
work in a multithreaded environment is an immensely difficult task. It’s best to 
start out thinking “threads,” even if you don’t plan to use the code you’re writing in 
a multithreaded way in the future. Unfortunately, there is often a performance 
penalty to be paid for thread safety, so I can’t recommend that all code should be 
thread safe, because paying the penalty can just be too high in some situations. 
Nonetheless, you should always consider the threading issues when designing the 
code, even if you end up consciously rejecting thread safety in the implementation. 

�����������	
��������	������������������������



Chapter 1

2

All Nontrivial Java Programs Are Multithreaded

All Java programs other than simple console-based applications are multithreaded, 
whether you like it or not. The problem is in Java’s Abstract Windowing Toolkit 
(AWT). (Throughout this book, I’ll use “AWT” to mean both the 1.1 AWT library and 
and the Swing extensions to AWT as well.) AWT processes operating-system events 
on a special thread, created by AWT when a program “realizes” (makes visible) its first 
window. As a consequence, most programs have at least two threads running: 
the “main” thread, on which main() executes, and the AWT thread, which processes 
events that come in from the operating system and calls any registered listeners 
in response to those events. It’s important to note that all your listener methods 
run on the AWT thread, not on the main thread (where the listener object is typi-
cally created). 

There are two main difficulties to this architecture. First, although the listeners 
run on the AWT thread, they are typically inner-class objects that access an outer-
class object that was, in turn, created by (and is accessed by) the main thread. Put 
another way, listener methods running on AWT thread often access an object that 
is also manipulated from the main thread—the outer-class object. This is a worst-
case synchronization problem, when two threads compete for access to the same 
object. Proper use of synchronized is essential to force the two threads to take turns 
accessing the object, rather than trying to access it simultaneously. 

To make matters worse, the AWT thread that handles the listeners also handles 
events coming in from the operating system. This means that if your listener 
methods spend a long time doing whatever they do, OS-level events (such as 
mouse clicks and key presses) will not be serviced by your program. These events 
are queued up waiting for service, but they are effectively ignored until the listener 
method returns. The result is an unresponsive user interface: one that appears to 
hang. It’s immensely frustrating to a user when a program ignores clicks on a Cancel 
button because the AWT thread has called a listener method that takes forever to 
execute. (The mouse clicks are ignored until the listener method finishes executing.) 
Listing 1.1 demonstrates the unresponsive-UI problem. This program creates a 
frame that holds two buttons labeled “Sleep” and “Hello.” The handler for the 
Sleep button puts the current thread (which will be the Swing event-handler thread) 
to sleep for five seconds. The Hello button just prints “Hello world” on the console. 
During the five seconds that elapse after you press the Sleep button, pressing the 
Hello button has no effect. If you click the Hello button five times, “Hello world” is 
printed five times as soon as the sleep finishes. The button-press events are 
queued up while the Swing thread is sleeping, and they are serviced when the 
Swing thread wakes up. 
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Listing 1.1: /text/books/threads/ch1/Hang.java

01: import javax.swing.*;
02: import java.awt.*;
03: import java.awt.event.*;
04:
05: class Hang extends JFrame
06: {
07:     public Hang()
08:     {   JButton b1 = new JButton( "Sleep" );
09:         JButton b2 = new JButton( "Hello" );
10:
11:         b1.addActionListener
12:         (   new ActionListener()
13:             {   public void actionPerformed( ActionEvent event )
14:                 {   try
15:                     {   Thread.currentThread().sleep(5000);
16:                     }
17:                     catch(Exception e){}
18:                 }
19:             }
20:         );
21:
22:         b2.addActionListener
23:         (   new ActionListener()
24:             {   public void actionPerformed( ActionEvent event )
25:                 {   System.out.println("Hello world");
26:                 }
27:             }
28:         );
29:
30:         getContentPane().setLayout( new FlowLayout() );
31:         getContentPane().add( b1 );
32:         getContentPane().add( b2 );
33:         pack();
34:         show();
35:     }
36:
37:     public static void main( String[] args )
38:     {   new Hang();
39:     }
40: }
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Many books that discuss java GUI building gloss over both the synchronization 
and the unresponsive-UI problems. They can get away with ignoring synchroniza-
tion issues because the trivial examples in those books are often single threaded. That 
is, 100% of the code in the program is defined inside one or more listeners, all of which 
are executed serially on the single (AWT) thread. Moreover, the listeners perform triv-
ial tasks that complete so quickly that you don’t notice that the UI isn’t responding. 

In any event, in the real world, this single-threaded approach (doing every-
thing on the AWT thread) just doesn’t work. All successful UIs have a few behaviors 
in common: 

• The UI must give you some feedback as an operation progresses. Simply 
throwing up a box that says “doing such-and-such” is not sufficient. You 
need to tell the user that progress is being made (a “percent complete” 
progress bar is an example of this sort of behavior). 

• It must be possible to update a window without redrawing the whole thing 
when the state of the underlying system changes. 

• You must provide a way to cancel an in-progress operation. 

• It must be possible to switch windows and otherwise manipulate the user 
interface when a long operation is in progress. 

These three rules can be summed up with one rule: It’s not okay to have an 
unresponsive UI. It’s not okay to ignore mouse clicks, key presses, and so forth 
when the program is executing a listener method, and it’s not okay to do lots of 
time-consuming work in listeners. The only way to get the reasonable behavior 
I just described is to use threads. Time-consuming operations must be performed 
on background threads, for example. Real programs will have many more than two 
threads running at any given moment. 

Java’s Thread Support Is Not Platform Independent

Unfortunately, though it’s essential to design with threading issues in mind, threads 
are one of the main places where Java’s promise of platform independence falls flat 
on its face. This fact complicates the implementation of platform-independent 
multithreaded systems considerably. You have to know something about the possi-
ble run-time environments to make the program work correctly in all of them. It is 
possible to write a platform-independent multithreaded Java program, but you 
have to do it with your eyes open. This lamentable situation is not really Java’s fault; 
it’s almost impossible to write a truly platform-independent threading system. 
(Doug Schmidt’s “Ace” Framework is a good, though complex, attempt. You can get 
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more information at http://www.cs.wustl.edu/~schmidt/ACE.html.) So, before I can 
talk about hardcore Java programming issues in subsequent chapters, I have to dis-
cuss the difficulties introduced by the platforms on which the Java virtual machine 
(JVM) might run. 

Threads and Processes

The first OS-level concept that’s important is that of the thread itself (as compared 
to a process). What exactly is a thread (or process), really? It’s a data structure deep 
in the bowels of the operating system, and knowing what’s in that data structure 
can help us answer the earlier question. 

The process data structure keeps track of all things memory-related: the glo-
bal address space, the file-handle table, and so forth. When you swap a process to 
disk in order to allow another process to execute, all the things in that data struc-
ture might have to be staged to disk, including (perhaps) large chunks of the 
system’s core memory. When you think “process,” think “memory.” Swapping a 
process is expensive because a lot of memory typically has to be moved around. 
You measure the context-swap time in seconds. In Java, the process and the virtual 
machine are rough analogs. All heap data (stuff that comes from new) is part of the 
process, not the thread. 

Think of a thread as a thread of execution—a sequence of byte-code instruc-
tions executed by the JVM. There’s no notion of objects, or even of methods, here. 
Sequences of instructions can overlap, and they can execute simultaneously. It’s 
commonplace for the same code to be executing simultaneously on multiple 
threads, for example. I’ll discuss all this in more detail later, but think “sequence,” 
not “method.” 

The thread data structure, in contrast to the process, contains the things that it 
needs to keep track of this sequence. It stores the current machine context: the 
contents of the registers, the position of the execution engine in the instruction 
stream, the run-time stack used by methods for local variables and arguments. 
The OS typically swaps threads simply by pushing the register set on the thread’s 
local stack (inside the thread data structure), putting the thread data structure into 
some list somewhere, pulling a different thread’s data structure off the list, and 
popping that thread’s local stack into the register set. Swapping a thread is rela-
tively efficient, with time measured in milliseconds. In Java, the thread is really a 
virtual-machine state. 

The run-time stack (on which local variables and arguments are stored) is part 
of the thread data structure. Because multiple threads each have their own run-
time stack, the local variables and arguments of a given method are always thread 
safe. There’s simply no way that code running on one thread can access the fields 
of another thread’s OS-level data structure. A method that doesn’t access any heap 
data (any fields in any objects—including static ones) can execute simultaneously 
on multiple threads without any need for explicit synchronization. 
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Thread Safety and Synchronization

The phrase thread safe is used to describe a method that can run safely in a multi-
threaded environment, accessing process-level data (shared by other threads) in 
a safe and efficient way. The self-contained method described in the previous para-
graph is certainly thread safe, but it is really a degenerate case. Thread safety is 
usually a difficult goal to achieve. 

At the center of the thread-safety issue is the notion of synchronization—
any mechanism that assures that multiple threads: 

• start execution at the same time and run concurrently, or 

• do not run simultaneously when accessing the same object, or 

• do not run simultaneously when accessing the same code. 

I’ll discuss ways to do all three of these things in subsequent chapters, but for 
now, synchronization is achieved by using various objects known collectively as 
semaphores. A semaphore is any object that two threads can use to communicate 
with one another in order to synchronize their operation. In English, a semaphore 
is a way to send messages using signalling flags: 

Some of you may have learned the semaphore alphabet in the Boy Scouts. 
Napoleon used the vanes of windmills to send semaphore messages across vast 
distances; a Java thread uses a semaphore to communicate with another thread. 
It’s not an accident that you are said to signal a semaphore (or put it into the signalled 
state)—it’s the same metaphor. 

Don’t be confused by Microsoft documentation that incorrectly applies the 
word “semaphore” only to a Dijkstra counting semaphore. A semaphore is any of 
what Microsoft calls “synchronization objects.” 
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Without Java’s synchronized keyword, you couldn’t implement a semaphore in 
Java, but the synchronized keyword alone is not enough. That’s not to say that you 
should throw platform independence out the window and use JNI to call OS-specific 
synchronization objects; rather, you should build these objects in Java, using the 
building blocks provided by the language, such as synchronized. I’ll do just that in 
subsequent chapters. 

Synchronization Is Expensive

One of the main problems with synchronization, whether you use a semaphore or 
the synchronized keyword directly, is overhead. Consider the code in Listing 1.2, 
which is a simple benchmark meant to demonstrate just how expensive synchroni-
zation is. The test(...) method (Listing 1.2, line 13) calls two methods 1,000,000 
times. One of the methods is synchronized, the other isn’t. Results can vary from run 
to run, but here’s a typical output (on a 200MHz P5, NT4/SP3, using JDK ver. 1.2.1 
and HotSpot 1.0fcs, build E): 

% java -verbose:gc Synch
Pass 0: Time lost: 234 ms. 121.39% increase
Pass 1: Time lost: 139 ms. 149.29% increase
Pass 2: Time lost: 156 ms. 155.52% increase
Pass 3: Time lost: 157 ms. 155.87% increase
Pass 4: Time lost: 157 ms. 155.87% increase
Pass 5: Time lost: 155 ms. 154.96% increase
Pass 6: Time lost: 156 ms. 155.52% increase
Pass 7: Time lost: 3,891 ms. 1,484.7% increase
Pass 8: Time lost: 4,407 ms. 1,668.33% increase

The test() method has to be called several times in order to get the HotSpot 
JVM to fully optimize the code. That’s why the “Pass 0” results seem confusing. 
This pass takes the most overall time, but the ratio of synchronized to nonsynchro-
nized call time is relatively small because neither method is particularly efficient. 
Once things settle down (in pass 6), you see that a synchronized call takes about 
half again as much time to execute as the nonsynchronized variant. 

This 1.5-times penalty is significant, but is nothing when compared to passes 
7 and 8. The difference is that the earlier passes were all running on a single thread. 
In the final two passes, two threads are both trying to call the same synchronized 
method simultaneously, so there is contention. The numbers here are much more 
significant, with the call to the synchronized method on the order of 150 times less 
efficient than the nonsynchronized variant. This is a big deal. You don’t want to 
synchronize unnecessarily. 
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A Digression

It’s worthwhile explaining what’s going on here. The Hotspot JVM typically uses 
one of two methods for synchronization, depending on whether or not multiple 
threads are contending for a lock. When there’s no contention, an assembly-language 
atomic-bit-test-and-set instruction is used. This instruction is not interruptible; 
it tests a bit, sets various flags to indicate the result of the test, then if the bit was not 
set, it sets it. This instruction is a crude sort of semaphore because when two 
threads try to set the bit simultaneously, only one will actually do it. Both threads 
can then check to see if they were the one that set the bit. 

If the bit is set (i.e., there is contention), the JVM has to go out to the operating 
system to wait for the bit to clear. Crossing the interprocess boundary into the 
operating system is expensive. In NT, it takes on the order of 600 machine cycles 
just to enter the OS kernel, and this count doesn’t include the cycles spent doing 
whatever you entered the kernel to do. That’s why passes 7 and 8 take so much 
more time, because the JVM must interact with the operating system. Alexander 
Garthwaite from Sun Labs brought up a few other interesting issues in a recent 
email to me: 

• Synchronized blocks are often different from synchronized methods in that 
the generated byte code need not properly nest these. As a result, these are 
often slightly more expensive (particularly in lock-release). 

• Some locking strategies use caches of monitors. So, the number and order 
in which objects are locked can affect performance. More generally, the 
locking subsystem may use growable structures for various purposes, and 
these will become more cumbersome to manage as the number of locked 
objects increases. 

• Some locking strategies use a thin-lock/fat-lock strategy. In the thin lock, 
only simple synchronization is supported and locking depth is often limited 
to a small number (often somewhere between 16 and 64). Lock inflation 
occurs when this count is exceeded, when there is contention on the lock, 
or when a wait or notify operation is performed. Lock deflation can also add 
costs if it is supported at all. 

• For space efficiency in object headers, other information is often either 
stored in the same word as locking state or it forces lock inflation. A common 
example is the object’s hashcode() method. This means that accessing this 
information in locked objects is often more expensive, and objects with 
hash codes may be more expensive to lock than ones without. 
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One other thing that I’ll add, if you can reduce the odds of contention, then the 
locking process is more efficient. This reasoning implies that you should make 
the synchronization blocks as small as possible so that a given lock will be unlocked 
most of the time. 

Listing 1.2: /text/books/threads/ch1/Synch.java

01: import java.util.*;
02: import java.text.NumberFormat;
03:
        

   /** 

       A benchmark to test the overhead of synchronization on a simple
       method invocation. Benchmarking java, particularly when Hot-
       Spot is in the equation, is tricky. There's a good tech note on this
       subject at http://java.sun.com/products/hotspot/Q+A.html.

    */

04: class Synch
05: {
06:     private static long[]       locking_time    = new long[100];
07:     private static long[]       not_locking_time = new long[100];
08:     private static final int    ITERATIONS      = 1000000;
09:
10:     synchronized long locking     (long a, long b){return a + b;}
11:     long              not_locking (long a, long b){return a + b;}
12:
13:     private void test( int id )
14:     {
15:         long start = System.currentTimeMillis(); 
16:
17:         for(long i = ITERATIONS; --i >= 0 ;)
18:         {   locking(i,i);
19:         }
20:
21:         locking_time[id] = System.currentTimeMillis() - start;
22:         start            = System.currentTimeMillis();
23:
24:         for(long i = ITERATIONS; --i >= 0 ;)
25:         {   not_locking(i,i);
26:         }
27:
28:         not_locking_time[id] = System.currentTimeMillis() - start;
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29:     }
30:
31:     static void print_results( int id )
32:     {
33:
34:         NumberFormat compositor = NumberFormat.getInstance();
35:         compositor.setMaximumFractionDigits( 2 );
36:
37:         double time_in_synchronization = locking_time[id] - not_locking_time[id];
38:
39:         System.out.println( "Pass " + id + ": Time lost: "
40:                 + compositor.format( time_in_synchronization                 )
41:                 + " ms. "
42:                 + compositor.format( ((double)locking_time[id]/

 not_locking_time[id])*100.0)
43:                 + "% increase"
44:                 );
45:     }
46:
47:     static public void main(String[] args) throws InterruptedException
48:     {
49:         // First, with no contention:
50:
51:         final Synch tester = new Synch();
52:         tester.test(0); print_results(0);
53:         tester.test(1); print_results(1);
54:         tester.test(2); print_results(2);
55:         tester.test(3); print_results(3);
56:         tester.test(4); print_results(4);
57:         tester.test(5); print_results(5);
58:         tester.test(6); print_results(6);
59:
60:         // Now let's do it again with contention. I'm assuming that
61:         // hotspot has optimized the test method by now, so am only
62:         // calling it once.
63:
64:         final Object start_gate = new Object();
65:
66:         Thread t1 = new Thread()
67:         {   public void run()
68:             {   try{ synchronized(start_gate) { start_gate.wait(); } }
69:                 catch( InterruptedException e ){}
70:
71:                 tester.test(7);
72:             }
73:         };
74:         Thread t2 = new Thread()
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75:         {   public void run()
76:             {   try{ synchronized(start_gate) { start_gate.wait(); } }
77:                 catch( InterruptedException e ){}
78:
79:                 tester.test(8);
80:             }
81:         };
82:
83:         Thread.currentThread().setPriority( Thread.MIN_PRIORITY );
84:
85:         t1.start();
86:         t2.start();
87:
88:         synchronized(start_gate){ start_gate.notifyAll(); }
89:
90:         t1.join();
91:         t2.join();
92:
93:         print_results( 7 );
94:         print_results( 8 );
95:     }
96: }

Avoiding Synchronization

Fortunately, explicit synchronization is often avoidable. Methods that don’t use 
any of the state information (such as fields) of the class to which they belong don’t 
need to be synchronized, for example. (That is, they use only local variables and 
arguments—no class-level fields—and they don’t modify external objects by means 
of references that are passed in as arguments.) There are also various class-based 
solutions, which I discuss in subsequent chapters (such as the synchronization 
wrappers used by the Java collection classes). 

You can sometimes eliminate synchronization simply by using the language 
properly, however. The next few sections show you how. 
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Atomic Energy: Do Not Synchronize Atomic Operations

The essential concept vis-a-vis synchronization is atomicity. An “atomic” opera-
tion cannot be interrupted by another thread, and naturally atomic operations do 
not need to be synchronized. 

Java defines a few atomic operations. In particular, assignment to variables of 
any type except long and double is atomic. To understand ramifications of this 
statement, consider the following (hideously non-object-oriented) code: 

    class Unreliable
    {   private long x;

        public long get_x(           ){ return x;   }
        public void set_x(long value ){ x = value;  }
    }

Thread one calls: 

    obj.set_x( 0 );

A second thread calls:

    obj.set_x( 0x123456789abcdef );

The problem is the innocuous statement: 

    x = value;

which is effectively treated by the JVM as two separate 32-bit assignments, not 
a single 64-bit assignment: 

    x.high_word = value.high_word;
    x.low_word  = value.low_word;

Either thread can be interrupted by the other halfway through the assignment 
operation—after modifying the high word, but before modifying the low word. 
Depending on when the interruption occurs (or if it occurs), the possible values 
of x are 0x0123456789abcdef, 0x0123456700000000, 0x0000000089abcdef, or 
0x0000000000000000. There’s no telling which one you’ll get. The only way to fix 
this problem is to redefine both set_x() and get_x() as synchronized or wrap the 
assignment in a synchronized block. 
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.............................................................................................................................................................................................................................

The volatile Keyword

Another keyword of occasional interest is volatile. The issue here is not one of 
synchronization, but rather of optimization. If one method sets a flag, and 
another tests it, the optimizer might think that the value of the flag never changes 
and optimize the test out of existence. Declaring the variable as volatile effec-
tively tells the optimizer not to make any assumptions about the variable’s state. 
In general, you’ll need to use volatile only when two threads both access a public 
flag, something that shouldn’t happen in well-crafted OO systems. In any event, 
for reasons that I don’t want to go into here, volatile can behave in unpredict-
able ways on multiprocessor machines. Until the Java language specification is 

.............................................................................................................................................................................................................................

fixed, it’s best to use explicit synchronization to avoid these problems. 

Fortunately, this problem doesn’t arise with 32-bit (or smaller) variables. That 
is, if all that a method does is set or return a value, and that value is not a long or 
double, then that method doesn’t have to be synchronized. Were the earlier x rede-
fined as an int, no synchronization would be required. 

Bear in mind that only assignment is guaranteed to be atomic. A statement 
like x=++y (or x+=y) is never thread safe, no matter what size x and y are. You could 
be preempted after the increment but before the assignment. You must use the 
synchronized keyword to get atomicity in this situation. 

Race Conditions

Formally, the sort of bug I just described—when two threads simultaneously con-
tend for the same object and, as a consequence, leave the object in an undefined 
state—is called a race condition. Race conditions can occur anywhere that any 
sequence of operations must be atomic (not preemptable), and you forget to make 
them atomic by using the synchronized keyword. That is, think of synchronized as 
a way of making complex sequences of operations atomic, in the same way that 
assignment to a boolean is atomic. The synchronized operation can’t be preempted 
by another thread that’s operating on the same data. 

Immutability

An effective language-level means of avoiding synchronization is immutability. An 
immutable object is one whose state doesn’t change after it’s created. A Java String 
is a good example—there’s no way to modify the String once it’s created. (The 
expression string1 += string2 is actually treated like string1 = string1 + string2; 
a third string is created by concatenating the two operands, then the target is over-
written to reference this third string. As usual, this operation is not atomic.) 
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Since the value of an immutable object never changes, multiple threads can 
safely access the object simultaneously, so no synchronization is required. 

Create an immutable object by making all of the fields of a class final. The 
fields don’t all have to be initialized when they are declared, but if they aren’t they 
must be explicitly initialized in every constructor. For example: 

    class I_am_immutable
    {   private final int MAX_VALUE = 10;
        private final int blank_final;
    
        public I_am_immutable( int initial_value )
        {   blank_final = initial_value;
        }
    }

A final field that’s initialized by the constructor in this way is called a blank final. 
In general, if you are accessing an object a lot, but not modifying it much, 

making it immutable is a good idea since none of the methods of the object’s class 
need to be synchronized. If you modify the object a lot, however, the overhead of 
copying the object will be much higher than the overhead of synchronization, so 
an immutable-object approach doesn’t make sense. Of course, there is a vast gray 
area where neither approach is obviously better. 

Synchronization Wrappers

Often it’s the case that you need synchronization sometimes, but not all the time. 
A good example is the Java 2 Collection classes. Typically, collections will be accessed 
from within synchronized methods, so it would be contraindicated for the methods 
of the collection to be synchronized, since you’d be unnecessarily acquiring two 
locks (the one on the object that used the collection and the other on the collection 
itself). Java’s solution to this problem is generally applicable: use a synchronization 
wrapper. The basic notion of the Gang-of-Four Decorator design pattern is that a 
Decorator both implements some interface and also contains an object that imple-
ments the same interface. (The “Gang-of-Four” referenced in the previous 
sentence are Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, the 
authors of the excellent book Design Patterns: Elements of Reusable Object-Oriented 
Software [Reading: Addison Wesley, 1995].) The container implements the same 
methods as the contained object, but modifies the behavior of the method as it 
passed the request through to the contained object. The classes in the java.io pack-
age are all Decorators: A BufferedInputStream both implements InputStream and 
contains an instance of some InputStream—you talk to the contained object 
through the container, which modifies the behavior of the contained object. (The 
read() method buffers characters in the BufferedInputStream decorator and doesn’t 
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buffer in the contained FileInputStream. The BufferedInputStream container gets its 
characters from the contained FileInputStream object.) 

You can put this technique to use to provide synchronization on an as-needed 
basis. For example: 

interface Some_interface

{   Object message();

}

class Not_thread_safe implements Some_interface

{

    public Object message()

    {   // ... Implementation goes here

        return null;

    }

}

class Thread_safe_wrapper implements Some_interface

{

    Some_interface not_thread_safe;

    public Thread_safe_wrapper( Some_interface not_thread_safe )

    {   this.not_thread_safe = not_thread_safe;

    }

    public Some_interface extract()

    {   return not_thread_safe;

    }

    public synchronized Object message()

    {   return not_thread_safe.message();

    }

}

When thread safety isn’t an issue, you can just declare and use objects of class 
Not_thread_safe without difficulty. When you need a thread-safe version, just wrap it: 

Some_interface object = new Not_thread_safe();
//...

object = new Thread_safe_wrapper(object); // object is now thread safe

when you don’t need thread-safe access any more, unwrap it: 

object = ((Thread_safe_Wrapper)object).extract();
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Concurrency, or How Can You Be Two Places 
at Once (When You’re Really Nowhere at All)

The next OS-related issue (and the main problem when it comes to writing plat-
form-independent Java) has to do with the notions of concurrency and parallelism. 
Concurrent multithreading systems give the appearance of several tasks executing 
at once, but these tasks are actually split up into chunks that share the processor 
with chunks from other tasks. Figure 1.1 illustrates the issues. In parallel systems, 
two tasks are actually performed simultaneously. Parallelism requires a multiple-
CPU system. 

Multiple threads don’t necessarily make your program 
faster. Unless you’re spending a lot of time blocked, waiting for 
I/O operations to complete, a program that uses multiple con-
current threads will often run slower than an equivalent single-
threaded program (although it will often be better organized 
than the equivalent single-thread version). A program that uses 
multiple threads running in parallel on multiple processors will 
run much faster, of course. If speed is important, a multithreaded 
program should have no more threads running at any given 
moment than there are processors in the system. More threads 
can exist in this program, but they should be suspended, wait-
ing for some event to occur. 

The main reason that Java’s threading system isn’t platform 
independent is that parallelism is impossible unless you use the 
underlying operating system’s threading model. Java, at least in 
theory, permits threading to be simulated entirely by the JVM, 

thereby avoiding the time penalty for entering the OS kernel that I discussed ear-
lier. This approach precludes any parallelism in your application, however: If no 
operating-system-level threads are used, the OS looks at the JVM instance as a sin-
gle-threaded application, which will be scheduled to a single processor. The net 
result would be that no two Java threads running under the same JVM instance 
would ever run in parallel, even if you had multiple CPUs and your JVM was the 
only process that was active. Two instances of the JVM running separate applica-
tions could run in parallel, of course, but I want to do better than that. To get 
parallelism, the JVM must map Java threads through to operating-system threads. 
Unfortunately, different operating systems implement threads in different ways; 
so, you can’t afford to ignore the differences between the various threading models 
if platform independence is important. 

Ta
sk

 1

Task 2

Concurrency Parallelism

Task 1

Time Time

Task 2

Figure 1.1. Concurrency 
vs. Parallelism 
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Get Your Priorities Straight

I’ll demonstrate the ways that all the issues I just discussed can impact your pro-
grams by comparing two operating systems: Solaris and Windows NT. 

Java, in theory at least, provides ten priority levels for threads. (If two or more 
threads are both waiting to run, the one with the highest priority level will execute.) 
In Solaris, which supports 231 priority levels, having ten levels is no problem. You 
give up a lot of fine control over priority by restricting yourself to one of these ten 
levels, but everything will work the way that you expect. 

NT, on the other hand, has at most seven priority levels available, which have 
to be mapped into Java’s ten. This mapping is undefined, so lots of possibilities 
present themselves. (Java priority levels 1 and 2 might both map to NT priority-
level 1, and Java priority levels 8, 9, and 10 might all map to NT level 7, for example. 
Other combinations, such as using only five of the available levels and mapping 
pairs of Java levels to a single NT level, are also possible). NT’s paucity of priority 
levels is a problem if you want to use priority to control scheduling. 

Things are made even more complicated by the fact that NT priority levels are 
not fixed. NT provides a mechanism called “priority boosting,” which you can turn 
off with a C system call, but not from Java. When priority boosting is enabled, NT 
boosts a thread’s priority by an indeterminate amount for an indeterminate amount 
of time every time it executes certain I/O-related system calls. In practice, this 
means that a thread’s priority level could be higher than you think because that 
thread happened to perform an I/O operation at an awkward time. The point of 
the priority boosting is to prevent threads that are doing background processing 
from impacting the apparent responsiveness of UI-heavy tasks. Other operating 
systems have more-sophisticated algorithms that typically lower the priority of 
background processes. The down side of this scheme, particularly when imple-
mented on a per-thread rather than per-process level, is that it’s very difficult to 
use priority to determine when a particular thread will run. 

It gets worse. 
In Solaris—as is the case in all Unix systems and every contemporary operating 

system that I know of except the Microsoft operating systems—processes have priority 
as well as threads. The threads of high-priority processes can’t be interrupted by the 
threads of low-priority processes. Moreover, the priority level of a given process can be 
limited by a system administrator so that a user process won’t interrupt critical OS 
processes or services. NT supports none of this. An NT process is just an address 
space. It has no priority per se and is not scheduled. The system schedules threads; 
then, if that thread is running under a process that is not in memory, the process is 
swapped in. NT thread priorities fall into various “priority classes,” that are distributed 
across a continuum of actual priorities. The system is shown in Figure 1.2. 

The columns are actual priority levels, only twenty-two of which must be shared 
by all applications. (The others are used by NT itself.) The rows are priority classes. 
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The threads running in a process pegged at the “Idle” priority class are running at 
levels 1–6 and 15, depending on their assigned logical priority level. The threads of 
a process pegged as “Normal” priority class will run at levels 1, 6–10, or 15 if the 
process doesn’t have the input focus. If it does have the input focus, the threads 
run at levels 1, 7–11, or 15. This means that a high-priority thread of an idle-prior-
ity-class process can preempt a low-priority thread of a normal-priority-class 
process, but only if that process is running in the background. Notice that a pro-
cess running in the “High” priority class only has six priority levels available to it. 
The other classes have seven. 

NT provides no way to limit the priority class of a process. Any thread on any 
process on the machine can take over control of the box at any time by boosting its 
own priority class, and there’s no defense. Solaris, on the other hand, does support 
the notion of process priority precisely because you need to prevent screen savers 
from interfering with system-critical tasks. A high-priority process simply shouldn’t be 
preempted by a low-priority process, particularly in a server. I guess the good people 
at Microsoft didn’t think that anyone would really be using NT as a server operat-
ing system. Anyway, the technical term I use to describe NT’s priority is “unholy 
mess.” In practice, priority is virtually worthless under NT. 

So what’s a programmer to do? Between NT’s limited number of priority levels 
and its uncontrollable priority boosting, there’s no absolutely safe way for a Java 
program to use priority levels for scheduling. One workable compromise is to 
restrict yourself to Thread.MAX_PRIORITY, Thread.MIN_PRIORITY, and 
Thread.NORM_PRIORITY when you call setPriority(). This restriction at least avoids 
the ten-mapped-to-seven-levels problem. I suppose you could use the os.name 
system property to detect NT, and then call a native method to turn off priority 
boosting, but that won’t work if your app is running under Internet Explorer unless 
you also use Sun’s JVM plug-in. (Microsoft’s JVM uses a nonstandard native-method 
implementation.) In any event, I hate to use native methods. I usually avoid the 
problem as much as possible by putting most threads at NORM_PRIORITY and using 
scheduling mechanisms other than priority. (I’ll discuss some of these in subse-
quent chapters.) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 22 23 24 25 26 31

Normal

Idle

High

Real-Time

Normal

NT™ Priority Classes

Figure 1-2. Windows NT’s Priority Achitecture
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Cooperate!

There are typically two threading models supported by operating systems: cooper-
ative and preemptive. 

The Cooperative Multithreading Model

In a cooperative system, a thread retains control of its processor until it decides to 
give it up (which might be never). The various threads have to cooperate with each 
other or all but one of the threads will be starved (never given a chance to run). 
Scheduling in most cooperative systems is done strictly by priority level. When the 
current thread gives up control, the highest-priority waiting thread gets control. 
(An exception to this rule is Windows 3.x, which uses a cooperative model but 
doesn’t have much of a scheduler. The window that has the focus gets control.) 

The main advantage of cooperative multithreading is that it’s very fast and has 
a very low overhead when compared to preemptive systems. For example, a context 
swap—a transfer of control from one thread to another—can be performed entirely 
by a user-mode subroutine library without entering the OS kernel (which costs 600 
machine cycles in NT). A user-mode context swap in a cooperative system does 
little more than a C setjump/longjump call would do. You can have thousands of 
cooperative threads in your applications without significantly impacting perfor-
mance. Because you don’t lose control involuntarily in cooperative systems, you 
don’t have to worry about synchronization either. Just don’t give up control until 
it’s safe to do so. You never have to worry about an atomic operation being inter-
rupted. The two main disadvantages of the cooperative model are: 

1. It’s very difficult to program cooperative systems. Lengthy operations 
have to be manually divided into smaller chunks, which often must inter-
act in complex ways. 

2. The cooperative threads can never run in parallel. 

The Preemptive Multithreading Model

The alternative to a cooperative model is a preemptive one, where some sort of 
timer is used by the operating system itself to cause a context swap. That is, when 
the timer “ticks” the OS can abruptly take control away from the running thread and 
give control to another thread. The interval between timer ticks is called a time slice. 

Preemptive systems are less efficient than cooperative ones because the thread 
management must be done by the operating-system kernel, but they’re easier to 
program (with the exception of synchronization issues) and tend to be more reliable 
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because starvation is less of a problem. The most important advantage to preemp-
tive systems is parallelism. Because cooperative threads are scheduled by a user-
level subroutine library, not by the OS, the best you can get with a cooperative 
model is concurrency. To get parallelism, the OS must do the scheduling. Four 
threads running in parallel on four processors will run more than four times faster 
than the same four threads running concurrently (because there is no context-
swap overhead). 

Some operating systems, like Windows 3.1, only support cooperative multi-
threading. Others, like NT, support only preemptive threading. (You can simulate 
cooperative threading in NT with a user-mode library. NT has such a library called 
the “fiber” library, but fibers are buggy, and aren’t fully integrated into the operating 
system.) Solaris provides the best (or worst) of all worlds by supporting both coop-
erative and preemptive models in the same program. (I’ll explain this in a moment.) 

Mapping Kernel Threads to User Processes

The final OS issue has to do with the way in which kernel-level threads are mapped 
into user-mode processes. NT uses a one-to-one model, illustrated in Figure 1.3. 

NT user-mode threads effectively are kernel threads. They are mapped by the OS 
directly onto a processor and they are always preemptive. All thread manipulation and 
synchronization are done via kernel calls (with a 600-machine–cycle overhead for 
every call). This is a straightforward model, but is neither flexible nor efficient. 
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Figure 1.3. The NT Threading Model
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The Solaris model in Figure 1.4 is more interesting. Solaris adds lightweight 
process (LWP) to the notion of a thread. The LWP is a schedulable unit on which one or 
more threads can run. Parallel processing is done on the LWP level. Normally, LWPs 
reside in a pool, and they are assigned to particular processors as necessary. An 
LWP can be bound to a specific processor if it’s doing something particularly time crit-
ical, however, thereby preventing other LWPs from using that processor. 

Up at the user level, you have a system of cooperative, or green threads. In a 
simple situation, a process will have one LWP shared by all of the green threads. 
The threads must yield control to each other voluntarily, but the single LWP that 
the threads share can be preempted by an LWP in another process. This way the 
processes are preemptive with respect to each other (and can execute in parallel), 
but the threads within the process are cooperative (and execute concurrently). 

A process is not limited to a single LWP, however. The green threads can share 
a pool of LWPs in a single process. The green threads can be attached (or bound) to 
an LWP in two ways: 

1. The programmer explicitly “binds” one or more threads to a specific LWP. 
In this case, the threads sharing a LWP must cooperate with each other, 
but they can preempt (or be preempted by) threads bound to a different 
LWP. If every green thread was bound to a single LWP, you’d have an NT-
style preemptive system. 

2. The threads are bound to green threads by the user-mode scheduler. This 
is something of a worst case from a programming point of view because 
you can’t assume a cooperative or a preemptive environment. You may 
have to yield to other threads if there’s only one LWP in the pool, but you 
might also be preempted. 

The Solaris threading model gives you an enormous amount of flexibility. You 
can choose between an extremely fast (but strictly concurrent) cooperative system, 
a slower (but parallel) preemptive system, or any combination of the two. But (and 
this is a big “but”) none of this flexibility is available to you, the hapless Java pro-
grammer, because you have no control over the threading model used by the JVM. 
For example, early versions of the Solaris JVM were strictly cooperative. Java threads 
were all green threads sharing a single LWP. The current version of the Solaris JVM 
uses multiple LWPs and no green threads at all. 

So why do you care? You care precisely because you have no control—you 
have to program as if all the possibilities might be used by the JVM. In order to 
write platform-independent code, you must make two seemingly contradictory 
assumptions: 

1. You can be preempted by another thread at any time. You must use the 
synchronized keyword carefully to assure that nonatomic operations 
work correctly. 
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2. You will never be preempted unless you give up control. You must occa-
sionally perform some operation that will give control to other threads so 
that they can have a chance to run. Use yield() and sleep() in appropriate 
places (or make blocking I/O calls). For example, you might want to con-
sider calling yield() every 100 iterations or so of a long loop, or voluntarily 
going to sleep for a few milliseconds every so often to give lower-priority 
threads a chance to run. (The yield() method will yield control only to 
threads running at your priority level or higher). 

Wrapping Up

So those are the main OS-level issues that you have to consider when you’re writing 
a Java program. Since you can make no assumptions about your operating envi-
ronment, you have to program for the worst case. For example, you have to assume 
that you can be preempted at any time, so you must use synchronized appropri-
ately, but you must also assume that you will never be preempted, so you must also 
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Figure 1.4. The Solaris Threading Model
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occasionally use yield(), sleep(), or blocking I/O calls to permit other threads to 
run. Any use of priority is problematic: You can’t assume that two adjacent priority 
levels are different. They might not be after NT has mapped Java’s ten levels into its 
seven levels. Similarly, you can’t assume that a priority-level-two thread will always 
be higher priority than one that runs at level 1—it might not be if NT has “boosted” 
the priority level of the lower-priority thread. 
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